Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Bioinformatics ; 39(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37889279

ABSTRACT

SUMMARY: The analysis of stable isotope labeling experiments requires accurate, efficient, and reproducible quantification of mass isotopomer distributions (MIDs), which is not a core feature of general-purpose metabolomics software tools that are optimized to quantify metabolite abundance. Here, we present PIRAMID (Program for Integration and Rapid Analysis of Mass Isotopomer Distributions), a MATLAB-based tool that addresses this need by offering a user-friendly, graphical user interface-driven program to automate the extraction of isotopic information from mass spectrometry (MS) datasets. This tool can simultaneously extract ion chromatograms for various metabolites from multiple data files in common vendor-agnostic file formats, locate chromatographic peaks based on a targeted list of characteristic ions and retention times, and integrate MIDs for each target ion. These MIDs can be corrected for natural isotopic background based on the user-defined molecular formula of each ion. PIRAMID offers support for datasets acquired from low- or high-resolution MS, and single (MS) or tandem (MS/MS) instruments. It also enables the analysis of single or dual labeling experiments using a variety of isotopes (i.e. 2H, 13C, 15N, 18O, 34S). DATA AVAILABILITY AND IMPLEMENTATION: MATLAB p-code files are freely available for non-commercial use and can be downloaded from https://mfa.vueinnovations.com/. Commercial licenses are also available. All the data presented in this publication are available under the "Help_menu" folder of the PIRAMID software.


Subject(s)
Software , Tandem Mass Spectrometry , Oxygen Isotopes , Metabolomics/methods
2.
Plant Physiol ; 192(3): 2436-2456, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37017001

ABSTRACT

Many molecular and physiological processes in plants occur at a specific time of day. These daily rhythms are coordinated in part by the circadian clock, a timekeeper that uses daylength and temperature to maintain rhythms of ∼24 h in various clock-regulated phenotypes. The circadian MYB-like transcription factor REVEILLE 8 (RVE8) interacts with its transcriptional coactivators NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED 1 (LNK1) and LNK2 to promote the expression of evening-phased clock genes and cold tolerance factors. While genetic approaches have commonly been used to discover connections within the clock and between clock elements and other pathways, here, we used affinity purification coupled with mass spectrometry (APMS) to identify time-of-day-specific protein interactors of the RVE8-LNK1/LNK2 complex in Arabidopsis (Arabidopsis thaliana). Among the interactors of RVE8/LNK1/LNK2 were COLD-REGULATED GENE 27 (COR27) and COR28, which coprecipitated in an evening-specific manner. In addition to COR27 and COR28, we found an enrichment of temperature-related interactors that led us to establish a previously uncharacterized role for LNK1 and LNK2 in temperature entrainment of the clock. We established that RVE8, LNK1, and either COR27 or COR28 form a tripartite complex in yeast (Saccharomyces cerevisiae) and that the effect of this interaction in planta serves to antagonize transcriptional activation of RVE8 target genes, potentially through mediating RVE8 protein degradation in the evening. Together, these results illustrate how a proteomic approach can be used to identify time-of-day-specific protein interactions. Discovery of the RVE8-LNK-COR protein complex indicates a previously unknown regulatory mechanism for circadian and temperature signaling pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Proteomics , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression Regulation, Plant , Repressor Proteins/metabolism
3.
Plant Cell ; 32(4): 820-832, 2020 04.
Article in English | MEDLINE | ID: mdl-32060179

