Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int Microbiol ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466360

ABSTRACT

The aim of this study was to explore the taxonomic identification and evaluate the safety of a bacterium, Enterococcus lactis IDCC 2105, isolated from homemade cheese in Korea, using whole genome sequence (WGS) analysis. It sought to identify the species level of this Enterococcus spp., assess its antibiotic resistance, and evaluate its virulence potential. WGS analysis confirmed the bacterial strain IDCC 2105 as E. lactis and identified genes responsible for resistance to erythromycin and clindamycin, specifically msrC, and eatAv, which are chromosomally located, indicating a minimal risk for horizontal gene transfer. The absence of plasmids in E. lactis IDCC 2105 further diminishes the likelihood of resistance gene dissemination. Additionally, our investigation into seven virulence factors, including hemolysis, platelet aggregation, biofilm formation, hyaluronidase, gelatinase, ammonia production, and ß-glucuronidase activity, revealed no detectable virulence traits. Although bioinformatic analysis suggested the presence of collagen adhesion genes acm and scm, these were not corroborated by phenotypic virulence assays. Based on these findings, E. lactis IDCC 2105 presents as a safe strain for potential applications, contributing valuable information on its taxonomy, antibiotic resistance profile, and lack of virulence factors, supporting its use in food products.

2.
BMC Microbiol ; 23(1): 362, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37996837

ABSTRACT

BACKGROUND: Dental caries is a chronic oral disease caused by microbial infections, which result in erosion of the dental enamel and cause irreversible damage. Therefore, proper disease management techniques and the creation of an environment that prevents intraoral growth and biofilm formation of Streptococcus mutans in the early stages, are crucial to prevent the potential progression of dental plaque to disease. Here, we aimed to investigate antimicrobial and antibiofilm effects of the Bacillus velezensis ID-A01 supernatant (ID23029) against S. mutans, and its inhibitory effects on acidogenesis. RESULTS: A killing kinetics assay showed a peak lethality percentage of 94.5% after 6 h of exposure to ID23029. In sucrose-exposed conditions, ID23029 inhibited lactic acid formation, preventing the pH from falling below the threshold for enamel demineralization, and inhibited up to 96.6% of biofilm formation. This effect was maintained in the presence of lysozyme. Furthermore, ID23029 retained up to 92% lethality, even at an intraoral concentration at which lysozyme is ineffective against S. mutans. CONCLUSIONS: This study demonstrates the potential of the B. velezensis ID-A01 supernatant for the prevention and treatment of dental caries. Its eventual use in dental practice is encouraged, although further studies are required to confirm its beneficial effects.


Subject(s)
Anti-Infective Agents , Dental Caries , Humans , Muramidase/pharmacology , Streptococcus mutans , Dental Caries/prevention & control , Anti-Infective Agents/pharmacology , Biofilms
3.
Planta Med ; 83(6): 527-533, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27806407

ABSTRACT

In the preliminary study, tangeretin (5,6,7,8,4'-pentamethoxy flavone), a major constituent of the pericarp of Citrus sp., inhibited TNF-α, IL-12, and IL-23 expression and nuclear factor kappa-B activation in lipopolysaccharide-stimulated dendritic cells; however, it did not affect IL-10 expression. Furthermore, tangeretin (5, 10, and 20 µM) suppressed the activation and translocation of nuclear factor kappa-B (p65) into the nuclei in vitro by inhibiting the binding of lipopolysaccharide on dendritic cells. Oral administration of tangeretin (10 and 20 mg/kg) suppressed the inflammatory responses, such as nuclear factor kappa-B and mitogen-activated protein kinase activation and myeloperoxidase activity, in the colon of mice with 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Tangeretin increased 2,4,6-trinitrobenzene sulfonic acid-suppressed expression of tight junction proteins occludin, claudin-1, and ZO-1. Tangeretin also inhibited 2,4,6-trinitrobenzene sulfonic acid-induced differentiation of Th1 and Th17 cells as well as the expression of T-bet, RORγt, interferon-γ, IL-12, IL-17, and TNF-α. However, tangeretin increased 2,4,6-trinitrobenzene sulfonic acid-suppressed differentiation of regulatory T cells as well as the expression of Foxp3 and IL-10. These results suggest that oral administration of tangeretin may attenuate colitis by suppressing IL-12 and TNF-α expression and nuclear factor kappa-B activation through the inhibition of lipopolysaccharide binding on immune cells such as dendritic cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Citrus/chemistry , Colitis/drug therapy , Cytokines/drug effects , Flavones/pharmacology , NF-kappa B/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Colitis/chemically induced , Colon/drug effects , Colon/metabolism , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Flavones/chemistry , Lipopolysaccharides/adverse effects , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/drug effects , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Trinitrobenzenes/metabolism , Trinitrobenzenesulfonic Acid/adverse effects
4.
Immunopharmacol Immunotoxicol ; 38(6): 447-454, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27600362

ABSTRACT

To understand the anti-colitic effects of probiotics that up-regulate interleukin (IL)-10 expression in dendritic cells (DCs) and macrophages, we isolated Lactobacillus sakei K17, which potently induced IL-10 expression in DCs and peritoneal macrophages in vitro, among the lactic acid bacteria strains collected from kimchi and investigated its anti-inflammatory effect in mice with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Oral administration of K17 (2 × 109 CFU·mouse-1·day-1) in mice with TNBS-induced colitis suppressed colon shortening and myeloperoxidase activity, as well as infiltration of CD86+ cells into the colon. Treatment with K17 also increased TNBS-suppressed expression of tight junction proteins and IL-10, but inhibited activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases and expression of tumor necrosis factor α and IL-17. Its effect was comparable with that of sulfasalazine (50 mg/kg), a positive commercial ant-colitic drug. Furthermore, treatment with K17 (1 × 105 CFU/mL) potently inhibited lipopolysaccharide (LPS)-stimulated NF-κB activation in DCs and peritoneal macrophages and restored tight junction protein expression in LPS-stimulated Caco-2 cells. These findings suggest that Lactobacillus sakei K17 may ameliorate colitis by up-regulating the expression of IL-10 and tight junction proteins and inhibiting NF-κB activation.

5.
Eur J Pharmacol ; 762: 333-43, 2015 Sep 05.
Article in English | MEDLINE | ID: mdl-26054809

ABSTRACT

Ginsenoside Rg1, one of the main constituents of Panax ginseng, exhibits anti-inflammatory effect. In a preliminary study, it was observed that ginsenoside Rg1 was metabolized to 20(S)-protopanaxtriol via ginsenosides Rh1 and F1 by gut microbiota. We further investigated the anti-inflammatory effects of ginsenoside Rg1 and its metabolites in vitro and in vivo. Ginsenosides Rg1, Rh1, and 20(S)-protopanaxtriol inhibited the activation of NF-κB activation, phosphorylation of transforming growth factor beta-activated kinase 1 and interleukin (IL)-1 receptor-associated kinase, and expression of tumor necrosis factor-α and IL-1ß in lipopolysaccharide (LPS)-stimulated macrophages. They also inhibited the binding of LPS to toll-like receptor 4 on the macrophages. Orally administered ginsenoside Rg1, Rh1, or 20(S)-protopanaxtriol inhibited 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colon shortening, myeloperoxidase activity, and expression of IL-1ß, IL-17, and tumor necrosis factor-α in mice with TNBS-induced colitis. They did not only inhibit TNBS-induced NF-κB activation, but also restored TNBS-induced Th17/Treg imbalance. They restored IL-10 and Foxp3 expression. Moreover, they inhibited Th17 cell differentiation in vitro. Of these metabolites, in vitro and in vivo anti-inflammatory effect of 20(S)-protopanaxtriol was the most potent, followed by Rh1. These findings suggest that ginsenoside Rg1 is metabolized to 20(S)-protopanaxtriol via ginsenosides Rh1 and F1 and these metabolites particularly 20(S)-protopanaxtriol, may ameliorate inflammatory disease such as colitis by inhibiting the binding of LPS to TLR4 on macrophages and restoring the Th17/Treg imbalance.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Colitis/chemically induced , Colitis/drug therapy , Ginsenosides/pharmacology , Sapogenins/pharmacology , Trinitrobenzenesulfonic Acid/pharmacology , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/therapeutic use , Cell Differentiation/drug effects , Colitis/immunology , Colitis/metabolism , Ginsenosides/metabolism , Ginsenosides/therapeutic use , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Male , Mice , Mice, Inbred ICR , NF-kappa B/metabolism , Peptidoglycan/pharmacology , Sapogenins/metabolism , Sapogenins/therapeutic use , Th17 Cells/cytology , Th17 Cells/drug effects , Tumor Necrosis Factor-alpha/metabolism
6.
Int Immunopharmacol ; 28(1): 700-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26256699

ABSTRACT

Panax vietnamensis Ha et Grushv., with its main constituents vina-ginsenoside R2 (VR2) and majonoside R2 (MR2), is used in traditional folk medicine in the hill tribes of Vietnam for anti-fatigue, anti-inflammatory, and life-saving purposes. In a preliminary study, VR2 and MR2 were shown to be metabolized to pseudoginsenoside RT4 (PRT4) and ocotillol by human gut microbiota. Therefore, we measured the anti-inflammatory effects of VR2, MR2, and their metabolites in lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophages. Among these ginsenosides, only VR2 exhibited cytotoxicity against peritoneal macrophages. MR2, PRT4, and ocotillol inhibited LPS-stimulated transcription factor (NF)-κB activation, and expression of the proinflammatory cytokines tumor necrosis factor-α and interleukin (IL)-1. However, these ginsenosides did not inhibit peptidoglycan-induced NF-κB activation in the macrophages. These three ginsenosides also inhibited LPS-stimulated cyclooxygenase-2 and inducible NO synthase expression, and phosphorylation of NF-κB signal molecules IL-1 receptor-associated kinase 1 and tumor growth factor-ß-activated kinase 1 in peritoneal macrophages. Treatment with either PRT4 or ocotillol inhibited the Alexa Fluor 488-conjugated LPS-mediated shift of macrophages, as observed by flow cytometry. They also potently inhibited the binding of LPS to TLR4 on peritoneal macrophages, both with and without transfected MyD88 siRNA. Among the tested ginsenosides, ocotillol exhibited the strongest inhibitory effect on inflammation in LPS-stimulated macrophages via the NF-κB signaling pathway. Based on these findings, orally administered VR2 and MR2 of P. vietnamensis may be metabolized to ocotillol via PRT4, and the metabolites, particularly ocotillol, may inhibit inflammation by inhibiting the binding of LPS to TLR4 on macrophages.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Ginsenosides/pharmacology , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/drug effects , Panax/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/metabolism , Cell Survival/drug effects , Cells, Cultured , Feces/microbiology , Ginsenosides/isolation & purification , Ginsenosides/metabolism , Humans , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Medicine, East Asian Traditional , Mice, Inbred ICR , Microbiota , Microscopy, Confocal , Myeloid Differentiation Factor 88/genetics , NF-kappa B/metabolism , Protein Transport , Transfection
7.
J Agric Food Chem ; 63(31): 7024-31, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26194345

ABSTRACT

In a preliminary experiment, majonoside R2 (MR2), isolated from Vietnamese ginseng (Panax vietnamensis Ha et Grushv.), inhibited differentiation to Th17 cells and was metabolized to ocotillol via pseudoginsenoside RT4 (PRT4) by gut microbiota. Therefore, we examined the inhibitory effects of MR2 and its metabolites PRT4 and ocotillol against Th17 cell differentiation. These ginsenosides significantly suppressed interleukin (IL)-6/tumor growth factor beta-induced differentiation of splenic CD4(+) T cells into Th17 cells and expression of IL-17 in vitro. Among these ginsenosides, ocotillol showed the highest inhibitory effect. We also examined the anti-inflammatory effect of ocotillol in mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. Oral administration of ocotillol significantly suppressed TNBS-induced colon shortening, macroscopic score, myeloperoxidase activity, and production of nitric oxide and prostaglandin E2. Ocotillol treatment increased TNBS-suppressed expression of tight junction proteins ZO-1, occludin, and claudin-1 in the colon. Treatment with ocotillol inhibited TNBS-induced expression of tumor necrosis factor (TNF)-α and IL-1ß, as well as activation of NF-κB and MAPKs. Moreover, treatment with ocotillol inhibited TNBS- induced differentiation to Th17 cells in the lamina propria of colon, as well as expression of T-bet, RORγt, IL-17, and IL-23. Ocotillol treatment also increased Treg cell differentiation and Foxp3 and IL-10 expression. These findings suggest that orally administered MR2 may be metabolized to ocotillol in the intestine by gut microbiota and the transformed ocotillol may ameliorate inflammatory diseases such as colitis by restoring the balance of Th17/Treg cells.


Subject(s)
Colitis/drug therapy , Ginsenosides/administration & dosage , Panax/chemistry , Plant Extracts/administration & dosage , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Colitis/genetics , Colitis/immunology , Humans , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Mice , T-Lymphocytes, Regulatory/drug effects , Th17 Cells/drug effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology , Trinitrobenzenesulfonic Acid/adverse effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL