Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Elife ; 92020 12 02.
Article in English | MEDLINE | ID: mdl-33263279

ABSTRACT

Our understanding of the beads-on-a-string arrangement of nucleosomes has been built largely on high-resolution sequence-agnostic imaging methods and sequence-resolved bulk biochemical techniques. To bridge the divide between these approaches, we present the single-molecule adenine methylated oligonucleosome sequencing assay (SAMOSA). SAMOSA is a high-throughput single-molecule sequencing method that combines adenine methyltransferase footprinting and single-molecule real-time DNA sequencing to natively and nondestructively measure nucleosome positions on individual chromatin fibres. SAMOSA data allows unbiased classification of single-molecular 'states' of nucleosome occupancy on individual chromatin fibres. We leverage this to estimate nucleosome regularity and spacing on single chromatin fibres genome-wide, at predicted transcription factor binding motifs, and across human epigenomic domains. Our analyses suggest that chromatin is comprised of both regular and irregular single-molecular oligonucleosome patterns that differ subtly in their relative abundance across epigenomic domains. This irregularity is particularly striking in constitutive heterochromatin, which has typically been viewed as a conformationally static entity. Our proof-of-concept study provides a powerful new methodology for studying nucleosome organization at a previously intractable resolution and offers up new avenues for modeling and visualizing higher order chromatin structure.


Subject(s)
Chromatin/genetics , DNA/genetics , High-Throughput Nucleotide Sequencing , Nucleosomes/genetics , Single Molecule Imaging , Acetylation , Binding Sites , Chromatin/chemistry , Chromatin/metabolism , DNA/chemistry , DNA/metabolism , Epigenesis, Genetic , Histones/chemistry , Histones/genetics , Histones/metabolism , Humans , K562 Cells , Nucleic Acid Conformation , Nucleosomes/chemistry , Nucleosomes/metabolism , Proof of Concept Study , Protein Conformation , Protein Processing, Post-Translational , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
ACS Chem Biol ; 15(8): 2137-2153, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32786289

ABSTRACT

Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework.


Subject(s)
Saccharomyces cerevisiae/drug effects , alpha-Synuclein/toxicity , Amino Acid Sequence , Humans , Mutation , Parkinson Disease/metabolism , Protein Conformation , Saccharomyces cerevisiae/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
3.
Invest Ophthalmol Vis Sci ; 56(12): 7331-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26559479

ABSTRACT

PURPOSE: We created implantable intraocular devices capable of constant and continuous rapamycin release on the scale of months to years. METHODS: Polycaprolactone (PCL) thin films were used to encapsulate rapamycin to create implantable and biodegradable intraocular devices. Different film devices were studied by modifying the size, thickness, and porosity of the PCL films. RESULTS: In vitro release of rapamycin was observed to be constant (zero-order) through 14 weeks of study. Release rates were tunable by altering PCL film porosity and thickness. In vivo release of rapamycin was observed out through 16 weeks with concentrations in the retina-choroid in the therapeutic range. Rapamycin concentration in the blood was below the lower limit of quantification. The drug remaining in the device was chemically stable in vitro and in vivo, and was sufficient to last for upwards of 2 years of total release. The mechanism of release is related to the dissolution kinetics of crystalline rapamycin. CONCLUSIONS: Microporous PCL thin film devices demonstrate good ocular compatibility and the ability to release rapamycin locally to the eye over the course of many weeks.


Subject(s)
Absorbable Implants , Drug Delivery Systems , Sirolimus/administration & dosage , Uveitis/drug therapy , Animals , Anterior Eye Segment , Delayed-Action Preparations/administration & dosage , Disease Models, Animal , Follow-Up Studies , Immunosuppressive Agents/administration & dosage , Rabbits , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL