Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cell ; 156(5): 1072-83, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24561062

ABSTRACT

In most mammals, neurons are added throughout life in the hippocampus and olfactory bulb. One area where neuroblasts that give rise to adult-born neurons are generated is the lateral ventricle wall of the brain. We show, using histological and carbon-14 dating approaches, that in adult humans new neurons integrate in the striatum, which is adjacent to this neurogenic niche. The neuronal turnover in the striatum appears restricted to interneurons, and postnatally generated striatal neurons are preferentially depleted in patients with Huntington's disease. Our findings demonstrate a unique pattern of neurogenesis in the adult human brain.


Subject(s)
Basal Ganglia/cytology , Neurogenesis , Neurons/cytology , Adult , Animals , Basal Ganglia/pathology , Basal Ganglia/physiology , Brain/cytology , Brain/physiology , Hippocampus/cytology , Hippocampus/physiology , Humans , Huntington Disease/pathology , Interneurons/cytology , Interneurons/physiology , Mice , Models, Biological , Neurons/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/physiology
2.
Semin Cell Dev Biol ; 123: 110-114, 2022 03.
Article in English | MEDLINE | ID: mdl-33589336

ABSTRACT

Chromothripsis is a unique form of genome instability characterized by tens to hundreds of DNA double-strand breaks on one or very few chromosomes, followed by error-prone repair. The derivative chromosome(s) display massive rearrangements, which lead to the loss of tumor suppressor function and to the activation of oncogenes. Chromothripsis plays a major role in cancer as well as in other conditions, such as congenital diseases. In this review, we discuss the repair processes involved in the rejoining of the chromosome fragments, the role of DNA repair and checkpoint defects as a cause for chromothripsis as well as DNA repair defects resulting from chromothripsis. Finally, we consider clinical implications and potential therapeutic vulnerabilities that could be utilized to eliminate tumor cells with chromothripsis.


Subject(s)
Chromothripsis , DNA Breaks, Double-Stranded , DNA Repair/genetics , Gene Rearrangement , Genomic Instability/genetics , Humans
3.
Int J Cancer ; 151(4): 590-606, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35411591

ABSTRACT

Chromothripsis is a form of genomic instability characterized by the occurrence of tens to hundreds of clustered DNA double-strand breaks in a one-off catastrophic event. Rearrangements associated with chromothripsis are detectable in numerous tumor entities and linked with poor prognosis in some of these, such as Sonic Hedgehog medulloblastoma, neuroblastoma and osteosarcoma. Hence, there is a need for therapeutic strategies eliminating tumor cells with chromothripsis. Defects in DNA double-strand break repair, and in particular homologous recombination repair, have been linked with chromothripsis. Targeting DNA repair deficiencies by synthetic lethality approaches, we performed a synergy screen using drug libraries (n = 375 compounds, 15 models) combined with either a PARP inhibitor or cisplatin. This revealed a synergistic interaction between the HDAC inhibitor romidepsin and PARP inhibition. Functional assays, transcriptome analyses and in vivo validation in patient-derived xenograft mouse models confirmed the efficacy of the combinatorial treatment.


Subject(s)
Bone Neoplasms , Cerebellar Neoplasms , Chromothripsis , Osteosarcoma , Animals , Bone Neoplasms/genetics , Cell Line, Tumor , DNA , DNA Repair , Hedgehog Proteins/genetics , Humans , Mice , Osteosarcoma/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
4.
Genes Chromosomes Cancer ; 60(5): 303-313, 2021 05.
Article in English | MEDLINE | ID: mdl-32734664

ABSTRACT

In vitro assays for clustered DNA lesions will facilitate the analysis of the mechanisms underlying complex genome rearrangements such as chromothripsis, including the recruitment of repair factors to sites of DNA double-strand breaks (DSBs). We present a novel method generating localized DNA DSBs using UV irradiation with photomasks. The size of the damage foci and the spacing between lesions are fully adjustable, making the assay suitable for different cell types and targeted areas. We validated this setup with genomically stable epithelial cells, normal fibroblasts, pluripotent stem cells, and patient-derived primary cultures. Our method does not require a specialized device such as a laser, making it accessible to a broad range of users. Sensitization by 5-bromo-2-deoxyuridine incorporation is not required, which enables analyzing the DNA damage response in post-mitotic cells. Irradiated cells can be cultivated further, followed by time-lapse imaging or used for downstream biochemical analyses, thanks to the high throughput of the system. Importantly, we showed genome rearrangements in the irradiated cells, providing a proof of principle for the induction of structural variants by localized DNA lesions.


Subject(s)
DNA Breaks, Double-Stranded , Mutagenesis , Cell Line , Cells, Cultured , Epithelial Cells/metabolism , Epithelial Cells/radiation effects , Fibroblasts/metabolism , Fibroblasts/radiation effects , Humans , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/radiation effects , Ultraviolet Rays
5.
Int J Cancer ; 2021 May 01.
Article in English | MEDLINE | ID: mdl-33932302

ABSTRACT

Chromothripsis is a form of genomic instability that was shown to play a major role in cancer. Beyond cancer, this type of catastrophic event is also involved in germline structural variation, genome mosaicism in somatic tissues, infertility, mental retardation, congenital malformations and reproductive development in plants. Several assays have been developed to model chromothripsis in vitro and to dissect the mechanistic basis of this phenomenon. Cell-based model systems are designed with different strategies, such as the formation of nuclear structures called micronuclei, telomere fusions or the induction of exogenous DNA double-strand breaks. Here, we review a range of model systems for chromothripsis and the mechanistic insights gained from these assays, with a particular focus on chromothripsis in cancer.

6.
Exp Cell Res ; 371(2): 353-363, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30149001

ABSTRACT

Micronuclei are extra-nuclear bodies containing whole chromosomes that were not incorporated into the nucleus after cell division or damaged chromosome fragments. Even though the link between micronuclei and DNA damage is described for a long time, little is known about the functional organization of micronuclei and their contribution to tumorigenesis. We showed fusions between micronuclear membranes and lysosomes by electron microscopy and linked lysosome function to DNA damage levels in micronuclei. In addition, micronuclei drastically differ from primary nuclei in nuclear envelope composition, with a significant increase in the relative amount of nuclear envelope proteins LBR and emerin and a decrease in nuclear pore proteins. Strikingly, micronuclei lack active proteasomes, as the processing subunits and other factors of the ubiquitin proteasome system. Moreover, micronuclear chromatin shows a higher degree of compaction as compared to primary nuclei. The specific aberrations identified in micronuclei and the potential functional consequences of these defects may contribute to the role of micronuclei in catastrophic genomic rearrangements.


Subject(s)
Cell Nucleus/ultrastructure , Chromatin/ultrastructure , Chromothripsis , Genomic Instability , Nuclear Envelope/ultrastructure , Proteasome Endopeptidase Complex/physiology , Cell Line , Cell Nucleus/metabolism , Cell Nucleus/pathology , Chromatin/chemistry , DNA Damage , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Gene Expression , Humans , Lysosomes/metabolism , Lysosomes/ultrastructure , Membrane Fusion , Membrane Proteins/genetics , Membrane Proteins/metabolism , Micronucleus Tests , Nocodazole/pharmacology , Nuclear Envelope/chemistry , Nuclear Envelope/metabolism , Nuclear Envelope/pathology , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/ultrastructure , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/ultrastructure , Lamin B Receptor
7.
Lancet Oncol ; 19(6): 785-798, 2018 06.
Article in English | MEDLINE | ID: mdl-29753700

ABSTRACT

BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario.


Subject(s)
Biomarkers, Tumor/genetics , Cerebellar Neoplasms/genetics , DNA Methylation , Genetic Testing/methods , Germ-Line Mutation , Medulloblastoma/genetics , Models, Genetic , Adolescent , Adult , Cerebellar Neoplasms/mortality , Cerebellar Neoplasms/pathology , Cerebellar Neoplasms/therapy , Child , Child, Preschool , DNA Mutational Analysis , Female , Gene Expression Profiling , Genetic Predisposition to Disease , Heredity , Humans , Infant , Male , Medulloblastoma/mortality , Medulloblastoma/pathology , Medulloblastoma/therapy , Pedigree , Phenotype , Predictive Value of Tests , Progression-Free Survival , Prospective Studies , Reproducibility of Results , Retrospective Studies , Risk Factors , Transcriptome , Exome Sequencing , Young Adult
8.
PLoS Biol ; 13(1): e1002045, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25621867

ABSTRACT

New neurons are continuously generated in specific regions in the adult brain. Studies in rodents have demonstrated that adult-born neurons have specific functional features and mediate neural plasticity. Data on the extent and dynamics of adult neurogenesis in adult humans are starting to emerge, and there are clear similarities and differences compared to other mammals. Why do these differences arise? And what do they mean?


Subject(s)
Neurogenesis , Adult , Animals , Biological Evolution , Corpus Striatum/physiology , Hippocampus/physiology , Humans , Lateral Ventricles/physiology , Models, Neurological , Neocortex/physiology , Neuronal Plasticity , Olfactory Bulb/physiology , Organ Specificity , Transcriptome
9.
Int J Cancer ; 138(10): 2322-33, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26455580

ABSTRACT

In 2011, a novel form of genome instability was reported by Stephens et al., characterized by tens to hundreds of locally clustered rearrangements affecting one or a few chromosome(s) in cancer cells. This phenomenon, termed chromothripsis, is likely due to a single catastrophic event leading to the simultaneous formation of multiple double-strand breaks, which are repaired by error-prone mechanisms. Since then, the occurrence of chromothripsis was detected in a wide range of tumor entities. In this review, we will discuss potential mechanisms of chromothripsis initiation in cancer and outline the prevalence of chromothripsis across entities. Furthermore, we will examine how chromothriptic events may promote cancer development and how they may affect cancer therapy.


Subject(s)
Chromosome Aberrations , Genomic Instability , Neoplasms/genetics , Animals , Cell Transformation, Neoplastic/genetics , Humans , Neoplasms/therapy
10.
Int J Cancer ; 138(12): 2905-14, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26856307

ABSTRACT

Chromothripsis is a recently discovered form of genomic instability, characterized by tens to hundreds of clustered DNA rearrangements resulting from a single dramatic event. Telomere dysfunction has been suggested to play a role in the initiation of this phenomenon, which occurs in a large number of tumor entities. Here, we show that telomere attrition can indeed lead to catastrophic genomic events, and that telomere patterns differ between cells analyzed before and after such genomic catastrophes. Telomere length and telomere stabilization mechanisms diverge between samples with and without chromothripsis in a given tumor subtype. Longitudinal analyses of the evolution of chromothriptic patterns identify either stable patterns between matched primary and relapsed tumors, or loss of the chromothriptic clone in the relapsed specimen. The absence of additional chromothriptic events occurring between the initial tumor and the relapsed tumor sample points to telomere stabilization after the initial chromothriptic event which prevents further shattering of the genome.


Subject(s)
Cerebellar Neoplasms/genetics , Genomic Instability , Medulloblastoma/genetics , Telomere Homeostasis , Case-Control Studies , Cerebellar Neoplasms/enzymology , Chromosome Disorders/enzymology , Chromosome Disorders/genetics , Ependymoma/enzymology , Ependymoma/genetics , Gene Expression , Humans , Medulloblastoma/enzymology , Telomerase/genetics , Telomerase/metabolism
12.
Cell Genom ; 3(4): 100281, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37082141

ABSTRACT

Cancer genomes harbor a broad spectrum of structural variants (SVs) driving tumorigenesis, a relevant subset of which escape discovery using short-read sequencing. We employed Oxford Nanopore Technologies (ONT) long-read sequencing in a paired diagnostic and post-therapy medulloblastoma to unravel the haplotype-resolved somatic genetic and epigenetic landscape. We assembled complex rearrangements, including a 1.55-Mbp chromothripsis event, and we uncover a complex SV pattern termed templated insertion (TI) thread, characterized by short (mostly <1 kb) insertions showing prevalent self-concatenation into highly amplified structures of up to 50 kbp in size. TI threads occur in 3% of cancers, with a prevalence up to 74% in liposarcoma, and frequent colocalization with chromothripsis. We also perform long-read-based methylome profiling and discover allele-specific methylation (ASM) effects, complex rearrangements exhibiting differential methylation, and differential promoter methylation in cancer-driver genes. Our study shows the advantage of long-read sequencing in the discovery and characterization of complex somatic rearrangements.

13.
Nat Commun ; 13(1): 3475, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35715410

ABSTRACT

Following fertilization, it is only at the 32-64-cell stage when a clear segregation between cells of the inner cell mass and trophectoderm is observed, suggesting a 'T'-shaped model of specification. Here, we examine whether the acquisition of these two states in vitro, by nuclear reprogramming, share similar dynamics/trajectories. Using a comparative parallel multi-omics analysis (i.e., bulk RNA-seq, scRNA-seq, ATAC-seq, ChIP-seq, RRBS and CNVs) on cells undergoing reprogramming to pluripotency and TSC state we show that each reprogramming system exhibits specific trajectories from the onset of the process, suggesting 'V'-shaped model. We describe in detail the various trajectories toward the two states and illuminate reprogramming stage-specific markers, blockers, facilitators and TSC subpopulations. Finally, we show that while the acquisition of the TSC state involves the silencing of embryonic programs by DNA methylation, during the acquisition of pluripotency these regions are initially defined but retain inactive by the elimination of H3K27ac.


Subject(s)
Blastocyst , Cellular Reprogramming , Blastocyst/metabolism , Cells, Cultured , Cellular Reprogramming/genetics , DNA Methylation
14.
J Clin Invest ; 118(5): 1739-49, 2008 May.
Article in English | MEDLINE | ID: mdl-18398503

ABSTRACT

The molecular pathogenesis of pediatric astrocytomas is still poorly understood. To further understand the genetic abnormalities associated with these tumors, we performed a genome-wide analysis of DNA copy number aberrations in pediatric low-grade astrocytomas by using array-based comparative genomic hybridization. Duplication of the BRAF protooncogene was the most frequent genomic aberration, and tumors with BRAF duplication showed significantly increased mRNA levels of BRAF and a downstream target, CCND1, as compared with tumors without duplication. Furthermore, denaturing HPLC showed that activating BRAF mutations were detected in some of the tumors without BRAF duplication. Similarly, a marked proportion of low-grade astrocytomas from adult patients also had BRAF duplication. Both the stable silencing of BRAF through shRNA lentiviral transduction and pharmacological inhibition of MEK1/2, the immediate downstream phosphorylation target of BRAF, blocked the proliferation and arrested the growth of cultured tumor cells derived from low-grade gliomas. Our findings implicate aberrant activation of the MAPK pathway due to gene duplication or mutation of BRAF as a molecular mechanism of pathogenesis in low-grade astrocytomas and suggest inhibition of the MAPK pathway as a potential treatment.


Subject(s)
Astrocytoma/enzymology , Astrocytoma/genetics , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Gene Duplication , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Astrocytoma/pathology , Brain Neoplasms/pathology , Cell Cycle/physiology , Child , Chromosome Aberrations , Cyclin D , Cyclins/genetics , Cyclins/metabolism , Enzyme Activation , Enzyme Inhibitors/metabolism , Female , Humans , Male , Microarray Analysis , Mitogen-Activated Protein Kinases/genetics , Mutation , Nucleic Acid Hybridization/methods , Proto-Oncogene Proteins B-raf/genetics
15.
Nat Commun ; 12(1): 5501, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535655

ABSTRACT

Fibrotic scar tissue limits central nervous system regeneration in adult mammals. The extent of fibrotic tissue generation and distribution of stromal cells across different lesions in the brain and spinal cord has not been systematically investigated in mice and humans. Furthermore, it is unknown whether scar-forming stromal cells have the same origin throughout the central nervous system and in different types of lesions. In the current study, we compared fibrotic scarring in human pathological tissue and corresponding mouse models of penetrating and non-penetrating spinal cord injury, traumatic brain injury, ischemic stroke, multiple sclerosis and glioblastoma. We show that the extent and distribution of stromal cells are specific to the type of lesion and, in most cases, similar between mice and humans. Employing in vivo lineage tracing, we report that in all mouse models that develop fibrotic tissue, the primary source of scar-forming fibroblasts is a discrete subset of perivascular cells, termed type A pericytes. Perivascular cells with a type A pericyte marker profile also exist in the human brain and spinal cord. We uncover type A pericyte-derived fibrosis as a conserved mechanism that may be explored as a therapeutic target to improve recovery after central nervous system lesions.


Subject(s)
Central Nervous System/pathology , Cicatrix/pathology , Pericytes/pathology , Aging/physiology , Animals , Astrocytes/pathology , Brain Injuries, Traumatic/pathology , Brain Ischemia/pathology , Brain Neoplasms/pathology , Cerebral Cortex/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Extracellular Matrix/metabolism , Fibroblasts/pathology , Fibrosis , Glioblastoma/pathology , Humans , Ischemic Stroke/pathology , Mice, Inbred C57BL , Mice, Transgenic , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments , Receptor, Platelet-Derived Growth Factor beta/metabolism , Spinal Cord/pathology , Spinal Cord/ultrastructure , Spinal Cord Injuries/pathology , Stromal Cells/pathology
16.
Oncogene ; 40(16): 2830-2841, 2021 04.
Article in English | MEDLINE | ID: mdl-33731860

ABSTRACT

Adult pilocytic astrocytomas (PAs) have been regarded as indistinguishable from pediatric PAs in terms of genome-wide expression and methylation patterns. It has been unclear whether adult PAs arise early in life and remain asymptomatic until adulthood, or whether they develop during adulthood. We sought to determine the age and origin of adult human PAs using two types of "marks" in the genomic DNA. First, we analyzed the DNA methylation patterns of adult and pediatric PAs to distinguish between PAs of different anatomic locations (n = 257 PA and control brain tissues). Second, we measured the concentration of nuclear bomb test-derived 14C in genomic DNA (n = 14 cases), which indicates the time point of the formation of human cell populations. Our data suggest that adult and pediatric PAs developing in the infratentorial brain are closely related and potentially develop from precursor cells early in life, whereas supratentorial PAs might show age and location-specific differences.


Subject(s)
Astrocytoma/epidemiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , Humans , Incidence , Infant , Infant, Newborn , Middle Aged , Young Adult
17.
Neuro Oncol ; 23(12): 2028-2041, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34049392

ABSTRACT

BACKGROUND: Medulloblastomas with chromothripsis developing in children with Li-Fraumeni Syndrome (germline TP53 mutations) are highly aggressive brain tumors with dismal prognosis. Conventional photon radiotherapy and DNA-damaging chemotherapy are not successful for these patients and raise the risk of secondary malignancies. We hypothesized that the pronounced homologous recombination deficiency in these tumors might offer vulnerabilities that can be therapeutically utilized in combination with high linear energy transfer carbon ion radiotherapy. METHODS: We tested high-precision particle therapy with carbon ions and protons as well as topotecan with or without PARP inhibitor in orthotopic primary and matched relapsed patient-derived xenograft models. Tumor and normal tissue underwent longitudinal morphological MRI, cellular (markers of neurogenesis and DNA damage-repair), and molecular characterization (whole-genome sequencing). RESULTS: In the primary medulloblastoma model, carbon ions led to complete response in 79% of animals irrespective of PARP inhibitor within a follow-up period of 300 days postirradiation, as detected by MRI and histology. No sign of neurologic symptoms, impairment of neurogenesis or in-field carcinogenesis was detected in repair-deficient host mice. PARP inhibitors further enhanced the effect of proton irradiation. In the postradiotherapy relapsed tumor model, median survival was significantly increased after carbon ions (96 days) versus control (43 days, P < .0001). No major change in the clonal composition was detected in the relapsed model. CONCLUSION: The high efficacy and favorable toxicity profile of carbon ions warrants further investigation in primary medulloblastomas with chromothripsis. Postradiotherapy relapsed medulloblastomas exhibit relative resistance compared to treatment-naïve tumors, calling for exploration of multimodal strategies.


Subject(s)
Cerebellar Neoplasms , Chromothripsis , Heavy Ion Radiotherapy , Li-Fraumeni Syndrome , Medulloblastoma , Animals , Carbon , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/radiotherapy , Humans , Medulloblastoma/drug therapy , Medulloblastoma/radiotherapy , Mice
18.
Genes Chromosomes Cancer ; 48(3): 229-38, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19025795

ABSTRACT

Nonresectable ependymomas are associated with poor prognosis despite intensive radiochemotherapy and radiation. The molecular pathogenesis of ependymoma initiation and progression is largely unknown. We here present a case of therapy-refractory, progressive ependymoma with cerebrospinal as well as extraneural metastases, which allowed us for the first time to follow the stepwise accumulation of chromosome aberrations during disease progression. Genome-wide DNA copy-number analysis showed sequential deletions on chromosomes 1, 9, and 14 as well as a homozygous deletion of the CDKN2A locus, underscoring its role in tumor progression. Gradual loss at 1p36 was associated with loss of protein expression of the putative tumor suppressor gene AJAP1/SHREW1. In summary, this is the first report on acquired genomic aberrations in ependymoma over time pointing to novel candidate tumor suppressor genes. This analysis provides molecular insights into the chronology of genetic events in this case from initial localized tumor to widespread metastasized disease.


Subject(s)
Brain Neoplasms/genetics , Chromosome Deletion , Ependymoma/genetics , Adolescent , Brain Neoplasms/pathology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 14/genetics , Chromosomes, Human, Pair 9/genetics , Ependymoma/pathology , Ependymoma/secondary , Fatal Outcome , Female , Gene Expression , Genes, Tumor Suppressor , Humans , Microarray Analysis , Peritoneal Neoplasms/pathology , Peritoneal Neoplasms/secondary , Spinal Neoplasms/pathology , Spinal Neoplasms/secondary , Tumor Cells, Cultured
19.
Neuro Oncol ; 22(9): 1327-1338, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32052037

ABSTRACT

BACKGROUND: Pilocytic astrocytoma (PA) is the most common pediatric brain tumor. While genome and transcriptome landscapes are well studied, data of the complete methylome, tumor cell composition, and immune infiltration are scarce. METHODS: We generated whole genome bisulfite sequence (WGBS) data of 9 PAs and 16 control samples and integrated available 154 PA and 57 control methylation array data. RNA sequence data of 49 PAs and 11 control samples as well as gene expression arrays of 248 PAs and 28 controls were used to assess transcriptional activity. RESULTS: DNA-methylation patterns of partially methylated domains suggested high stability of the methylomes during tumorigenesis. Comparing tumor and control tissues of infra- and supratentorial location using methylation arrays revealed a site specific pattern. Analysis of WGBS data revealed 9381 significantly differentially methylated regions (DMRs) in PA versus control tissue. Enhancers and transcription factor (TF) motifs of five distinct TF families were found to be enriched in DMRs. Methylation together with gene expression data-based in silico tissue deconvolution analysis indicated a striking variation in the immune cell infiltration in PA. A TF network analysis showed a regulatory relation between basic leucine zipper (bZIP) transcription factors and genes involved in immune-related processes. CONCLUSION: We provide evidence for a link of focal methylation differences and differential gene expression to immune infiltration.


Subject(s)
Astrocytoma , Basic-Leucine Zipper Transcription Factors , Astrocytoma/genetics , Child , DNA Methylation , Demethylation , Humans , Immunity
20.
Cancer Res ; 80(22): 4918-4931, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32973084

ABSTRACT

Chromothripsis is a form of genome instability by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosomes. Widely assumed to be an early event in tumor development, this phenomenon plays a prominent role in tumor onset. In this study, an analysis of chromothripsis in 252 human breast cancers from two patient cohorts (149 metastatic breast cancers, 63 untreated primary tumors, 29 local relapses, and 11 longitudinal pairs) using whole-genome and whole-exome sequencing reveals that chromothripsis affects a substantial proportion of human breast cancers, with a prevalence over 60% in a cohort of metastatic cases and 25% in a cohort comprising predominantly luminal breast cancers. In the vast majority of cases, multiple chromosomes per tumor were affected, with most chromothriptic events on chromosomes 11 and 17 including, among other significantly altered drivers, CCND1, ERBB2, CDK12, and BRCA1. Importantly, chromothripsis generated recurrent fusions that drove tumor development. Chromothripsis-related rearrangements were linked with univocal mutational signatures, with clusters of point mutations due to kataegis in close proximity to the genomic breakpoints and with the activation of specific signaling pathways. Analyzing the temporal order of events in tumors with and without chromothripsis as well as longitudinal analysis of chromothriptic patterns in tumor pairs offered important insights into the role of chromothriptic chromosomes in tumor evolution. SIGNIFICANCE: These findings identify chromothripsis as a major driving event in human breast cancer.


Subject(s)
Breast Neoplasms/genetics , Chromothripsis , Gene Rearrangement , Neoplasm Recurrence, Local/genetics , Algorithms , Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 17 , Cyclin D1/genetics , Cyclin-Dependent Kinases/genetics , DNA Repair , Female , Gene Fusion , Genes, BRCA1 , Genes, BRCA2 , Genes, erbB-2 , Genes, p53 , Humans , INDEL Mutation , Signal Transduction , Exome Sequencing , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL