Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biophys J ; 123(12): 1620-1634, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38720465

ABSTRACT

Type II topoisomerases (TopoIIs) are ubiquitous enzymes that are involved in crucial nuclear processes such as genome organization, chromosome segregation, and other DNA metabolic processes. These enzymes function as large, homodimeric complexes that undergo a complex cycle of binding and hydrolysis of two ATP molecules in their ATPase domains, which regulates the capture and passage of one DNA double-helix through a second, cleaved DNA molecule. This process requires the transmission of information about the state of the bound nucleotide over vast ranges in the TopoII complex. How this information is transmitted at the molecular level to regulate TopoII functions and how protein substitutions disrupt these mechanisms remains largely unknown. Here, we employed extensive microsecond-scale molecular dynamics simulations of the yeast TopoII enzyme in multiple nucleotide-bound states and with amino acid substitutions near both the N and C termini of the complex. Simulation results indicate that the ATPase domains are remarkably flexible on the sub-microsecond timescale and that these dynamics are modulated by the identity of the bound nucleotides and both local and distant amino acid substitutions. Network analyses point toward specific allosteric networks that transmit information about the hydrolysis cycle throughout the complex, which include residues in both the protein and the bound DNA molecule. Amino acid substitutions weaken many of these pathways. Together, our results provide molecular level details on how the TopoII catalytic cycle is controlled through nucleotide binding and hydrolysis and how mutations may disrupt this process.


Subject(s)
DNA Topoisomerases, Type II , Molecular Dynamics Simulation , Allosteric Regulation , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Protein Domains , Models, Molecular
2.
Phys Chem Chem Phys ; 18(47): 32358-32368, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27854368

ABSTRACT

Human serum albumin possesses multiple binding sites and transports a wide range of ligands that include the anti-inflammatory drug ibuprofen. A complete map of the binding sites of ibuprofen in albumin is difficult to obtain in traditional experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S-isomer) of ibuprofen to albumin, by using absolute binding free energy calculations in combination with classical molecular dynamics (MD) simulations and molecular docking. The most favorable binding modes correctly reproduce several experimentally identified binding locations, which include the two Sudlow's drug sites (DS2 and DS1) and the fatty acid binding sites 6 and 2 (FA6 and FA2). Previously unknown details of the binding conformations were revealed for some of them, and formerly undetected binding modes were found in other protein sites. The calculated binding affinities exhibit trends which seem to agree with the available experimental data, and drastically degrade when the ligand is modeled in a protonated (neutral) state, indicating that ibuprofen associates with albumin preferentially in its charged form. These findings provide a detailed description of the binding of ibuprofen, help to explain a wide range of results reported in the literature in the last decades, and demonstrate the possibility of using simulation methods to predict ligand binding to albumin.


Subject(s)
Ibuprofen/chemistry , Serum Albumin, Human/chemistry , Binding Sites , Entropy , Humans , Isomerism , Ligands , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding
3.
Proteins ; 82(10): 2609-19, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24916607

ABSTRACT

The interaction of saturated fatty acids of different length (C8:0 to C18:0) with ß-lactoglobulin (ßLG) was investigated by molecular dynamics simulation and docking approaches. The results show that the presence of such ligands in the hydrophobic central cavity of ßLG, known as the protein calyx, determines an enhancement of atomic fluctuations compared with the unliganded form, especially for loops at the entrance of the binding site. Concerted motions are evidenced for protein regions that could favor the binding of ligands. The mechanism of anchoring of fatty acids of different length is similar for the carboxylate head-group, through electrostatic interactions with the side chains of Lys60/Lys69. The key protein residues to secure the hydrocarbon chain are Phe105/Met107, which adapt their conformation upon ligand binding. In particular, Phe105 provides an additional hydrophobic clamp only for the tail of the two fatty acids with the longest chains, palmitic, and stearic acid, which are known to bind ßLG with a high affinity. The search of additional external binding sites for fatty acids, distinct from the calyx, was also carried out for palmitic acid. Two external sites with a lower affinity were identified as secondary sites, one consisting in a hydrophobic cavity allowing two distinct binding modes for the fatty acid, and the other corresponding to a surface crevice close to the protein α-helix. The overall results provide a comprehensive picture of the dynamical behavior of ßLG in complex with fatty acids, and elucidate the structural basis of the binding of these physiological ligands.


Subject(s)
Fatty Acids, Nonesterified/chemistry , Lactoglobulins/chemistry , Models, Molecular , Animals , Binding Sites , Cattle , Fatty Acids, Nonesterified/metabolism , Hydrophobic and Hydrophilic Interactions , Kinetics , Lactoglobulins/metabolism , Ligands , Lysine/chemistry , Methionine/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Weight , Palmitic Acid/chemistry , Palmitic Acid/metabolism , Phenylalanine/chemistry , Protein Conformation , Static Electricity , Stearic Acids/chemistry , Stearic Acids/metabolism , Surface Properties
4.
bioRxiv ; 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-37577673

ABSTRACT

Type II topoisomerases (TopoIIs) are ubiquitous enzymes that are involved in crucial nuclear processes such as genome organization, chromosome segregation, and other DNA metabolic processes. These enzymes function as large, homodimeric complexes that undergo a complex cycle of binding and hydrolysis of two ATP molecules in their ATPase domains, which regulates the capture and passage of one DNA double-helix through a second, cleaved DNA molecule. This process requires the transmission of information about the state of the bound nucleotide over vast ranges in the TopoII complex. How this information is transmitted at the molecular level to regulate TopoII functions and how protein substitutions disrupt these mechanisms remains largely unknown. Here, we employed extensive microsecond scale molecular dynamics simulations of the yeast TopoII enzyme in multiple nucleotide-bound states and with amino acid substitutions near both the N- and C-terminals of the complex. Simulation results indicate that the ATPase domains are remarkably flexible on the sub-microsecond timescale and that these dynamics are modulated by the identity of the bound nucleotides and both local and distant amino acid substitutions. Network analyses point towards specific allosteric networks that transmit information about the hydrolysis cycle throughout the complex, which include residues in both the protein and the bound DNA molecule. Amino acid substitutions weaken many of these pathways. Together, our results provide molecular-level details on how the TopoII catalytic cycle is controlled through nucleotide binding and hydrolysis and how mutations may disrupt this process.

5.
J Biol Inorg Chem ; 18(7): 739-49, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23838900

ABSTRACT

The spectroscopic, thermal, and functional properties of blue copper proteins can be modulated by mutations in the metal binding loop. Molecular dynamics simulation was used to compare the conformational properties of azurin and two chimeric variants, which were obtained by inserting into the azurin scaffold the copper binding loop of amicyanin and plastocyanin, respectively. Simulations at room temperature show that the proteins retain their overall structure and exhibit concerted motions among specific inner regions, as revealed by principal component analysis. Molecular dynamics at high temperature indicates that the first events in the unfolding pathway are structurally similar in the three proteins and unfolding starts from the region of the α-helix that is far from the metal binding loop. The results provide details of the denaturation process that are consistent with experimental data and in close agreement with other computational approaches, suggesting a distinct mechanism of unfolding of azurin and its chimeric variants. Moreover, differences observed in the dynamics of specific regions in the three proteins correlate with their thermal behavior, contributing to the determination of the basic factors that influence the stability.


Subject(s)
Azurin/chemistry , Molecular Dynamics Simulation , Protein Unfolding , Recombinant Fusion Proteins/chemistry , Azurin/metabolism , Movement , Protein Conformation , Protein Stability , Recombinant Fusion Proteins/metabolism , Temperature
6.
Sci Rep ; 12(1): 2145, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140265

ABSTRACT

The most common host entry point of human adapted coronaviruses (CoV) including SARS-CoV-2 is through the initial colonization in the nostril and mouth region which is responsible for spread of the infection. Most recent studies suggest that the commercially available oral and nasal rinse products are effective in inhibiting the viral replication. However, the anti-viral mechanism of the active ingredients present in the oral rinses have not been studied. In the present study, we have assessed in vitro enzymatic inhibitory activity of active ingredients in the oral mouth rinse products: aloin A and B, chlorhexidine, eucalyptol, hexetidine, menthol, triclosan, methyl salicylate, sodium fluoride and povidone, against two important proteases of SARS-CoV-2 PLpro and 3CLpro. Our results indicate only aloin A and B effectively inhibited proteolytic activity of PLpro with an IC50 of 13.16 and 16.08 µM. Interestingly, neither of the aloin isoforms inhibited 3CLpro enzymatic activity. Computational structural modelling of aloin A and B interaction with PLpro revealed that, both aloin isoforms form hydrogen bond with Tyr268 of PLpro, which is critical for their proteolytic activity. Furthermore, 100 ns molecular dynamics (MD) simulation studies predicted that both aloin isoforms have strong interaction with Glu167, which is required for PLpro deubiquitination activity. Our results from the in vitro deubiquitinase inhibition assay show that aloin A and B isomers exhibit deubiquitination inhibitory activity with an IC50 value of 15.68 and 17.51 µM, respectively. In conclusion, the isoforms of aloin inhibit both proteolytic and the deubiquitinating activity of SARS-CoV-2 PLpro, suggesting potential in inhibiting the replication of SARS-CoV-2 virus.


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , Emodin/analogs & derivatives , SARS-CoV-2/enzymology , Animals , Binding Sites , COVID-19/pathology , COVID-19/virology , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Emodin/chemistry , Emodin/metabolism , Emodin/pharmacology , Humans , Molecular Dynamics Simulation , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Isoforms/pharmacology , SARS-CoV-2/isolation & purification , Vero Cells
7.
Biochim Biophys Acta Gene Regul Mech ; 1863(8): 194566, 2020 08.
Article in English | MEDLINE | ID: mdl-32376391

ABSTRACT

The ATP-dependent BAF chromatin remodeling complex plays a critical role in gene regulation by modulating chromatin architecture, and is frequently mutated in cancer. Indeed, subunits of the BAF complex are found to be mutated in >20% of human tumors. The mechanism by which BAF properly navigates chromatin is not fully understood, but is thought to involve a multivalent network of histone and DNA contacts. We previously identified a composite domain in the BRG1 ATPase subunit that is capable of associating with both histones and DNA in a multivalent manner. Mapping the DNA binding pocket revealed that it contains several cancer mutations. Here, we utilize SELEX-seq to investigate the DNA specificity of this composite domain and NMR spectroscopy and molecular modelling to determine the structural basis of DNA binding. Finally, we demonstrate that cancer mutations in this domain alter the mode of DNA association.


Subject(s)
DNA Helicases/metabolism , DNA/metabolism , Nuclear Proteins/metabolism , Protein Domains , Transcription Factors/metabolism , Base Pairing , Chromatin , Chromatin Assembly and Disassembly , DNA Helicases/chemistry , DNA Helicases/genetics , Gene Expression Regulation , Histones/metabolism , Humans , Molecular Dynamics Simulation , Mutation , Neoplasms/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Conformation , Transcription Factors/chemistry , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL