Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Viral Immunol ; 37(2): 89-100, 2024 03.
Article in English | MEDLINE | ID: mdl-38301195

ABSTRACT

Herpesvirus of turkey (HVT) increases activation of T cells in 1-day-old chickens when administered in ovo. This study evaluated whether adding cytosine-guanosine oligodeoxynucleotides (CpG ODNs) to the HVT vaccine could enhance the adjuvant effect of HVT. We used a CpG ODN dose of 10 µg per egg. The experimental groups were (1) diluent-only control (sham), (2) HVT, (3) HVT+CpG ODN, (4) HVT+non-CpG ODN, (5) CpG ODN, and (6) non-CpG ODN control. Cellular response evaluation included measuring the frequencies of macrophages (KUL01+MHC-II+), gamma delta T cells (γδTCR+MHC-II+), CD4+, and CD8+ T cell subsets, including double-positive (DP) cells. In addition, CD4+ and CD8+ T cell activation was evaluated by measuring the cellular expression of major histocompatibility complex class II (MHC-II), CD44 or CD28 costimulatory molecules. An adjuvant effect was considered when HVT+CpG ODN, but not HVT+non CpG ODN, or CpG ODN, or non-CpG ODN, induced significantly increased effects on any of the immune parameters examined when compared with HVT. The findings showed that (1) HVT vaccination induced significantly higher frequencies of γδ+MHC-II+ and CD4+CD28+ T cells when compared with sham chickens. Frequencies of DP and CD4+CD28+ T cells in HVT-administered birds were significantly higher than those observed in the non-CpG ODN group. (2) Groups receiving HVT+CpG ODN or CpG ODN alone were found to have significantly increased frequencies of activated CD4+ and CD8+ T cells, when compared with HVT. Our results show that CpG ODN administration in ovo with or without HVT significantly increased frequencies of activated CD4+ and CD8+ T cells.


Subject(s)
Herpesviridae , Vaccines , Animals , Chickens , CD8-Positive T-Lymphocytes , CD28 Antigens , Adjuvants, Immunologic , Oligodeoxyribonucleotides , Meat
2.
Vaccine ; 41(15): 2514-2523, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36894394

ABSTRACT

In ovo vaccination with herpesvirus of turkey (HVT) hastens immunocompetence in chickens and the recommended dose (RD) of 6080 plaque-forming-units (PFU) offers the most optimal effects. In previous studies conducted in egg-type chickens, in ovo vaccination with HVT enhanced lymphoproliferation, wing-web thickness with phytohemagglutinin-L (PHA-L), and increased spleen and lung interferon-gamma(IFN-γ) andToll-like receptor 3 (TLR3) transcripts. Here, we evaluated the cellular mechanisms by which HVT-RD can hasten immunocompetence in one-day-old meat-type chickens, and also determined if HVT adjuvantation with a TLR3 agonist, polyinosinic-polycytidylic acid (poly(I:C)), could enhance vaccine-induced responses and provide dose-sparing effects. Compared to sham-inoculated chickens, HVT-RD significantly increased transcription of splenic TLR3 and IFN γ receptor 2 (R2), and lung IFN γ R2, while the splenic IL-13 transcription was found decreased. Additionally, these birds showed increased wing-web thickness following PHA-L inoculation. The thickness was due to an innate inflammatory cell population, CD3+ T cells, and edema. In another experiment, HVT-1/2 (3040 PFU) supplemented with 50 µg poly(I:C) [HVT-1/2 + poly(I:C)] was administered in ovo and immune responses were compared with those produced by HVT-RD, HVT-1/2, 50 µg poly(I:C), and sham-inoculated. Immunophenotyping of splenocytes showed HVT-RD induced a significantly higher frequency of CD4+, CD4+MHC-II+, CD8+CD44+, and CD4+CD28+ T cells compared to sham-inoculated chickens, and CD8+MHC-II+, CD4+CD8+, CD4+CD8+CD28+, and CD4+CD8+CD44+ T cells compared to all groups. Treatment groups, except HVT-1/2 + poly(I:C), had significantly higher frequencies of γδ T cells and all groups induced significantly higher frequencies of activated monocytes/macrophages, compared to sham-inoculated chickens. Poly(I:C)-induced dose-sparing effect was only observed in the frequency of activated monocytes/macrophages. No differences in the humoral responses were observed. Collectively, HVT-RD downregulated IL-13 transcripts (Th2 immune response) and had strong immunopotentiation effects on innate immune responses and the activation of T cells. However addition of poly(I:C) offered a minimal adjuvant/dose-sparing effect.


Subject(s)
Chickens , Marek Disease , Animals , Poly I-C/pharmacology , Toll-Like Receptor 3 , Interleukin-13 , CD28 Antigens , Herpesvirus 1, Meleagrid , Interferon-gamma , Vaccination/veterinary
3.
Transl Vis Sci Technol ; 12(1): 16, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36622686

ABSTRACT

Purpose: To study the relationship between the circumferential extent of angle closure and elevation in intraocular pressure (IOP) using a novel mechanistic model of aqueous humor (AH) flow. Methods: AH flow through conventional and unconventional outflow pathways was modeled using the unified Stokes and Darcy equations, which were solved using the finite element method. The severity and circumferential extent of angle closure were modeled by lowering the permeability of the outflow pathways. The IOP predicted by the model was compared with biometric and IOP data from the Chinese American Eye Study, wherein the circumferential extent of angle closure was determined using anterior segment OCT measurements of angle opening distance. Results: The mechanistic model predicted an initial linear rise in IOP with increasing extent of angle closure which became nonlinear when the extent of closure exceeded around one-half of the circumference. The nonlinear rise in IOP was associated with a nonlinear increase in AH outflow velocity in the open regions of the angle. These predictions were consistent with the nonlinear relationship between angle closure and IOP observed in the clinical data. Conclusions: IOP increases rapidly when the circumferential extent of angle closure exceeds 180°. Residual AH outflow may explain why not all angle closure eyes develop elevated IOP when angle closure is extensive. Translational Relevance: This study provides insight into the extent of angle closure that is clinically relevant and confers increased risk of elevated IOP. The proposed model can be utilized to study other mechanisms of impaired aqueous outflow.


Subject(s)
Glaucoma , Intraocular Pressure , Humans , Aqueous Humor/metabolism , Tonometry, Ocular
4.
Article in English | MEDLINE | ID: mdl-35820015

ABSTRACT

Mechanical properties of the anterior anatomical structures of the eye, such as the cornea and ciliary body, play a key role in the ocular function and homeostasis. However, measuring the biomechanical properties of the anterior ocular structures, especially deeper structures, such as the ciliary body, remains a challenge due to the lack of high-resolution imaging tools. Herein, we implement a mechanical shaker-based high-frequency ultrasound elastography technique that can track the induced elastic wave propagation to assess the linear and nonlinear elastic properties of anterior ocular structures. The findings of this study advance our understanding of the role of anterior ocular structures in the pathogenesis of different ocular disorders, such as glaucoma.


Subject(s)
Ciliary Body , Elasticity Imaging Techniques , Cornea
5.
Vaccine ; 38(31): 4837-4845, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32505441

ABSTRACT

In ovo vaccination with herpesvirus of turkey (HVT) or recombinant HVT (rHVT) is commonly used in meat-type chickens. Previous studies showed that in ovo vaccination with HVT enhances innate, cellular, and humoral immune responses in egg-type chicken embryos. This study evaluated if in ovo vaccination with HVT hastens immunocompetence of commercial meat-type chickens and optimized vaccination variables (dose and strain of HVT) to accelerate immunocompetence. A conventional HVT vaccine was given at recommended dose (RD), HVT-RD = 6080 plaque forming units (PFU), double-dose (2x), half-dose (1/2), or quarter-dose (1/4). Two rHVTs were given at RD: rHVT-A = 7380 PFU, rHVT-B = 8993 PFU. Most, if not all, treatments enhanced splenic lymphoproliferation with Concanavalin A and increased the percentage of granulocytes at day of age. Dose had an effect and HVT-RD was ideal. An increase of wing-web thickness after exposure to phytohemagglutinin-L was only detected after vaccination with HVT-RD. Furthermore, compared to sham-inoculated chickens, chickens in the HVT-RD had an increased percentage of CD3+ T cells and CD4+ T-helper cells, and increased expression of major histocompatibility complex (MHC)-II on most cell subsets (CD45+ cells, non-T leukocytes, T cells and the CD8+ and T cell receptor γδ T-cell subsets). Other treatments (HVT-1/2 and rHVT-B) share some of these features but differences were not as remarkable as in the HVT-RD group. Expression of MHC-I was reduced, compared to sham-inoculated chickens, in most of the cell phenotypes evaluated in the HVT-RD, HVT-2x and rHVT-A groups, while no effect was observed in other treatments. The effect of in ovo HVT on humoral immune responses (antibody responses to keyhole limpet hemocyanin and to a live infectious bronchitis/Newcastle disease vaccine) was minimal. Our study demonstrates in ovo vaccination with HVT in meat-type chickens can accelerate innate and adaptive immunity and we could optimize such effect by modifying the vaccine dose.


Subject(s)
Marek Disease , Poultry Diseases , Viral Vaccines , Animals , Chick Embryo , Chickens , Herpesvirus 1, Meleagrid , Meat , Poultry Diseases/prevention & control , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL