ABSTRACT
Integrating human genomics and proteomics can help elucidate disease mechanisms, identify clinical biomarkers and discover drug targets1-4. Because previous proteogenomic studies have focused on common variation via genome-wide association studies, the contribution of rare variants to the plasma proteome remains largely unknown. Here we identify associations between rare protein-coding variants and 2,923 plasma protein abundances measured in 49,736 UK Biobank individuals. Our variant-level exome-wide association study identified 5,433 rare genotype-protein associations, of which 81% were undetected in a previous genome-wide association study of the same cohort5. We then looked at aggregate signals using gene-level collapsing analysis, which revealed 1,962 gene-protein associations. Of the 691 gene-level signals from protein-truncating variants, 99.4% were associated with decreased protein levels. STAB1 and STAB2, encoding scavenger receptors involved in plasma protein clearance, emerged as pleiotropic loci, with 77 and 41 protein associations, respectively. We demonstrate the utility of our publicly accessible resource through several applications. These include detailing an allelic series in NLRC4, identifying potential biomarkers for a fatty liver disease-associated variant in HSD17B13 and bolstering phenome-wide association studies by integrating protein quantitative trait loci with protein-truncating variants in collapsing analyses. Finally, we uncover distinct proteomic consequences of clonal haematopoiesis (CH), including an association between TET2-CH and increased FLT3 levels. Our results highlight a considerable role for rare variation in plasma protein abundance and the value of proteogenomics in therapeutic discovery.
Subject(s)
Biological Specimen Banks , Blood Proteins , Genetic Association Studies , Genomics , Proteomics , Humans , Alleles , Biomarkers/blood , Blood Proteins/analysis , Blood Proteins/genetics , Databases, Factual , Exome/genetics , Hematopoiesis , Mutation , Plasma/chemistry , United KingdomABSTRACT
Clonal expansions driven by somatic mutations become pervasive across human tissues with age, including in the haematopoietic system, where the phenomenon is termed clonal haematopoiesis1-4. The understanding of how and when clonal haematopoiesis develops, the factors that govern its behaviour, how it interacts with ageing and how these variables relate to malignant progression remains limited5,6. Here we track 697 clonal haematopoiesis clones from 385 individuals 55 years of age or older over a median of 13 years. We find that 92.4% of clones expanded at a stable exponential rate over the study period, with different mutations driving substantially different growth rates, ranging from 5% (DNMT3A and TP53) to more than 50% per year (SRSF2P95H). Growth rates of clones with the same mutation differed by approximately ±5% per year, proportionately affecting slow drivers more substantially. By combining our time-series data with phylogenetic analysis of 1,731 whole-genome sequences of haematopoietic colonies from 7 individuals from an older age group, we reveal distinct patterns of lifelong clonal behaviour. DNMT3A-mutant clones preferentially expanded early in life and displayed slower growth in old age, in the context of an increasingly competitive oligoclonal landscape. By contrast, splicing gene mutations drove expansion only later in life, whereas TET2-mutant clones emerged across all ages. Finally, we show that mutations driving faster clonal growth carry a higher risk of malignant progression. Our findings characterize the lifelong natural history of clonal haematopoiesis and give fundamental insights into the interactions between somatic mutation, ageing and clonal selection.
Subject(s)
Clonal Hematopoiesis , Clone Cells , Aged , Aging , Clonal Hematopoiesis/genetics , Clone Cells/cytology , Genome, Human , Humans , Longitudinal Studies , Middle Aged , Mutation , PhylogenyABSTRACT
Age-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer4-6, but the reason for such abrupt functional decline after 70 years of age remains unclear. Here we sequenced 3,579 genomes from single cell-derived colonies of haematopoietic cells across 10 human subjects from 0 to 81 years of age. Haematopoietic stem cells or multipotent progenitors (HSC/MPPs) accumulated a mean of 17 mutations per year after birth and lost 30 base pairs per year of telomere length. Haematopoiesis in adults less than 65 years of age was massively polyclonal, with high clonal diversity and a stable population of 20,000-200,000 HSC/MPPs contributing evenly to blood production. By contrast, haematopoiesis in individuals aged over 75 showed profoundly decreased clonal diversity. In each of the older subjects, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before the subject was 40 years old, but only 22% had known driver mutations. Genome-wide selection analysis estimated that between 1 in 34 and 1 in 12 non-synonymous mutations were drivers, accruing at constant rates throughout life, affecting more genes than identified in blood cancers. Loss of the Y chromosome conferred selective benefits in males. Simulations of haematopoiesis, with constant stem cell population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.
Subject(s)
Aging , Clonal Hematopoiesis , Clone Cells , Longevity , Adolescent , Adult , Aged , Aged, 80 and over , Aging/genetics , Child , Child, Preschool , Clonal Hematopoiesis/genetics , Clone Cells/cytology , Female , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematopoietic Stem Cells/cytology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Multipotent Stem Cells/cytology , Young AdultABSTRACT
ABSTRACT: The study of somatic mutations and the associated clonal mosaicism across the human body has transformed our understanding of aging and its links to cancer. In proliferative human tissues, stem cells compete for dominance, and those with an advantage expand clonally to outgrow their peers. In the hematopoietic system, such expansion is termed clonal hematopoiesis (CH). The forces driving competition, namely heterogeneity of the hematopoietic stem cell (HSC) pool and attrition of their environment, become increasingly prominent with age. As a result, CH becomes progressively more common through life to the point of becoming essentially ubiquitous. We are beginning to unravel the specific intracellular and extracellular factors underpinning clonal behavior, with somatic mutations in specific driver genes, inflammation, telomere maintenance, extraneous exposures, and inherited genetic variation among the important players. The inevitability of CH with age combined with its unequivocal links to myeloid cancers poses a scientific and clinical challenge. Specifically, we need to decipher the factors determining clonal behavior and develop prognostic tools to identify those at high risk of malignant progression, for whom preventive interventions may be warranted. Here, we discuss how recent advances in our understanding of the natural history of CH have provided important insights into these processes and helped define future avenues of investigation.
Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Mutation , Myeloproliferative Disorders/genetics , Neoplasms/geneticsABSTRACT
Germ line variants in the DDX41 gene have been linked to myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) development. However, the risks associated with different variants remain unknown, as do the basis of their leukemogenic properties, impact on steady-state hematopoiesis, and links to other cancers. Here, we investigate the frequency and significance of DDX41 variants in 454 792 United Kingdom Biobank (UKB) participants and identify 452 unique nonsynonymous DNA variants in 3538 (1/129) individuals. Many were novel, and the prevalence of most varied markedly by ancestry. Among the 1059 individuals with germ line pathogenic variants (DDX41-GPV) 34 developed MDS/AML (odds ratio, 12.3 vs noncarriers). Of these, 7 of 218 had start-lost, 22 of 584 had truncating, and 5 of 257 had missense (odds ratios: 12.9, 15.1, and 7.5, respectively). Using multivariate logistic regression, we found significant associations of DDX41-GPV with MDS, AML, and family history of leukemia but not lymphoma, myeloproliferative neoplasms, or other cancers. We also report that DDX41-GPV carriers do not have an increased prevalence of clonal hematopoiesis (CH). In fact, CH was significantly more common before sporadic vs DDX41-mutant MDS/AML, revealing distinct evolutionary paths. Furthermore, somatic mutation rates did not differ between sporadic and DDX41-mutant AML genomes, ruling out genomic instability as a driver of the latter. Finally, we found that higher mean red cell volume (MCV) and somatic DDX41 mutations in blood DNA identify DDX41-GPV carriers at increased MDS/AML risk. Collectively, our findings give new insights into the prevalence and cognate risks associated with DDX41 variants, as well as the clonal evolution and early detection of DDX41-mutant MDS/AML.
Subject(s)
GATA2 Deficiency , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Prevalence , DEAD-box RNA Helicases/genetics , Myelodysplastic Syndromes/epidemiology , Myelodysplastic Syndromes/genetics , Leukemia, Myeloid, Acute/genetics , DNAABSTRACT
Individuals with age-related clonal hematopoiesis (CH) are at greater risk for hematologic malignancies and cardiovascular diseases. However, predictive preclinical animal models to recapitulate the spectrum of human CH are lacking. Through error-corrected sequencing of 56 human CH/myeloid malignancy genes, we identified natural CH driver mutations in aged rhesus macaques matching genes somatically mutated in human CH, with DNMT3A mutations being the most frequent. A CH model in young adult macaques was generated via autologous transplantation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene-edited hematopoietic stem and progenitor cells (HSPCs), targeting the top human CH genes with loss-of-function (LOF) mutations. Long-term follow-up revealed reproducible and significant expansion of multiple HSPC clones with heterozygous TET2 LOF mutations, compared with minimal expansion of clones bearing other mutations. Although the blood counts of these CH macaques were normal, their bone marrows were hypercellular and myeloid-predominant. TET2-disrupted myeloid colony-forming units isolated from these animals showed a distinct hyperinflammatory gene expression profile compared with wild type. In addition, mature macrophages purified from the CH macaques showed elevated NLRP3 inflammasome activity and increased interleukin-1ß (IL-1ß) and IL-6 production. The model was used to test the impact of IL-6 blockage by tocilizumab, documenting a slowing of TET2-mutated expansion, suggesting that interruption of the IL-6 axis may remove the selective advantage of mutant HSPCs. These findings provide a model for examining the pathophysiology of CH and give insights into potential therapeutic interventions.
Subject(s)
Clonal Hematopoiesis , Dioxygenases , Humans , Young Adult , Animals , Aged , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Interleukin-1beta/genetics , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Macaca mulatta , CRISPR-Associated Protein 9 , Interleukin-6/genetics , Clone Cells , DNA-Binding Proteins/genetics , Dioxygenases/geneticsABSTRACT
BCL-2 inhibition has been shown to be effective in acute myeloid leukemia (AML) in combination with hypomethylating agents or low-dose cytarabine. However, resistance and relapse represent major clinical challenges. Therefore, there is an unmet need to overcome resistance to current venetoclax-based strategies. We performed high-throughput drug screening to identify effective combination partners for venetoclax in AML. Overall, 64 antileukemic drugs were screened in 31 primary high-risk AML samples with or without venetoclax. Gilteritinib exhibited the highest synergy with venetoclax in FLT3 wild-type AML. The combination of gilteritinib and venetoclax increased apoptosis, reduced viability, and was active in venetoclax-azacitidine-resistant cell lines and primary patient samples. Proteomics revealed increased FLT3 wild-type signaling in specimens with low in vitro response to the currently used venetoclax-azacitidine combination. Mechanistically, venetoclax with gilteritinib decreased phosphorylation of ERK and GSK3B via combined AXL and FLT3 inhibition with subsequent suppression of the antiapoptotic protein MCL-1. MCL-1 downregulation was associated with increased MCL-1 phosphorylation of serine 159, decreased phosphorylation of threonine 161, and proteasomal degradation. Gilteritinib and venetoclax were active in an FLT3 wild-type AML patient-derived xenograft model with TP53 mutation and reduced leukemic burden in 4 patients with FLT3 wild-type AML receiving venetoclax-gilteritinib off label after developing refractory disease under venetoclax-azacitidine. In summary, our results suggest that combined inhibition of FLT3/AXL potentiates venetoclax response in FLT3 wild-type AML by inducing MCL-1 degradation. Therefore, the venetoclax-gilteritinib combination merits testing as a potentially active regimen in patients with high-risk FLT3 wild-type AML.
Subject(s)
Leukemia, Myeloid, Acute , Humans , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Azacitidine , fms-Like Tyrosine Kinase 3/geneticsABSTRACT
Clonal hematopoiesis (CH) is an age-related condition driven by stem and progenitor cells harboring recurrent mutations linked to myeloid neoplasms. Currently, potential effects on hematopoiesis, stem cell function and regenerative potential under stress conditions are unknown. We performed targeted DNA sequencing of 457 hematopoietic stem cell grafts collected for autologous stem cell transplantation (ASCT) in myeloma patients and correlated our findings with high-dimensional longitudinal clinical and laboratory data (26,510 data points for blood cell counts/serum values in 25 days around transplantation). We detected CHrelated mutations in 152 patients (33.3%). Since many patients (n=54) harbored multiple CH mutations in one or more genes, we applied a non-negative matrix factorization (NMF) clustering algorithm to identify genes that are commonly co-mutated in an unbiased approach. Patients with CH were assigned to one of three clusters (C1-C3) and compared to patients without CH (C0) in a gene specific manner. To study the dynamics of blood cell regeneration following ASCT, we developed a time-dependent linear mixed effect model to validate differences in blood cell count trajectories amongst different clusters. The results demonstrated that C2, composed of patients with DNMT3A and PPM1D single and co-mutated CH, correlated with reduced stem cell yields and delayed platelet count recovery following ASCT. Also, the benefit of maintenance therapy was particularly strong in C2 patients. Taken together, these data indicate an impaired regenerative potential of hematopoietic stem cell grafts harboring CH with DNMT3A and PPM1D mutations.
Subject(s)
Clonal Hematopoiesis , Hematopoietic Stem Cell Transplantation , Humans , Transplantation, Autologous , Hematopoiesis/genetics , Mutation , Regeneration , Protein Phosphatase 2C/geneticsABSTRACT
Although acquisition of leukemia-associated somatic mutations by 1 or more hematopoietic stem cells is inevitable with advancing age, its consequences are highly variable, ranging from clinically silent clonal hematopoiesis (CH) to leukemic progression. To investigate the influence of heritable factors on CH, we performed deep targeted sequencing of blood DNA from 52 monozygotic (MZ) and 27 dizygotic (DZ) twin pairs (aged 70-99 years). Using this highly sensitive approach, we identified CH (variant allele frequency ≥0.5%) in 62% of individuals. We did not observe higher concordance for CH within MZ twin pairs as compared with that within DZ twin pairs, or to that expected by chance. However, we did identify 2 MZ pairs in which both twins harbored identical rare somatic mutations, suggesting a shared cell of origin. Finally, in 3 MZ twin pairs harboring mutations in the same driver genes, serial blood samples taken 4 to 5 years apart showed substantial twin-to-twin variability in clonal trajectories. Our findings propose that the inherited genome does not exert a dominant influence on the behavior of adult CH and provide evidence that CH mutations may be acquired in utero.
Subject(s)
Hematopoiesis , Leukemia/genetics , Mutation , Twins/genetics , Aged , Aged, 80 and over , Cohort Studies , Diseases in Twins/genetics , Female , Humans , Male , Twins, Dizygotic/genetics , Twins, Monozygotic/geneticsABSTRACT
Angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphoma with T follicular helper phenotype (PTCL-TFH) are a group of complex clinicopathological entities that originate from T follicular helper cells and share a similar mutation profile. Their diagnosis is often a challenge, particularly at an early stage, because of a lack of specific histological and immunophenotypic features, paucity of neoplastic T cells and prominent polymorphous infiltrate. We investigated whether the lymphoma-associated RHOA Gly17Val (c.50G>T) mutation, occurring in 60% of cases, is present in the early "reactive" lesions, and whether mutation analysis could help to advance the early diagnosis of lymphoma. The RHOA mutation was detected by quantitative polymerase chain reaction with a locked nucleic acid probe specific to the mutation, and a further peptide nucleic acid clamp oligonucleotide to suppress the amplification of the wild-type allele. The quantitative polymerase chain reaction assay was highly sensitive and specific, detecting RHOA Gly17Val at an allele frequency of 0.03%, but not other changes in Gly17, nor in 61 controls. Among the 37 cases of AITL and PTCL-TFH investigated, RHOA Gly17Val was detected in 62.2% (23/37) of which 19 had multiple biopsies including preceding biopsies in ten and follow-up biopsies in 11 cases. RHOA Gly17Val was present in each of these preceding or follow-up biopsies including 18 specimens that showed no evidence of lymphoma by combined histological, immunophenotypic and clonality analyses. The mutation was seen in biopsies 0-26.5 months (mean 7.87 months) prior to the lymphoma diagnosis. Our results show that RHOA Gly17Val mutation analysis is valuable in the early detection of AITL and PTCL-TFH.
Subject(s)
Immunoblastic Lymphadenopathy , Lymphoma, T-Cell, Peripheral , Lymphoma, T-Cell , Early Diagnosis , Humans , Immunoblastic Lymphadenopathy/diagnosis , Lymphoma, T-Cell/diagnosis , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell, Peripheral/diagnosis , Lymphoma, T-Cell, Peripheral/genetics , Lymphoma, T-Cell, Peripheral/pathology , Mutation , Phenotype , T-Lymphocytes, Helper-Inducer/pathology , rhoA GTP-Binding Protein/geneticsSubject(s)
COVID-19 , Clonal Hematopoiesis , Clonal Evolution , Hematopoiesis/genetics , Humans , Mutation , Severity of Illness IndexSubject(s)
Clonal Hematopoiesis , Hematopoietic Stem Cell Transplantation , Hematopoiesis/genetics , Humans , Siblings , SurvivorsABSTRACT
The emergence of biobank-level datasets offers new opportunities to discover novel biomarkers and develop predictive algorithms for human disease. Here, we present an ensemble machine-learning framework (machine learning with phenotype associations, MILTON) utilizing a range of biomarkers to predict 3,213 diseases in the UK Biobank. Leveraging the UK Biobank's longitudinal health record data, MILTON predicts incident disease cases undiagnosed at time of recruitment, largely outperforming available polygenic risk scores. We further demonstrate the utility of MILTON in augmenting genetic association analyses in a phenome-wide association study of 484,230 genome-sequenced samples, along with 46,327 samples with matched plasma proteomics data. This resulted in improved signals for 88 known (P < 1 × 10-8) gene-disease relationships alongside 182 gene-disease relationships that did not achieve genome-wide significance in the nonaugmented baseline cohorts. We validated these discoveries in the FinnGen biobank alongside two orthogonal machine-learning methods built for gene-disease prioritization. All extracted gene-disease associations and incident disease predictive biomarkers are publicly available ( http://milton.public.cgr.astrazeneca.com ).
Subject(s)
Biological Specimen Banks , Biomarkers , Genetic Predisposition to Disease , Genome-Wide Association Study , Machine Learning , Humans , United Kingdom , Genome-Wide Association Study/methods , Case-Control Studies , Multifactorial Inheritance/genetics , Proteomics/methods , Phenotype , Polymorphism, Single Nucleotide , Algorithms , Multiomics , UK BiobankABSTRACT
Telomeres protect chromosome ends from damage and their length is linked with human disease and aging. We developed a joint telomere length metric, combining quantitative PCR and whole-genome sequencing measurements from 462,666 UK Biobank participants. This metric increased SNP heritability, suggesting that it better captures genetic regulation of telomere length. Exome-wide rare-variant and gene-level collapsing association studies identified 64 variants and 30 genes significantly associated with telomere length, including allelic series in ACD and RTEL1. Notably, 16% of these genes are known drivers of clonal hematopoiesis-an age-related somatic mosaicism associated with myeloid cancers and several nonmalignant diseases. Somatic variant analyses revealed gene-specific associations with telomere length, including lengthened telomeres in individuals with large SRSF2-mutant clones, compared with shortened telomeres in individuals with clonal expansions driven by other genes. Collectively, our findings demonstrate the impact of rare variants on telomere length, with larger effects observed among genes also associated with clonal hematopoiesis.
Subject(s)
Biological Specimen Banks , Polymorphism, Single Nucleotide , Telomere , Whole Genome Sequencing , Humans , Telomere/genetics , United Kingdom , Whole Genome Sequencing/methods , Telomere Homeostasis/genetics , Male , Female , Clonal Hematopoiesis/genetics , Genome-Wide Association Study/methods , Aged , DNA Helicases/genetics , Middle Aged , UK BiobankABSTRACT
The etiology of prostate cancer, the second most common cancer in men globally, has a strong heritable component. While rare coding germline variants in several genes have been identified as risk factors from candidate gene and linkage studies, the exome-wide spectrum of causal rare variants remains to be fully explored. To more comprehensively address their contribution, we analysed data from 37,184 prostate cancer cases and 331,329 male controls from five cohorts with germline exome/genome sequencing and one cohort with imputed array data from a population enriched in low-frequency deleterious variants. Our gene-level collapsing analysis revealed that rare damaging variants in SAMHD1 as well as genes in the DNA damage response pathway (BRCA2, ATM and CHEK2) are associated with the risk of overall prostate cancer. We also found that rare damaging variants in AOX1 and BRCA2 were associated with increased severity of prostate cancer in a case-only analysis of aggressive versus non-aggressive prostate cancer. At the single-variant level, we found rare non-synonymous variants in three genes (HOXB13, CHEK2, BIK) significantly associated with increased risk of overall prostate cancer and in four genes (ANO7, SPDL1, AR, TERT) with decreased risk. Altogether, this study provides deeper insights into the genetic architecture and biological basis of prostate cancer risk and severity.
ABSTRACT
The myeloid neoplasms encompass acute myeloid leukemia, myelodysplastic syndromes and myeloproliferative neoplasms. Most cases arise from the shared ancestor of clonal hematopoiesis (CH). Here we analyze data from 454,340 UK Biobank participants, of whom 1,808 developed a myeloid neoplasm 0-15 years after recruitment. We describe the differences in CH mutational landscapes and hematology/biochemistry test parameters among individuals that later develop myeloid neoplasms (pre-MN) versus controls, finding that disease-specific changes are detectable years before diagnosis. By analyzing differences between 'pre-MN' and controls, we develop and validate Cox regression models quantifying the risk of progression to each myeloid neoplasm subtype. We construct 'MN-predict', a web application that generates time-dependent predictions with the input of basic blood tests and genetic data. Our study demonstrates that many individuals that develop myeloid neoplasms can be identified years in advance and provides a framework for disease-specific prognostication that will be of substantial use to researchers and physicians.
Subject(s)
Clonal Hematopoiesis , Neoplasms , Humans , Family , Mutation , SoftwareABSTRACT
Gene therapy (GT) provides a potentially curative treatment option for patients with sickle cell disease (SCD); however, the occurrence of myeloid malignancies in GT clinical trials has prompted concern, with several postulated mechanisms. Here, we used whole-genome sequencing to track hematopoietic stem cells (HSCs) from six patients with SCD at pre- and post-GT time points to map the somatic mutation and clonal landscape of gene-modified and unmodified HSCs. Pre-GT, phylogenetic trees were highly polyclonal and mutation burdens per cell were elevated in some, but not all, patients. Post-GT, no clonal expansions were identified among gene-modified or unmodified cells; however, an increased frequency of potential driver mutations associated with myeloid neoplasms or clonal hematopoiesis (DNMT3A- and EZH2-mutated clones in particular) was observed in both genetically modified and unmodified cells, suggesting positive selection of mutant clones during GT. This work sheds light on HSC clonal dynamics and the mutational landscape after GT in SCD, highlighting the enhanced fitness of some HSCs harboring pre-existing driver mutations. Future studies should define the long-term fate of mutant clones, including any contribution to expansions associated with myeloid neoplasms.
Subject(s)
Anemia, Sickle Cell , Neoplasms , Humans , Hematopoiesis/genetics , Phylogeny , Mutation/genetics , Hematopoietic Stem Cells/pathology , Clone Cells , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Anemia, Sickle Cell/pathology , Genetic Therapy , Neoplasms/pathologyABSTRACT
Clonal hematopoiesis (CH), the clonal expansion of a blood stem cell and its progeny driven by somatic driver mutations, affects over a third of people, yet remains poorly understood. Here we analyze genetic data from 200,453 UK Biobank participants to map the landscape of inherited predisposition to CH, increasing the number of germline associations with CH in European-ancestry populations from 4 to 14. Genes at new loci implicate DNA damage repair (PARP1, ATM, CHEK2), hematopoietic stem cell migration/homing (CD164) and myeloid oncogenesis (SETBP1). Several associations were CH-subtype-specific including variants at TCL1A and CD164 that had opposite associations with DNMT3A- versus TET2-mutant CH, the two most common CH subtypes, proposing key roles for these two loci in CH development. Mendelian randomization analyses showed that smoking and longer leukocyte telomere length are causal risk factors for CH and that genetic predisposition to CH increases risks of myeloproliferative neoplasia, nonhematological malignancies, atrial fibrillation and blood epigenetic ageing.