Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Publication year range
1.
J Am Chem Soc ; 140(5): 1842-1854, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29290110

ABSTRACT

Carbon-hydrogen bond activation of alkanes by Tp'Rh(CNR) (Tp' = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B-H) spectral regions on Tp*Rh(CNCH2CMe3), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: κ3-η1-alkane complex (1); κ2-η2-alkane complex (2); and κ3-alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C-H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) increase with alkanes size and show a dramatic increase between C6H12 and C7H14. A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C-H bonds that appear at C7H14. However, Tp'Rh(CNR) and Tp'Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated κ2-η2-alkane Tp' complexes stabilizes the d8 Rh(I) in a square-planar geometry and weakens the metal's ability for oxidative addition of the C-H bond. Further, the Tp'Rh(CNR) fragment has significantly slower rates of C-H activation in comparison to the Tp'Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ2-Tp'Rh(CNR)(cycloalkane) species and results in the C-H activation without the assistance of the rechelation.

2.
J Am Chem Soc ; 137(3): 1258-72, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25547430

ABSTRACT

The photochemical reactions of Tp'Rh(PMe3)H2 (1) and thermal reactions of Tp'Rh(PMe3)(CH3)H (1a, Tp' = tris(3,5-dimethylpyrazolyl)borate) with substrates containing B-H, Si-H, C-F, and C-H bonds are reported. Complexes 1 and 1a are known activators of C-H bonds, including those of alkanes. Kinetic studies of reactions with HBpin and PhSiH3 show that photodissociation of H2 from 1 occurs prior to substrate attack, whereas thermal reaction of 1a proceeds by bimolecular reaction with the substrate. Complete intramolecular selectivity for B-H over C-H activation of HBpin (pin = pinacolate) leading to Tp'Rh(PMe3)(Bpin)H is observed. Similarly, the reaction with Et2SiH2 shows a strong preference for Si-H over C-H activation, generating Tp'Rh(PMe3)(SiEt2H)H. The Rh(Bpin)H and Rh(SiEt2H)H products were stable to heating in benzene in accord with DFT calculations that showed that reaction with benzene is endoergic. The intramolecular competition with PhSiH3 yields a ∼1:4 mixture of Tp'Rh(PMe3)(C6H4SiH3)H and Tp'Rh(PMe3)(SiPhH2)H, respectively. Reaction with pentafluoropyridine generates Tp'Rh(PMe3)(C5NF4)F, while reaction with 2,3,5,6-tetrafluoropyridine yields a mixture of C-H and C-F activated products. Hexafluorobenzene proves unreactive. Crystal structures are reported for B-H, Si-H, and C-F activated products, but in the latter case a bifluoride complex Tp'Rh(PMe3)(C5NF4)(FHF) was crystallized. Intermolecular competition reactions were studied by photoreaction of 1 in C6F6 with benzene and another substrate (HBpin, PhSiH3, or pentafluoropyridine) employing in situ laser photolysis in the NMR probe, resulting in a wide-ranging map of kinetic selectivities. The mechanisms of intramolecular and intermolecular selection are analyzed.

3.
J Am Chem Soc ; 135(18): 6994-7004, 2013 May 08.
Article in English | MEDLINE | ID: mdl-23611483

ABSTRACT

A series of substituted methyl derivatives of the type Tp'Rh(CNneopentyl)(CH2X)H (CH2X = CH2C(═O)CH3, CH2C≡CCH3, CH2O-t-Bu, CH2CF3, CH2F, CHF2) was synthesized either by photolysis of Tp'Rh(CNneopentyl)(PhNCNneopentyl) in neat CH3X or by exchange with the labile hydrocarbon in Tp'Rh(CNneopentyl)(n-pentyl)H or Tp'Rh(CNneopentyl)(CH3)H. Only a single product was observed in each case. Clean reductive elimination was observed for all compounds in C6D6. Structures of these complexes and their corresponding chlorinated derivatives have been characterized by NMR spectroscopy, elemental analysis, and X-ray crystallography. Relative Rh-C bond energies are calculated using previously established kinetic techniques, and two separate linear correlations are observed versus known C-H bond strengths, one for the parent hydrocarbons, and one for the substituted hydrocarbons. Both correlations have slopes of 1.4, and are separated vertically by 7.5 kcal mol(-1) (-CH2X above -CxHy). In addition, it is now clear that preferences for linear vs branched olefin insertion products in substituted derivatives can be predicted on the basis of the strengths of the ß-C-H bonds. The DFT calculations of the metal-carbon bond strengths in these Rh-CH2X derivatives with α-substitution show a trend that is in good agreement with the experimental results.


Subject(s)
Carbon/chemistry , Organometallic Compounds/chemistry , Rhodium/chemistry , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis
4.
J Am Chem Soc ; 132(45): 16278-84, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-20968287

ABSTRACT

The photochemical reaction of (C(5)Me(5))Rh(PMe(3))H(2) (1) in neat acetonitrile leads to formation of the C-H activation product, (C(5)Me(5))Rh(PMe(3))(CH(2)CN)H (2). Thermolysis of this product in acetonitrile or benzene leads to thermal rearrangement to the C-C activation product, (C(5)Me(5))Rh(PMe(3))(CH(3))(CN) (4). Similar results were observed for the reaction of 1 with benzonitrile. The photolysis of 1 in neat benzonitrile results in C-H activation at the ortho, meta, and para positions. Thermolysis of the mixture in neat benzonitrile results in clean conversion to the C-C activation product, (C(5)Me(5))Rh(PMe(3))(C(6)H(5))(CN) (5). DFT calculations on the acetonitrile system show the barrier to C-H activation to be 4.3 kcal mol(-1) lower than the barrier to C-C activation. A high-energy intermediate was also located and found to connect the transition states leading to C-H and C-C activation. This intermediate has an agostic hydrogen interaction with the rhodium center. Reactions of acetonitrile and benzonitrile with the fragment [Tp'Rh(CNneopentyl)] show only C-H and no C-C activation. These reactions with rhodium are compared and contrasted to related reactions with [Ni(dippe)H](2), which show only C-CN bond cleavage.

5.
J Am Chem Soc ; 132(32): 10973-5, 2010 Aug 18.
Article in English | MEDLINE | ID: mdl-20698646

ABSTRACT

We have investigated the reaction mechanism responsible for QD nucleation using optical absorption and nuclear magnetic resonance spectroscopies. For typical II-VI and IV-VI quantum dot (QD) syntheses, pure tertiary phosphine selenide sources (e.g., trioctylphosphine selenide (TOPSe)) were surprisingly found to be unreactive with metal carboxylates and incapable of yielding QDs. Rather, small quantities of secondary phosphines, which are impurities in tertiary phosphines, are entirely responsible for the nucleation of QDs; their low concentrations account for poor synthetic conversion yields. QD yields increase to nearly quantitative levels when replacing TOPSe with a stoiciometric amount of a secondary phosphine chalcogenide such as diphenylphosphine selenide. Based on our observations, we have proposed potential monomer identities, reaction pathways, and transition states and believe this mechanism to be universal to all II-VI and IV-VI QDs synthesized using phosphine based methods.


Subject(s)
Organoselenium Compounds/chemistry , Quantum Dots , Chalcogens/chemistry , Magnetic Resonance Spectroscopy , Phosphines/chemistry
6.
J Am Chem Soc ; 131(37): 13464-73, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19708667

ABSTRACT

C-H bond activation of fluorinated aromatic hydrocarbons by [Tp'Rh(CNneopentyl)] resulted in the formation of products of the type Tp'Rh(CNneopentyl)(aryl(F))H. The stability of the Rh-C(aryl) product is shown to be strongly dependent on the number of ortho fluorines and only mildly dependent on the total number of fluorine substituents. Complexes with aryl groups containing two ortho fluorines have barriers to reductive elimination that are approximately 5 kcal mol(-1) higher than for those with a single ortho fluorine. Competition experiments along with DeltaG(re)(double dagger) values allow for the determination of relative Rh-C(aryl) bond strengths and illustrate the large ortho fluorine effect on the strength of the Rh-C(aryl) bond. A large change in Rh-C(aryl) bond strength was measured for small changes in the respective calculated C-H bond strengths. Relating M-C to C-H bond strengths resulted in a line (slope = 2.14) that closely matches the theoretically calculated value (slope = 1.96). This is the first experimental quantization of an ortho fluorine effect as predicted by theory.

7.
J Org Chem ; 74(18): 6907-14, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19743881

ABSTRACT

Several transition-metal systems have been used to establish correlations between metal-carbon and carbon-hydrogen bonds. Here, the [Tp'RhL] fragment, where Tp' = tris(3,5-dimethylpyrazolyl)borate and L = neopentyl isocyanide, is used to investigate C-H bond activation in a series of linear alkylnitriles and chloroalkanes. Using a combination of kinetic techniques, relative free energies can be found for the compounds TpRhL(CH(3))H, Tp'RhL[(CH(2))(n)CN]H (n = 1-5), and Tp'RhL[(CH(2))(m)Cl]H (m = 1, 3, 4, 5). It is found that the CN and Cl substituents dramatically strengthen the M-C bond more than anticipated if in the alpha-position, with the effect on bond strength diminishing substantially as the X group moves further from the metal (i.e, beta, gamma, delta). Examination of M-C vs C-H bond strengths shows that the Tp'RhL(CH(2)X)H compounds (X = phenyl, vinyl, CN, Cl) all show a good correlation, as do the alkyl, aryl, and vinyl derivatives. The compounds in the former group, however, have stronger M-C bonds than expected based on the C-H bond strengths and consequently, their correlation is separate from the other unsubstituted compounds.

SELECTION OF CITATIONS
SEARCH DETAIL