ABSTRACT

Acyl carrier proteins (ACPs) are the scaffolds for fatty acid biosynthesis in living systems, rendering them essential to a comprehensive understanding of lipid metabolism. However, accurate quantitative methods to assess individual acyl-ACPs do not exist. We developed a robust method to quantify acyl-ACPs to the picogram level. We successfully identified acyl-ACP elongation intermediates (3-hydroxyacyl-ACPs and 2,3-trans-enoyl-ACPs) and unexpected medium-chain (C10:1, C14:1) and polyunsaturated long-chain (C16:3) acyl-ACPs, indicating both the sensitivity of the method and how current descriptions of lipid metabolism and ACP function are incomplete. Such ACPs are likely important to medium-chain lipid production for fuels and highlight poorly understood lipid remodeling events in the chloroplast. The approach is broadly applicable to type II fatty acid synthase systems found in plants and bacteria as well as mitochondria from mammals and fungi because it capitalizes on a highly conserved Asp-Ser-Leu-Asp amino acid sequence in ACPs to which acyl groups attach. Our method allows for sensitive quantification using liquid chromatography-tandem mass spectrometry with de novo-generated standards and an isotopic dilution strategy and will fill a gap in our understanding, providing insights through quantitative exploration of fatty acid biosynthesis processes for optimal biofuels, renewable feedstocks, and medical studies in health and disease.


Subject(s)
Acyl Carrier Protein/metabolism , Fatty Acids/metabolism , Tandem Mass Spectrometry/methods , Acyl Carrier Protein/chemistry , Acylation , Amino Acid Sequence , Biosynthetic Pathways , Brassicaceae/metabolism , Chromatography, Liquid , Conserved Sequence , Plant Leaves/metabolism , Seeds/metabolism
4.
Mol Cell Proteomics ; 20: 100063, 2021.
Article in English | MEDLINE | ID: mdl-33677124

ABSTRACT

Protein phosphorylation is one of the most prevalent posttranslational modifications found in eukaryotic systems. It serves as a key molecular mechanism that regulates protein function in response to environmental stimuli. The Mut9-like kinases (MLKs) are a plant-specific family of Ser/Thr kinases linked to light, circadian, and abiotic stress signaling. Here we use quantitative phosphoproteomics in conjunction with global proteomic analysis to explore the role of the MLKs in daily protein dynamics. Proteins involved in light, circadian, and hormone signaling, as well as several chromatin-modifying enzymes and DNA damage response factors, were found to have altered phosphorylation profiles in the absence of MLK family kinases. In addition to altered phosphorylation levels, mlk mutant seedlings have an increase in glucosinolate metabolism enzymes. Subsequently, we show that a functional consequence of the changes to the proteome and phosphoproteome in mlk mutant plants is elevated glucosinolate accumulation and increased sensitivity to DNA damaging agents. Combined with previous reports, this work supports the involvement of MLKs in a diverse set of stress responses and developmental processes, suggesting that the MLKs serve as key regulators linking environmental inputs to developmental outputs.


Subject(s)
Arabidopsis Proteins/metabolism , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis Proteins/genetics , DNA Damage , Metabolic Networks and Pathways , Mutation , Phosphoproteins/genetics , Protein Serine-Threonine Kinases/genetics , Proteomics , Signal Transduction , Stress, Physiological
5.
Mol Microbiol ; 113(5): 923-937, 2020 05.
Article in English | MEDLINE | ID: mdl-31950558

ABSTRACT

S-adenosyl-l-methionine (SAM) is a necessary cosubstrate for numerous essential enzymatic reactions including protein and nucleotide methylations, secondary metabolite synthesis and radical-mediated processes. Radical SAM enzymes produce 5'-deoxyadenosine, and SAM-dependent enzymes for polyamine, neurotransmitter and quorum sensing compound synthesis produce 5'-methylthioadenosine as by-products. Both are inhibitory and must be addressed by all cells. This work establishes a bifunctional oxygen-independent salvage pathway for 5'-deoxyadenosine and 5'-methylthioadenosine in both Rhodospirillum rubrum and Extraintestinal Pathogenic Escherichia coli. Homologous genes for this pathway are widespread in bacteria, notably pathogenic strains within several families. A phosphorylase (Rhodospirillum rubrum) or separate nucleoside and kinase (Escherichia coli) followed by an isomerase and aldolase sequentially function to salvage these two wasteful and inhibitory compounds into adenine, dihydroxyacetone phosphate and acetaldehyde or (2-methylthio)acetaldehyde during both aerobic and anaerobic growth. Both SAM by-products are metabolized with equal affinity during aerobic and anaerobic growth conditions, suggesting that the dual-purpose salvage pathway plays a central role in numerous environments, notably the human body during infection. Our newly discovered bifunctional oxygen-independent pathway, widespread in bacteria, salvages at least two by-products of SAM-dependent enzymes for carbon and sulfur salvage, contributing to cell growth.


Subject(s)
Bacterial Proteins/metabolism , Deoxyadenosines/metabolism , Escherichia coli/metabolism , Rhodospirillum rubrum/metabolism , S-Adenosylmethionine/metabolism , Thionucleosides/metabolism , Bacterial Proteins/genetics , Carbon/metabolism , Dihydroxyacetone Phosphate/metabolism , Escherichia coli/genetics , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Isomerases/genetics , Isomerases/metabolism , Metabolic Networks and Pathways/genetics , Methionine/metabolism , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/metabolism , Oxygen/metabolism , Phosphorylases/genetics , Phosphorylases/metabolism , Phosphotransferases/genetics , Phosphotransferases/metabolism , Rhodospirillum rubrum/genetics
6.
Appl Environ Microbiol ; 85(13)2019 07 01.
Article in English | MEDLINE | ID: mdl-30979842

ABSTRACT

ϕEf11 is a temperate Siphoviridae bacteriophage that infects strains of Enterococcus faecalis The ϕEf11 genome, encompassing 65 open reading frames (ORFs), is contained within 42,822 bp of DNA. Within this genome, a module of six lysis-related genes was identified. Based upon sequence homology, one of these six genes, ORF28, was predicted to code for an N-acetylmuramoyl-l-alanine amidase endolysin of 46.133 kDa, composed of 421 amino acids. The PCR-amplified ORF28 was cloned and expressed, and the resulting gene product was affinity purified to homogeneity. The purified protein was obtained from a fusion protein that exhibited a molecular mass of 72.5 kDa, consistent with a 46.1-kDa protein combined with a fused 26.5-kDa glutathione S-transferase tag. It produced rapid, profound lysis in E. faecalis populations and was active against 73 of 103 (71%) E. faecalis strains tested. In addition, it caused substantial destruction of E. faecalis biofilms. The lysin was quite stable, retaining its activity for three years in refrigerated storage, was stable over a wide range of pHs, and was unaffected by the presence of a reducing agent; however, it was inhibited by increasing concentrations of Ca2+ Liquid chromatography-mass spectrometry analysis of E. faecalis cell wall digestion products produced by the ORF28 endolysin indicated that the lysin acted as an N-acetylmuramidase, an endo-ß-N-acetylglucosaminidase, and an endopeptidase, rather than an N-acetylmuramoyl-l-alanine amidase. The ϕEf11 ORF28 lysin shared 10% to 37% amino acid identity with the lytic enzymes of all other characterized E. faecalis bacteriophages.IMPORTANCE The emergence of multidrug-resistant pathogenic microorganisms has brought increasing attention to the urgent need for the development of alternative antimicrobial strategies. One such alternative to conventional antibiotics employs lytic enzymes (endolysins) that are produced by bacteriophages in the course of lytic infection. During lytic infection by a bacteriophage, these enzymes hydrolyze the cell wall peptidoglycan, resulting in the lysis of the host cell. However, external endolysin application can result in lysis from without. In this study, we have cloned, expressed, purified, and characterized an endolysin produced by a bacteriophage infecting strains of Enterococcus faecalis The lysin is broadly active against most of the tested E. faecalis strains and exhibits multifunctional enzymatic specificities that differ from all other characterized endolysins produced by E. faecalis bacteriophages.


Subject(s)
Endopeptidases/genetics , Siphoviridae/genetics , Viral Proteins/genetics , Amino Acid Sequence , Base Sequence , Endopeptidases/chemistry , Endopeptidases/metabolism , Sequence Alignment , Siphoviridae/enzymology , Viral Proteins/chemistry , Viral Proteins/metabolism
7.
Plant Cell ; 28(9): 2026-2042, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27600537

ABSTRACT

The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of Rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling pathway in plants and algae has yet to be completely elucidated. We screened the unicellular green alga Chlamydomonas reinhardtii using insertional mutagenesis to find mutants that conferred hypersensitivity to the TOR inhibitor rapamycin. We characterized one mutant, vip1-1, that is predicted to encode a conserved inositol hexakisphosphate kinase from the VIP family that pyrophosphorylates phytic acid (InsP6) to produce the low abundance signaling molecules InsP7 and InsP8 Unexpectedly, the rapamycin hypersensitive growth arrest of vip1-1 cells was dependent on the presence of external acetate, which normally has a growth-stimulatory effect on Chlamydomonas. vip1-1 mutants also constitutively overaccumulated triacylglycerols (TAGs) in a manner that was synergistic with other TAG inducing stimuli such as starvation. vip1-1 cells had reduced InsP7 and InsP8, both of which are dynamically modulated in wild-type cells by TOR kinase activity and the presence of acetate. Our data uncover an interaction between the TOR kinase and inositol polyphosphate signaling systems that we propose governs carbon metabolism and intracellular pathways that lead to storage lipid accumulation.

8.
Mol Cell Proteomics ; 15(1): 201-17, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26545401

ABSTRACT

Many species possess an endogenous circadian clock to synchronize internal physiology with an oscillating external environment. In plants, the circadian clock coordinates growth, metabolism and development over daily and seasonal time scales. Many proteins in the circadian network form oscillating complexes that temporally regulate myriad processes, including signal transduction, transcription, protein degradation and post-translational modification. In Arabidopsis thaliana, a tripartite complex composed of EARLY FLOWERING 4 (ELF4), EARLY FLOWERING 3 (ELF3), and LUX ARRHYTHMO (LUX), named the evening complex, modulates daily rhythms in gene expression and growth through transcriptional regulation. However, little is known about the physical interactions that connect the circadian system to other pathways. We used affinity purification and mass spectrometry (AP-MS) methods to identify proteins that associate with the evening complex in A. thaliana. New connections within the circadian network as well as to light signaling pathways were identified, including linkages between the evening complex, TIMING OF CAB EXPRESSION1 (TOC1), TIME FOR COFFEE (TIC), all phytochromes and TANDEM ZINC KNUCKLE/PLUS3 (TZP). Coupling genetic mutation with affinity purifications tested the roles of phytochrome B (phyB), EARLY FLOWERING 4, and EARLY FLOWERING 3 as nodes connecting the evening complex to clock and light signaling pathways. These experiments establish a hierarchical association between pathways and indicate direct and indirect interactions. Specifically, the results suggested that EARLY FLOWERING 3 and phytochrome B act as hubs connecting the clock and red light signaling pathways. Finally, we characterized a clade of associated nuclear kinases that regulate circadian rhythms, growth, and flowering in A. thaliana. Coupling mass spectrometry and genetics is a powerful method to rapidly and directly identify novel components and connections within and between complex signaling pathways.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Circadian Rhythm , Tandem Mass Spectrometry/methods , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatography, Liquid , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Light Signal Transduction/genetics , Microscopy, Confocal , Mutation , Plants, Genetically Modified , Protein Binding , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Transcription Factors/genetics , Two-Hybrid System Techniques
9.
Proc Natl Acad Sci U S A ; 112(39): 12175-80, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26324907

ABSTRACT

Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N(5)-hydroxyarginine; valinophos, an N-acetyl l-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.


Subject(s)
Actinobacteria/chemistry , Actinobacteria/genetics , Biological Products/chemistry , Drug Discovery/trends , Genome, Bacterial/genetics , Genomics/methods , Phosphorous Acids/analysis , Base Sequence , Drug Discovery/methods , Gene Library , Genomics/trends , Molecular Sequence Data , Sequence Analysis, DNA
10.
J Biol Chem ; 290(52): 30658-68, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-26511314

ABSTRACT

All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions.


Subject(s)
Bacterial Proteins/metabolism , Carbon Dioxide/metabolism , Deoxyadenosines/metabolism , Metabolic Networks and Pathways , Rhodospirillum rubrum/enzymology , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/metabolism , Thionucleosides/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Carbon/metabolism , Rhodospirillum rubrum/chemistry , Rhodospirillum rubrum/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Sulfur/metabolism
11.
Plant J ; 82(6): 991-1003, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25939370

ABSTRACT

Steroid alkaloids have been shown to elicit a wide range of pharmacological effects that include anticancer and antifungal activities. Understanding the biosynthesis of these molecules is essential to bioengineering for sustainable production. Herein, we investigate the biosynthetic pathway to cyclopamine, a steroid alkaloid that shows promising antineoplastic activities. Supply of cyclopamine is limited, as the current source is solely derived from wild collection of the plant Veratrum californicum. To elucidate the early stages of the pathway to cyclopamine, we interrogated a V. californicum RNA-seq dataset using the cyclopamine accumulation profile as a predefined model for gene expression with the pattern-matching algorithm Haystack. Refactoring candidate genes in Sf9 insect cells led to discovery of four enzymes that catalyze the first six steps in steroid alkaloid biosynthesis to produce verazine, a predicted precursor to cyclopamine. Three of the enzymes are cytochromes P450 while the fourth is a γ-aminobutyrate transaminase; together they produce verazine from cholesterol.


Subject(s)
Enzymes/metabolism , Veratrum Alkaloids/metabolism , Veratrum/genetics , Veratrum/metabolism , 4-Aminobutyrate Transaminase/genetics , 4-Aminobutyrate Transaminase/metabolism , Algorithms , Animals , Biosynthetic Pathways , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Enzymes/genetics , Gene Expression Profiling/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Analysis, RNA/methods , Sf9 Cells , Transcriptome
12.
J Biol Chem ; 289(9): 5412-6, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24448804

ABSTRACT

Cancer cells are characterized by elevated levels of reactive oxygen species, which are produced mainly by the mitochondria. The dismutase SOD2 localizes in the matrix and is a major antioxidant. The activity of SOD2 is regulated by the deacetylase SIRT3. Recent studies indicated that SIRT3 is decreased in 87% of breast cancers, implying that the activity of SOD2 is compromised. The resulting elevation in reactive oxygen species was shown to be essential for the metabolic reprograming toward glycolysis. Here, we show that SOD2 itself is down-regulated in breast cancer cell lines. Further, activation of oncogenes, such as Ras, promotes the rapid down-regulation of SOD2. Because in the absence of SOD2, superoxide levels are elevated in the matrix, we reasoned that mechanisms must exist to retain low levels of superoxide in other cellular compartments especially in the intermembrane space of the mitochondrial to avoid irreversible damage. The dismutase SOD1 also acts as an antioxidant, but it localizes to the cytoplasm and the intermembrane space of the mitochondria. We report here that loss of SOD2 correlates with the overexpression of SOD1. Further, we show that mitochondrial SOD1 is the main dismutase activity in breast cancer cells but not in non-transformed cells. In addition, we show that the SOD1 inhibitor LCS-1 leads to a drastic fragmentation and swelling of the matrix, suggesting that in the absence of SOD2, SOD1 is required to maintain the integrity of the organelle. We propose that by analogy to the cadherin switch during epithelial-mesenchymal transition, cancer cells also undergo a SOD switch during transformation.


Subject(s)
Breast Neoplasms/enzymology , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Superoxide Dismutase/biosynthesis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Down-Regulation/drug effects , Down-Regulation/genetics , Enzyme Inhibitors/pharmacology , Female , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Sirtuin 3/genetics , Sirtuin 3/metabolism , Superoxide Dismutase/antagonists & inhibitors , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Superoxides/metabolism
13.
J Bacteriol ; 196(9): 1768-79, 2014 May.
Article in English | MEDLINE | ID: mdl-24584498

ABSTRACT

Two related actinomycetes, Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338, were identified as potential phosphonic acid producers by screening for the gene encoding phosphoenolpyruvate (PEP) mutase, which is required for the biosynthesis of most phosphonates. Using a variety of analytical techniques, both strains were subsequently shown to produce phosphonate-containing exopolysaccharides (EPS), also known as phosphonoglycans. The phosphonoglycans were purified by sequential organic solvent extractions, methanol precipitation, and ultrafiltration. The EPS from the Glycomyces strain has a mass of 40 to 50 kDa and is composed of galactose, xylose, and five distinct partially O-methylated galactose residues. Per-deutero-methylation analysis indicated that galactosyl residues in the polysaccharide backbone are 3,4-linked Gal, 2,4-linked 3-MeGal, 2,3-linked Gal, 3,6-linked 2-MeGal, and 4,6-linked 2,3-diMeGal. The EPS from the Stackebrandtia strain is comprised of glucose, galactose, xylose, and four partially O-methylated galactose residues. Isotopic labeling indicated that the O-methyl groups in the Stackebrandtia phosphonoglycan arise from S-adenosylmethionine. The phosphonate moiety in both phosphonoglycans was shown to be 2-hydroxyethylphosphonate (2-HEP) by (31)P nuclear magnetic resonance (NMR) and mass spectrometry following strong acid hydrolysis of the purified molecules. Partial acid hydrolysis of the purified EPS from Glycomyces yielded 2-HEP in ester linkage to the O-5 or O-6 position of a hexose and a 2-HEP mono(2,3-dihydroxypropyl)ester. Partial acid hydrolysis of Stackebrandtia EPS also revealed the presence of 2-HEP mono(2,3-dihydroxypropyl)ester. Examination of the genome sequences of the two strains revealed similar pepM-containing gene clusters that are likely to be required for phosphonoglycan synthesis.


Subject(s)
Actinomycetales/chemistry , Organophosphonates/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/isolation & purification , Actinomycetales/enzymology , Actinomycetales/genetics , Actinomycetales/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbohydrate Sequence , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Molecular Weight , Phosphotransferases (Phosphomutases)/genetics , Phosphotransferases (Phosphomutases)/metabolism , Polysaccharides, Bacterial/metabolism
14.
Nat Chem Biol ; 8(11): 926-32, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23042035

ABSTRACT

Functional assignment of uncharacterized proteins is a challenge in the era of large-scale genome sequencing. Here, we combine in extracto NMR, proteomics and transcriptomics with a newly developed (knock-out) metabolomics platform to determine a potential physiological role for a ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Rhodospirillum rubrum. Our studies unraveled an unexpected link in bacterial central carbon metabolism between S-adenosylmethionine-dependent polyamine metabolism and isoprenoid biosynthesis and also provide an alternative approach to assign enzyme function at the organismic level.


Subject(s)
Rhodospirillum rubrum/enzymology , Ribulose-Bisphosphate Carboxylase/metabolism , S-Adenosylmethionine/metabolism , Terpenes/metabolism , Deoxyadenosines/chemistry , Deoxyadenosines/metabolism , Magnetic Resonance Spectroscopy , Molecular Structure , Polyamines/chemistry , Polyamines/metabolism , Proteomics , Ribulose-Bisphosphate Carboxylase/chemistry , Ribulose-Bisphosphate Carboxylase/genetics , S-Adenosylmethionine/chemistry , Terpenes/chemistry , Thionucleosides/chemistry , Thionucleosides/metabolism , Transcriptome/genetics
15.
J Nat Prod ; 77(2): 243-9, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24437999

ABSTRACT

Streptomyces regensis strain WC-3744 was identified as a potential phosphonic acid producer in a large-scale screen of microorganisms for the presence of the pepM gene, which encodes the key phosphonate biosynthetic enzyme phosphoenolpyruvate phosphonomutase. (31)P NMR revealed the presence of several unidentified phosphonates in spent medium after growth of S. regensis. These compounds were purified and structurally characterized via extensive 1D and 2D NMR spectroscopic and mass spectrometric analyses. Three new phosphonic acid metabolites, whose structures were confirmed by comparison to chemically synthesized standards, were observed: (2-acetamidoethyl)phosphonic acid (1), (2-acetamido-1-hydroxyethyl)phosphonic (3), and a novel cyanohydrin-containing phosphonate, (cyano(hydroxy)methyl)phosphonic acid (4). The gene cluster responsible for synthesis of these molecules was also identified from the draft genome sequence of S. regensis, laying the groundwork for future investigations into the metabolic pathway leading to this unusual natural product.


Subject(s)
Biological Products/isolation & purification , Nitriles/isolation & purification , Organophosphonates/isolation & purification , Streptomyces , Base Sequence , Biological Products/chemistry , Molecular Sequence Data , Molecular Structure , Nitriles/chemistry , Nuclear Magnetic Resonance, Biomolecular , Organophosphonates/chemistry , Streptomyces/chemistry , Streptomyces/enzymology , Streptomyces/genetics
16.
Angew Chem Int Ed Engl ; 53(5): 1334-7, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-24376039

ABSTRACT

Natural product discovery has been boosted by genome mining approaches, but compound purification is often still challenging. We report an enzymatic strategy for "stable isotope labeling of phosphonates in extract" (SILPE) that facilitates their purification. We used the phosphonate methyltransferase DhpI involved in dehydrophos biosynthesis to methylate a variety of phosphonate natural products in crude spent medium with a mixture of labeled and unlabeled S-adenosyl methionine. Mass-guided fractionation then allowed straightforward purification. We illustrate its utility by purifying a phosphonate that led to the identification of the fosfazinomycin biosynthetic gene cluster. This unusual natural product contains a hydrazide linker between a carboxylic acid and a phosphonic acid. Bioinformatic analysis of the gene cluster provides insights into how such a structure might be assembled.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Biological Products/metabolism , Hydrazines/chemical synthesis , Methyltransferases/metabolism , Organophosphonates/chemistry , Organophosphorus Compounds/chemical synthesis , Anti-Bacterial Agents/chemistry , Biological Products/chemistry , Computational Biology , DNA, Fungal/genetics , Hydrazines/chemistry , Hydrazines/metabolism , Isotope Labeling , Methyltransferases/genetics , Multigene Family , Open Reading Frames/genetics , Organophosphorus Compounds/chemistry , S-Adenosylmethionine/chemistry , Streptomyces/genetics , Streptomyces/metabolism
17.
Commun Biol ; 7(1): 172, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347116

ABSTRACT

The capacity to leverage high resolution mass spectrometry (HRMS) with transient isotope labeling experiments is an untapped opportunity to derive insights on context-specific metabolism, that is difficult to assess quantitatively. Tools are needed to comprehensively mine isotopologue information in an automated, high-throughput way without errors. We describe a tool, Stable Isotope-assisted Metabolomics for Pathway Elucidation (SIMPEL), to simplify analysis and interpretation of isotope-enriched HRMS datasets. The efficacy of SIMPEL is demonstrated through examples of central carbon and lipid metabolism. In the first description, a dual-isotope labeling experiment is paired with SIMPEL and isotopically nonstationary metabolic flux analysis (INST-MFA) to resolve fluxes in central metabolism that would be otherwise challenging to quantify. In the second example, SIMPEL was paired with HRMS-based lipidomics data to describe lipid metabolism based on a single labeling experiment. Available as an R package, SIMPEL extends metabolomics analyses to include isotopologue signatures necessary to quantify metabolic flux.


Subject(s)
Carbon , Metabolomics , Carbon Isotopes/chemistry , Mass Spectrometry/methods , Metabolomics/methods
18.
Nat Genet ; 55(4): 631-639, 2023 04.
Article in English | MEDLINE | ID: mdl-36973455

ABSTRACT

Cryptic promoters within transposable elements (TEs) can be transcriptionally reactivated in tumors to create new TE-chimeric transcripts, which can produce immunogenic antigens. We performed a comprehensive screen for these TE exaptation events in 33 TCGA tumor types, 30 GTEx adult tissues and 675 cancer cell lines, and identified 1,068 TE-exapted candidates with the potential to generate shared tumor-specific TE-chimeric antigens (TS-TEAs). Whole-lysate and HLA-pulldown mass spectrometry data confirmed that TS-TEAs are presented on the surface of cancer cells. In addition, we highlight tumor-specific membrane proteins transcribed from TE promoters that constitute aberrant epitopes on the extracellular surface of cancer cells. Altogether, we showcase the high pan-cancer prevalence of TS-TEAs and atypical membrane proteins that could potentially be therapeutically exploited and targeted.


Subject(s)
DNA Transposable Elements , Neoplasms , Adult , Humans , DNA Transposable Elements/genetics , Antigens, Neoplasm/genetics , Promoter Regions, Genetic/genetics , Neoplasms/genetics , Cell Line
19.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778509

ABSTRACT

Untargeted lipidomics allows analysis of a broader range of lipids than targeted methods and permits discovery of unknown compounds. Previous ring trials have evaluated the reproducibility of targeted lipidomics methods, but inter-laboratory comparison of compound identification and unknown feature detection in untargeted lipidomics has not been attempted. To address this gap, five laboratories analyzed a set of mammalian tissue and biofluid reference samples using both their own untargeted lipidomics procedures and a common chromatographic and data analysis method. While both methods yielded informative data, the common method improved chromatographic reproducibility and resulted in detection of more shared features between labs. Spectral search against the LipidBlast in silico library enabled identification of over 2,000 unique lipids. Further examination of LC-MS/MS and ion mobility data, aided by hybrid search and spectral networking analysis, revealed spectral and chromatographic patterns useful for classification of unknown features, a subset of which were highly reproducible between labs. Overall, our method offers enhanced compound identification performance compared to targeted lipidomics, demonstrates the potential of harmonized methods to improve inter-site reproducibility for quantitation and feature alignment, and can serve as a reference to aid future annotation of untargeted lipidomics data.

20.
Biochemistry ; 51(42): 8324-6, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23035785

ABSTRACT

Rhodospirillum rubrum produces 5-methylthioadenosine (MTA) from S-adenosylmethionine in polyamine biosynthesis; however, R. rubrum lacks the classical methionine salvage pathway. Instead, MTA is converted to 5-methylthio-d-ribose 1-phosphate (MTR 1-P) and adenine; MTR 1-P is isomerized to 1-methylthio-d-xylulose 5-phosphate (MTXu 5-P) and reductively dethiomethylated to 1-deoxy-d-xylulose 5-phosphate (DXP), an intermediate in the nonmevalonate isoprenoid pathway [Erb, T. J., et al. (2012) Nat. Chem. Biol., in press]. Dethiomethylation, a novel route to DXP, is catalyzed by MTXu 5-P methylsulfurylase. An active site Cys displaces the enolate of DXP from MTXu 5-P, generating a methyl disulfide intermediate.


Subject(s)
Pentosephosphates/biosynthesis , Rhodospirillum rubrum/metabolism , Sulfurtransferases/metabolism , Metabolic Networks and Pathways , Nuclear Magnetic Resonance, Biomolecular , Pentosephosphates/metabolism , Ribosemonophosphates/metabolism , Thioglycosides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL