Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Tuberc Lung Dis ; 25(4): 305-314, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33762075

ABSTRACT

BACKGROUND: Treatment for TB is lengthy and toxic, and new regimens are needed.METHODS: Participants with pulmonary drug-susceptible TB (DS-TB) were randomised to receive: 200 mg pretomanid (Pa, PMD) daily, 400 mg moxifloxacin (M) and 1500 mg pyrazinamide (Z) for 6 months (6Pa200MZ) or 4 months (4Pa200MZ); 100 mg pretomanid daily for 4 months in the same combination (4Pa100MZ); or standard DS-TB treatment for 6 months. The primary outcome was treatment failure or relapse at 12 months post-randomisation. The non-inferiority margin for between-group differences was 12.0%. Recruitment was paused following three deaths and not resumed.RESULTS: Respectively 4/47 (8.5%), 11/57 (19.3%), 14/52 (26.9%) and 1/53 (1.9%) DS-TB outcomes were unfavourable in patients on 6Pa200MZ, 4Pa200MZ, 4Pa100MZ and controls. There was a 6.6% (95% CI -2.2% to 15.4%) difference per protocol and 9.9% (95%CI -4.1% to 23.9%) modified intention-to-treat difference in unfavourable responses between the control and 6Pa200MZ arms. Grade 3+ adverse events affected 68/203 (33.5%) receiving experimental regimens, and 19/68 (27.9%) on control. Ten of 203 (4.9%) participants on experimental arms and 2/68 (2.9%) controls died.CONCLUSION: PaMZ regimens did not achieve non-inferiority in this under-powered trial. An ongoing evaluation of PMD remains a priority.


Subject(s)
Antitubercular Agents , Pyrazinamide , Tuberculosis , Humans , Antitubercular Agents/therapeutic use , Drug Therapy, Combination , Moxifloxacin , Nitroimidazoles , Treatment Outcome , Tuberculosis/drug therapy
2.
Biochemistry ; 37(36): 12404-11, 1998 Sep 08.
Article in English | MEDLINE | ID: mdl-9730812

ABSTRACT

The structure of the zinc-dependent beta-lactamase II from Bacillus cereus has been determined at 1.9 A resolution in a crystal form with two molecules in the asymmetric unit and 400 waters (space group P3121; Rcryst = 20.8%). The active site contains two zinc ions: Zn1 is tightly coordinated by His86, His88, and His149, while Zn2 is loosely coordinated by Asp90, Cys168, and His210. A water molecule (W1) lies between the two zinc ions but is significantly closer to Zn1 and at a distance of only 1.9 A is effectively a hydroxide moiety and a potential, preactivated nucleophile. In fact, Asp90 bridges W1 to Zn2, and its location is thus distinct from that of the bridging water molecules in the binuclear zinc peptidases or other binuclear zinc hydrolases. Modeling of penicillin, cephalosporin, and carbapenem binding shows that all are readily accommodated within the shallow active site cleft of the enzyme, and the Zn1-bound hydroxide is ideally located for nucleophilic attack at the beta-lactam carbonyl. This enzyme also functions with only one zinc ion present. The Zn1-Zn2 distances differ in the two independent molecules in the crystal (3.9 and 4.4 A), yet the Zn1-W1 distances are both 1.9 A, arguing against involvement of Zn2 in W1 activation. The role of Zn2 is unclear, but the B. cereus enzyme may be an evolutionary intermediate between the mono- and bizinc metallo-beta-lactamases. The broad specificity of this enzyme, together with the increasing prevalence of zinc-dependent metallo-beta-lactamases, poses a real clinical threat, and this structure provides a basis for understanding its mechanism and designing inhibitors.


Subject(s)
Bacillus cereus/enzymology , Models, Molecular , Zinc/metabolism , beta-Lactamases/chemistry , Binding Sites , Catalysis , Cations, Divalent , Computer Simulation , Crystallization , Crystallography, X-Ray , Hydrolysis , Metalloproteins/chemistry , Metalloproteins/metabolism , Protein Structure, Secondary , Substrate Specificity , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL