Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nature ; 631(8019): 164-169, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926580

ABSTRACT

Plants adapt to fluctuating environmental conditions by adjusting their metabolism and gene expression to maintain fitness1. In legumes, nitrogen homeostasis is maintained by balancing nitrogen acquired from soil resources with nitrogen fixation by symbiotic bacteria in root nodules2-8. Here we show that zinc, an essential plant micronutrient, acts as an intracellular second messenger that connects environmental changes to transcription factor control of metabolic activity in root nodules. We identify a transcriptional regulator, FIXATION UNDER NITRATE (FUN), which acts as a sensor, with zinc controlling the transition between an inactive filamentous megastructure and an active transcriptional regulator. Lower zinc concentrations in the nodule, which we show occur in response to higher levels of soil nitrate, dissociates the filament and activates FUN. FUN then directly targets multiple pathways to initiate breakdown of the nodule. The zinc-dependent filamentation mechanism thus establishes a concentration readout to adapt nodule function to the environmental nitrogen conditions. In a wider perspective, these results have implications for understanding the roles of metal ions in integration of environmental signals with plant development and optimizing delivery of fixed nitrogen in legume crops.


Subject(s)
Gene Expression Regulation, Plant , Nitrates , Nitrogen Fixation , Root Nodules, Plant , Transcription Factors , Zinc , Zinc/metabolism , Transcription Factors/metabolism , Nitrates/metabolism , Root Nodules, Plant/metabolism , Nitrogen/metabolism , Medicago truncatula/metabolism , Medicago truncatula/genetics , Symbiosis , Plant Proteins/metabolism , Plant Proteins/genetics
2.
New Phytol ; 241(2): 793-810, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37915139

ABSTRACT

Cu+ -chaperones are a diverse group of proteins that allocate Cu+ ions to specific copper proteins, creating different copper pools targeted to specific physiological processes. Symbiotic nitrogen fixation carried out in legume root nodules indirectly requires relatively large amounts of copper, for example for energy delivery via respiration, for which targeted copper deliver systems would be required. MtNCC1 is a nodule-specific Cu+ -chaperone encoded in the Medicago truncatula genome, with a N-terminus Atx1-like domain that can bind Cu+ with picomolar affinities. MtNCC1 is able to interact with nodule-specific Cu+ -importer MtCOPT1. MtNCC1 is expressed primarily from the late infection zone to the early fixation zone and is located in the cytosol, associated with plasma and symbiosome membranes, and within nuclei. Consistent with its key role in nitrogen fixation, ncc1 mutants have a severe reduction in nitrogenase activity and a 50% reduction in copper-dependent cytochrome c oxidase activity. A subset of the copper proteome is also affected in the ncc1 mutant nodules. Many of these proteins can be pulled down when using a Cu+ -loaded N-terminal MtNCC1 moiety as a bait, indicating a role in nodule copper homeostasis and in copper-dependent physiological processes. Overall, these data suggest a pleiotropic role of MtNCC1 in copper delivery for symbiotic nitrogen fixation.


Subject(s)
Medicago truncatula , Nitrogen Fixation , Nitrogen Fixation/genetics , Medicago truncatula/genetics , Medicago truncatula/metabolism , Copper/metabolism , Root Nodules, Plant/metabolism , Symbiosis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism
3.
J Exp Bot ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597771

ABSTRACT

Global climate change has already brought noticeable alterations to multiple regions of our planet. Several important steps of plant growth and development, such as embryogenesis, can be affected by environmental changes. For instance, these changes would affect how stored nutrients are used during early stages of seed germination as it transitions from a heterotrophic to autotrophic metabolism, a critical period for the seedling's survival. In this perspective, we provide a brief description of relevant processes that occur during embryo maturation and account for nutrient accumulation, which are sensitive to environmental change. As examples of the effects associated with climate change are increased CO2 levels and changes in temperature. During seed development, most of the nutrients stored in the seed are accumulated during the seed maturation stage. These nutrients include, depending on the plant species, carbohydrates, lipids and proteins. Regarding micronutrients, it has also been established that iron, a key micronutrient for various electron transfer processes in plant cells, accumulates during embryo maturation. Several articles have been published indicating that climate change can affect the quality of the seed, in terms of total nutritional content, but also, it may affect seed production. Here we discuss the potential effects of temperature and CO2 increase from an embryo autonomous point of view, in an attempt to separate the maternal effects from embryonic effects.

4.
New Phytol ; 239(6): 2113-2125, 2023 09.
Article in English | MEDLINE | ID: mdl-37340839

ABSTRACT

Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N2 into NH3 . In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.


Subject(s)
Fabaceae , Rhizobium , Nitrogen Fixation , Symbiosis , Ecosystem , Fabaceae/microbiology , Root Nodules, Plant/microbiology , Nitrogen
5.
Plant Physiol ; 186(1): 581-598, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33619553

ABSTRACT

Legumes form a symbiosis with rhizobia that convert atmospheric nitrogen (N2) to ammonia and provide it to the plant in return for a carbon and nutrient supply. Nodules, developed as part of the symbiosis, harbor rhizobia that are enclosed in a plant-derived symbiosome membrane (SM) to form an organelle-like structure called the symbiosome. In mature nodules exchanges between the symbionts occur across the SM. Here we characterize Yellow Stripe-like 7 (GmYSL7), a Yellow stripe-like family member localized on the SM in soybean (Glycine max) nodules. It is expressed specifically in infected cells with expression peaking soon after nitrogenase becomes active. Unlike most YSL family members, GmYSL7 does not transport metals complexed with phytosiderophores. Rather, it transports oligopeptides of between four and 12 amino acids. Silencing GmYSL7 reduces nitrogenase activity and blocks infected cell development so that symbiosomes contain only a single bacteroid. This indicates the substrate of YSL7 is required for proper nodule development, either by promoting symbiosome development directly or by preventing inhibition of development by the plant. RNAseq of nodules where GmYSL7 was silenced suggests that the plant initiates a defense response against rhizobia with genes encoding proteins involved in amino acid export downregulated and some transcripts associated with metal homeostasis altered. These changes may result from the decrease in nitrogen fixation upon GmYSL7 silencing and suggest that the peptide(s) transported by GmYSL7 monitor the functional state of the bacteroids and regulate nodule metabolism and transport processes accordingly. Further work to identify the physiological substrate for GmYSL7 will allow clarification of this role.


Subject(s)
Glycine max/genetics , Membrane Transport Proteins/genetics , Nitrogen Fixation , Plant Proteins/genetics , Rhizobium/physiology , Biological Transport , Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Glycine max/metabolism , Glycine max/microbiology , Symbiosis
6.
J Exp Bot ; 73(1): 339-350, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34463334

ABSTRACT

Zinc is an essential nutrient at low concentrations, but toxic at slightly higher ones. It has been proposed that hyperaccumulator plants may use the excess zinc to fend off pathogens and herbivores. However, there is little evidence of a similar response in other plants. Here we show that Arabidopsis thaliana leaves inoculated with the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM) accumulate zinc and manganese at the infection site. Zinc accumulation did not occur in a double mutant in the zinc transporters HEAVY METAL ATPASE2 and HEAVY METAL ATPASE4 (HMA2 and HMA4), which has reduced zinc translocation from roots to shoots. Consistent with a role in plant immunity, expression of HMA2 and HMA4 was up-regulated upon PcBMM inoculation, and hma2hma4 mutants were more susceptible to PcBMM infection. This phenotype was rescued upon zinc supplementation. The increased susceptibility to PcBMM infection was not due to the diminished expression of genes involved in the salicylic acid, ethylene, or jasmonate pathways since they were constitutively up-regulated in hma2hma4 plants. Our data indicate a role of zinc in resistance to PcBMM in plants containing ordinary levels of zinc. This layer of immunity runs in parallel to the already characterized defence pathways, and its removal has a direct effect on resistance to pathogens.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ascomycota , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Zinc/metabolism
7.
Plant Cell Environ ; 44(6): 1908-1920, 2021 06.
Article in English | MEDLINE | ID: mdl-33797764

ABSTRACT

Yellow Stripe-Like (YSL) proteins are a family of plant transporters that are typically involved in transition metal homeostasis. Three of the four YSL clades (I, II and IV) transport metals complexed with the non-proteinogenic amino acid nicotianamine or its derivatives. No such capability has been shown for any member of clade III, but the link between these YSLs and metal homeostasis could be masked by functional redundancy. We studied the role of the clade III YSL protein MtSYL7 in Medicago truncatula nodules. MtYSL7, which encodes a plasma membrane-bound protein, is mainly expressed in the pericycle and cortex cells of the root nodules. Yeast complementation assays revealed that MtSYL7 can transport short peptides. M. truncatula transposon insertion mutants with decreased expression of MtYSL7 had lower nitrogen fixation rates and showed reduced plant growth whether grown in symbiosis with rhizobia or not. YSL7 mutants accumulated more copper and iron in the nodules, which is likely to result from the increased expression of iron uptake and delivery genes in roots. Taken together, these data suggest that MtYSL7 plays an important role in the transition metal homeostasis of nodules and symbiotic nitrogen fixation.


Subject(s)
Medicago truncatula/physiology , Nitrogen Fixation/physiology , Plant Proteins/metabolism , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Mutation , Plant Proteins/genetics , Plant Roots/genetics , Plants, Genetically Modified , Protein Transport , Rhizobium , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Symbiosis
8.
New Phytol ; 228(1): 194-209, 2020 10.
Article in English | MEDLINE | ID: mdl-32367515

ABSTRACT

Iron is an essential cofactor for symbiotic nitrogen fixation, required by many of the enzymes involved, including signal transduction proteins, O2 homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen-fixing nodule cells. Ferroportin family members in model legume Medicago truncatula were identified and their expression was determined. Yeast complementation assays, immunolocalization, characterization of a tnt1 insertional mutant line, and synchrotron-based X-ray fluorescence assays were carried out in the nodule-specific M. truncatula ferroportin Medicago truncatula nodule-specific gene Ferroportin2 (MtFPN2) is an iron-efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature and in inner nodule tissues, as well as in the symbiosome membranes in the interzone and early-fixation zone of the nodules. Loss-of-function of MtFPN2 alters iron distribution and speciation in nodules, reducing nitrogenase activity and biomass production. Using promoters with different tissular activity to drive MtFPN2 expression in MtFPN2 mutants, we determined that expression in the inner nodule tissues is sufficient to restore the phenotype, while confining MtFPN2 expression to the vasculature did not improve the mutant phenotype. These data indicate that MtFPN2 plays a primary role in iron delivery to nitrogen-fixing bacteroids in M. truncatula nodules.


Subject(s)
Medicago truncatula , Gene Expression Regulation, Plant , Iron/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Nitrogen Fixation , Plant Proteins/genetics , Plant Proteins/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Symbiosis
9.
J Exp Bot ; 71(22): 7257-7269, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32841350

ABSTRACT

Symbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living within the nodule cells, a process in which vascular transport is essential. As members of the Yellow Stripe-Like (YSL) family of metal transporters are involved in root to shoot transport, they should also be required for root to nodule metal delivery. The genome of the model legume Medicago truncatula encodes eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules and by cortical nodule cells. Reducing the expression level of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role for MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.


Subject(s)
Arabidopsis , Medicago truncatula , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Medicago truncatula/genetics , Medicago truncatula/metabolism , Nitrogen Fixation , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Symbiosis
10.
Mycorrhiza ; 30(6): 781-788, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32914374

ABSTRACT

Arbuscular mycorrhizal fungi are critical participants in plant nutrition in natural ecosystems and in sustainable agriculture. A large proportion of the phosphorus, nitrogen, sulfur, and transition metal elements that the host plant requires are obtained from the soil by the fungal mycelium and released at the arbuscules in exchange for photosynthates. While many of the plant transporters responsible for obtaining macronutrients at the periarbuscular space have been characterized, the identities of those mediating transition metal uptake remain unknown. In this work, MtCOPT2 has been identified as the only member of the copper transporter family COPT in the model legume Medicago truncatula to be specifically expressed in mycorrhizal roots. Fusing a C-terminal GFP tag to MtCOPT2 expressed under its own promoter showed a distribution pattern that corresponds with arbuscule distribution in the roots. When expressed in tobacco leaves, MtCOPT2-GFP co-localizes with a plasma membrane marker. MtCOPT2 is intimately related to the rhizobial nodule-specific MtCOPT1, which is suggestive of a shared evolutionary lineage that links transition metal nutrition in the two main root endosymbioses in legumes.


Subject(s)
Medicago truncatula , Membrane Transport Proteins , Mycorrhizae , Ecosystem , Gene Expression Regulation, Plant , Medicago truncatula/genetics , Medicago truncatula/metabolism , Membrane Transport Proteins/metabolism , Mycorrhizae/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Symbiosis
11.
Mol Plant Microbe Interact ; 32(4): 464-478, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30387369

ABSTRACT

Genetic ablation of the ß subunit of the heterotrimeric G protein complex in agb1-2 confers defective activation of microbe-associated molecular pattern (MAMP)-triggered immunity, resulting in agb1-2 enhanced susceptibility to pathogens like the fungus Plectosphaerella cucumerina BMM. A mutant screen for suppressors of agb1-2 susceptibility (sgb) to P. cucumerina BMM identified sgb10, a new null allele (mkp1-2) of the mitogen-activated protein kinase phosphatase 1 (MKP1). The enhanced susceptibility of agb1-2 to the bacterium Pseudomonas syringae pv. tomato DC3000 and the oomycete Hyaloperonospora arabidopsidis is also abrogated by mkp1-2. MKP1 negatively balances production of reactive oxygen species (ROS) triggered by MAMPs, since ROS levels are enhanced in mkp1. The expression of RBOHD, encoding a NADPH oxidase-producing ROS, is upregulated in mkp1 upon MAMP treatment or pathogen infection. Moreover, MKP1 negatively regulates RBOHD activity, because ROS levels upon MAMP treatment are increased in mkp1 plants constitutively overexpressing RBOHD (35S::RBOHD mkp1). A significant reprograming of mkp1 metabolic profile occurs with more than 170 metabolites, including antimicrobial compounds, showing differential accumulation in comparison with wild-type plants. These results suggest that MKP1 functions downstream of the heterotrimeric G protein during MAMP-triggered immunity, directly regulating the activity of RBOHD and ROS production as well as other immune responses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Disease Resistance , Gene Expression Regulation, Plant , Protein Tyrosine Phosphatases , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ascomycota/physiology , Disease Resistance/genetics , Gene Expression Regulation, Plant/genetics , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Pseudomonas syringae/physiology , Reactive Oxygen Species/metabolism
12.
Plant J ; 92(3): 386-399, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28792629

ABSTRACT

Arabidopsis heterotrimeric G-protein complex modulates pathogen-associated molecular pattern-triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the Gß- (agb1-2) or Gγ-subunits have an altered wall composition compared with wild-type plants. Here we performed a mutant screen to identify suppressors of agb1-2 (sgb) that restore susceptibility to pathogens to wild-type levels. Out of the four sgb mutants (sgb10-sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant-specific polysaccharide O-acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1-7) of ESK1 restore to wild-type levels the enhanced susceptibility of agb1-2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1-2 esk1-7 double mutant was not the result of the re-activation of deficient PTI responses in agb1-2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan-derived metabolites, and the accumulation of disease resistance-related secondary metabolites and different osmolites. These esk1-mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1-2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI-mediated resistance is partially compensated by the activation of specific cell-wall-triggered immune responses.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Plant Diseases/immunology , Plant Immunity/genetics , Xylans/metabolism , Abscisic Acid/metabolism , Acetylation , Acetyltransferases , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Ascomycota/physiology , Cell Wall/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , Gene Expression Regulation, Plant , Heterotrimeric GTP-Binding Proteins/genetics , Membrane Proteins , Models, Biological , Mutation , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Pseudomonas syringae/physiology , Seedlings/genetics , Seedlings/immunology , Seedlings/metabolism
13.
New Phytol ; 218(2): 696-709, 2018 04.
Article in English | MEDLINE | ID: mdl-29349810

ABSTRACT

Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation.


Subject(s)
Cation Transport Proteins/metabolism , Copper/metabolism , Medicago truncatula/metabolism , Nitrogen Fixation , Plant Proteins/metabolism , Symbiosis , Biological Transport/drug effects , Cation Transport Proteins/genetics , Cell Differentiation/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Copper/pharmacology , Copper Transporter 1 , Electron Transport Complex IV/metabolism , Medicago truncatula/cytology , Multigene Family , Mutation/genetics , Nitrogen Fixation/drug effects , Nitrogenase/metabolism , Phenotype , Plant Proteins/genetics , Root Nodules, Plant/cytology , Root Nodules, Plant/drug effects , Root Nodules, Plant/metabolism , Saccharomyces cerevisiae/metabolism , Symbiosis/drug effects
14.
New Phytol ; 218(2): 661-680, 2018 04.
Article in English | MEDLINE | ID: mdl-29451312

ABSTRACT

Mitogen-activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe-associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity. We found that YODA (YDA) - a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning - also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA-YDA) protein show broad-spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor-Like Kinase, regulating both immunity and stomatal patterning. ER-YDA-mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA-YDA plants exhibit altered cell-wall integrity and constitutively express defense-associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA-YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates. Our results suggest that, in addition to stomata development, the ER-YDA pathway regulates an immune surveillance system conferring broad-spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense hormones.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/immunology , Disease Resistance , MAP Kinase Kinase Kinases/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity , Body Patterning , Cell Wall/metabolism , Flagellin/pharmacology , Fungi/physiology , Gene Expression Regulation, Plant , Models, Biological , Mutation/genetics , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Stomata/growth & development , Signal Transduction , Up-Regulation/genetics
15.
Plant Cell Environ ; 40(11): 2706-2719, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28732146

ABSTRACT

Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone.


Subject(s)
Medicago truncatula/enzymology , Medicago truncatula/microbiology , Plant Proteins/metabolism , Rhizobium/physiology , Root Nodules, Plant/cytology , Root Nodules, Plant/enzymology , Zinc/metabolism , Cell Differentiation , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Homeostasis , Medicago truncatula/genetics , Models, Biological , Phenotype , Plant Proteins/genetics , RNA Interference , Root Nodules, Plant/genetics , Subcellular Fractions/metabolism
16.
Plant Sci ; 339: 111931, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38030036

ABSTRACT

Iron is an essential micronutrient for life. During the development of the seed, iron accumulates during embryo maturation. In Arabidopsis thaliana, iron mainly accumulates in the vacuoles of only one cell type, the cell layer that surrounds provasculature in hypocotyl and cotyledons. Iron accumulation pattern in Arabidopsis is an exception in plant phylogeny, most part of the dicot embryos accumulate iron in several cell layers including cortex and, in some cases, even in protodermis. It remains unknown how does iron reach the internal cell layers of the embryo, and in particular, the molecular mechanisms responsible of this process. Here, we use transgenic approaches to modify the iron accumulation pattern in an Arabidopsis model. Using the SDH2-3 embryo-specific promoter, we were able to express VIT1 ectopically in both a wild type background and a mutant vit1 background lacking expression of this vacuolar iron transporter. These manipulations modify the iron distribution pattern in Arabidopsis from one cell layer to several cell layers, including protodermis, cortex cells, and the endodermis. Interestingly, total seed iron content was not modified compared with the wild type, suggesting that iron distribution in embryos is not involved in the control of the total iron amount accumulated in seeds. This experimental model can be used to study the processes involved in iron distribution patterning during embryo maturation and its evolution in dicot plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Iron/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Promoter Regions, Genetic/genetics , Seeds/metabolism , Gene Expression Regulation, Plant
17.
Biology (Basel) ; 12(11)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-37998022

ABSTRACT

Iron is an essential nutrient for all life forms. Specialized mechanisms exist in bacteria to ensure iron uptake and its delivery to key enzymes within the cell, while preventing toxicity. Iron uptake and exchange networks must adapt to the different environmental conditions, particularly those that require the biosynthesis of multiple iron proteins, such as nitrogen fixation. In this review, we outline the mechanisms that the model diazotrophic bacterium Azotobacter vinelandii uses to ensure iron nutrition and how it adapts Fe metabolism to diazotrophic growth.

18.
Plant J ; 66(5): 818-30, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21332848

ABSTRACT

In plants, autophagy has been assigned 'pro-death' and 'pro-survival' roles in controlling programmed cell death associated with microbial effector-triggered immunity. The role of autophagy in basal immunity to virulent pathogens has not been addressed systematically, however. Using several autophagy-deficient (atg) genotypes, we determined the function of autophagy in basal plant immunity. Arabidopsis mutants lacking ATG5, ATG10 and ATG18a develop spreading necrosis upon infection with the necrotrophic fungal pathogen, Alternaria brassicicola, which is accompanied by the production of reactive oxygen intermediates and by enhanced hyphal growth. Likewise, treatment with the fungal toxin fumonisin B1 causes spreading lesion formation in atg mutant genotypes. We suggest that autophagy constitutes a 'pro-survival' mechanism that controls the containment of host tissue-destructive microbial infections. In contrast, atg plants do not show spreading necrosis, but exhibit marked resistance against the virulent biotrophic phytopathogen, Pseudomonas syringae pv. tomato. Inducible defenses associated with basal plant immunity, such as callose production or mitogen-activated protein kinase activation, were unaltered in atg genotypes. However, phytohormone analysis revealed that salicylic acid (SA) levels in non-infected and bacteria-infected atg plants were slightly higher than those in Col-0 plants, and were accompanied by elevated SA-dependent gene expression and camalexin production. This suggests that previously undetected moderate infection-induced rises in SA result in measurably enhanced bacterial resistance, and that autophagy negatively controls SA-dependent defenses and basal immunity to bacterial infection. We infer that the way in which autophagy contributes to plant immunity to different pathogens is mechanistically diverse, and thus resembles the complex role of this process in animal innate immunity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Autophagy/immunology , Phosphoric Monoester Hydrolases/metabolism , Alternaria/immunology , Alternaria/pathogenicity , Arabidopsis/genetics , Arabidopsis/microbiology , Autophagy/genetics , Autophagy-Related Protein 5 , Autophagy-Related Proteins , Ethylenes/metabolism , Fumonisins/metabolism , Gene Expression Regulation, Plant , Genetic Complementation Test , Genetic Loci , Genetic Pleiotropy , Immunity, Innate , Indoles/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Pseudomonas syringae/immunology , Pseudomonas syringae/pathogenicity , Salicylic Acid/metabolism , Thiazoles/metabolism
19.
Front Plant Sci ; 10: 1780, 2019.
Article in English | MEDLINE | ID: mdl-32082345

ABSTRACT

Symbiotic nitrogen fixation carried out by the interaction between legumes and diazotrophic bacteria known as rhizobia requires relatively large levels of transition metals. These elements are cofactors of many key enzymes involved in this process. Metallic micronutrients are obtained from soil by the roots and directed to sink organs by the vasculature, in a process mediated by a number of metal transporters and small organic molecules that facilitate metal delivery in the plant fluids. Among the later, nicotianamine is one of the most important. Synthesized by nicotianamine synthases (NAS), this molecule forms metal complexes participating in intracellular metal homeostasis and long-distance metal trafficking. Here we characterized the NAS2 gene from model legume Medicago truncatula. MtNAS2 is located in the root vasculature and in all nodule tissues in the infection and fixation zones. Symbiotic nitrogen fixation requires of MtNAS2 function, as indicated by the loss of nitrogenase activity in the insertional mutant nas2-1, phenotype reverted by reintroduction of a wild-type copy of MtNAS2. This would result from the altered iron distribution in nas2-1 nodules shown with X-ray fluorescence. Moreover, iron speciation is also affected in these nodules. These data suggest a role of nicotianamine in iron delivery for symbiotic nitrogen fixation.

20.
Edumecentro ; 152023.
Article in Spanish | LILACS | ID: biblio-1448169

ABSTRACT

Fundamento: la reanimación cardiopulmocerebral básica está presente como curso propio en los planes de estudios "D" y "E" de la carrera de Medicina; aunque en ambos la organización del proceso tiene sus particularidades. Objetivo: precisar las diferencias en cuanto a estructura, proceso docente y resultados académicos en la enseñanza de la reanimación cardiopulmocerebral básica, entre los planes de estudios "D" y "E" de la carrera de Medicina. Métodos: se realizó un estudio descriptivo, prospectivo, transversal, en la Universidad de Ciencias Médicas de Cienfuegos en los años 2017 y 2019. Se utilizaron métodos teóricos y empíricos. Para comparar resultados se utilizó el universo estudiantil en ambos años, para evaluar satisfacción y calidad una muestra aleatoria simple. Se utilizaron técnicas de estadística descriptiva. Para ambos cursos se utilizó similar escenario y claustro de profesores. Resultados: las diferencias entre ambos planes derivan de los componentes no personales del proceso docente; el plan "D" tiene 20 horas y el "E" 40, con lo cual se amplían sus contenidos. Todos los temas y objetivos del plan "D" estuvieron incluidos en el "E". Hubo similitud en las promociones general (80.4 % y 75.2 %) y de calidad (50.6 % y 53.1 %) en ambos años. El cumplimiento de las expectativas, satisfacción y calidad del proceso fue valorado de muy alto y alto (más 98 %) por los estudiantes en ambos cursos. Conclusiones: aunque existieron diferencias en el proceso enseñanza aprendizaje entre ambos planes, no hubo repercusión en la satisfacción de los estudiantes, calidad del proceso docente, ni los resultados académicos. La variante del plan "E" es más integral para la formación básica del apoyo vital.


Background: basic cardiopulmonary-cerebral resuscitation is present as its own course in the "D" and "E" study plans of the Medicine career; although in both the organization of the process has its particularities. Objective: to specify the differences in terms of structure, teaching process and academic results in the teaching of basic cardiopulmonary-cerebral resuscitation, between the "D" and "E" study plans of the Medicine career. Methods: a descriptive, prospective, cross-sectional study was carried out at Cienfuegos University of Medical Sciences from 2017 to 2019. Theoretical and empirical methods were used. To compare results, the student universe was used in both years, to evaluate satisfaction and quality a simple random sample. Descriptive statistical techniques were used. For both courses, a similar scenario and faculty were used. Results: the differences between both plans derive from the non-personal components of the teaching process; plan "D" has 20 hours and plan "E" 40, which expands its contents. All the topics and objectives of plan "D" were included in plan "E". There was similarity in the general (80.4% and 75.2%) and quality (50.6% and 53.1%) school grades in both years. The fulfillment of the expectations, satisfaction and quality of the process was valued as very high and high (more than 98%) by the students in both courses. Conclusions: although there were differences in the teaching-learning process between both plans, there was no impact on student satisfaction, quality of the teaching process, or academic results. The "E" plan variant is more comprehensive for basic life support training.


Subject(s)
Cardiopulmonary Resuscitation , Education, Medical , Health Postgraduate Programs
SELECTION OF CITATIONS
SEARCH DETAIL