Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 20(6): e1012222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838044

ABSTRACT

COVID-19 has affected more than half a billion people worldwide, with more than 6.3 million deaths, but the pathophysiological mechanisms involved in lethal cases and the host determinants that determine the different clinical outcomes are still unclear. In this study, we assessed lung autopsies of 47 COVID-19 patients and examined the inflammatory profiles, viral loads, and inflammasome activation. Additionally, we correlated these factors with the patient's clinical and histopathological conditions. Robust inflammasome activation was detected in the lungs of lethal cases of SARS-CoV-2. Experiments conducted on transgenic mice expressing hACE2 and infected with SARS-CoV-2 showed that Nlrp3-/- mice were protected from disease development and lethality compared to Nlrp3+/+ littermate mice, supporting the involvement of this inflammasome in disease exacerbation. An analysis of gene expression allowed for the classification of COVID-19 patients into two different clusters. Cluster 1 died with higher viral loads and exhibited a reduced inflammatory profile than Cluster 2. Illness time, mechanical ventilation time, pulmonary fibrosis, respiratory functions, histopathological status, thrombosis, viral loads, and inflammasome activation significantly differed between the two clusters. Our data demonstrated two distinct profiles in lethal cases of COVID-19, thus indicating that the balance of viral replication and inflammasome-mediated pulmonary inflammation led to different clinical outcomes. We provide important information to understand clinical variations in severe COVID-19, a process that is critical for decisions between immune-mediated or antiviral-mediated therapies for the treatment of critical cases of COVID-19.


Subject(s)
COVID-19 , Lung , SARS-CoV-2 , Viral Load , Virus Replication , COVID-19/virology , COVID-19/mortality , COVID-19/immunology , COVID-19/pathology , Animals , Humans , Mice , Female , Male , Lung/virology , Lung/pathology , Lung/immunology , Middle Aged , Inflammasomes/immunology , Inflammasomes/metabolism , Aged , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Transgenic , Pneumonia/virology , Pneumonia/mortality , Pneumonia/immunology , Pneumonia/pathology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Mice, Knockout , Adult
2.
Proc Natl Acad Sci U S A ; 120(21): e2217119120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186819

ABSTRACT

Occurrence of hyperglycemia upon infection is associated with worse clinical outcome in COVID-19 patients. However, it is still unknown whether SARS-CoV-2 directly triggers hyperglycemia. Herein, we interrogated whether and how SARS-CoV-2 causes hyperglycemia by infecting hepatocytes and increasing glucose production. We performed a retrospective cohort study including patients that were admitted at a hospital with suspicion of COVID-19. Clinical and laboratory data were collected from the chart records and daily blood glucose values were analyzed to test the hypothesis on whether COVID-19 was independently associated with hyperglycemia. Blood glucose was collected from a subgroup of nondiabetic patients to assess pancreatic hormones. Postmortem liver biopsies were collected to assess the presence of SARS-CoV-2 and its transporters in hepatocytes. In human hepatocytes, we studied the mechanistic bases of SARS-CoV-2 entrance and its gluconeogenic effect. SARS-CoV-2 infection was independently associated with hyperglycemia, regardless of diabetic history and beta cell function. We detected replicating viruses in human hepatocytes from postmortem liver biopsies and in primary hepatocytes. We found that SARS-CoV-2 variants infected human hepatocytes in vitro with different susceptibility. SARS-CoV-2 infection in hepatocytes yields the release of new infectious viral particles, though not causing cell damage. We showed that infected hepatocytes increase glucose production and this is associated with induction of PEPCK activity. Furthermore, our results demonstrate that SARS-CoV-2 entry in hepatocytes occurs partially through ACE2- and GRP78-dependent mechanisms. SARS-CoV-2 infects and replicates in hepatocytes and exerts a PEPCK-dependent gluconeogenic effect in these cells that potentially is a key cause of hyperglycemia in infected patients.


Subject(s)
COVID-19 , Hyperglycemia , Humans , COVID-19/complications , SARS-CoV-2 , Gluconeogenesis , Blood Glucose , Retrospective Studies , Hepatocytes , Hyperglycemia/complications , Glucose
3.
Am J Pathol ; 193(12): 2066-2079, 2023 12.
Article in English | MEDLINE | ID: mdl-37544502

ABSTRACT

The histopathologic distinction of lung adenocarcinoma (LADC) subtypes is subject to high interobserver variability, which can compromise the optimal assessment of patient prognosis. Therefore, this study developed convolutional neural networks capable of distinguishing LADC subtypes and predicting disease-specific survival, according to the recently established LADC tumor grades. Consensus LADC histopathologic images were obtained from 17 expert pulmonary pathologists and one pathologist in training. Two deep learning models (AI-1 and AI-2) were trained to predict eight different LADC classes. Furthermore, the trained models were tested on an independent cohort of 133 patients. The models achieved high precision, recall, and F1 scores exceeding 0.90 for most of the LADC classes. Clear stratification of the three LADC grades was reached in predicting the disease-specific survival by the two models, with both Kaplan-Meier curves showing significance (P = 0.0017 and 0.0003). Moreover, both trained models showed high stability in the segmentation of each pair of predicted grades with low variation in the hazard ratio across 200 bootstrapped samples. These findings indicate that the trained convolutional neural networks improve the diagnostic accuracy of the pathologist and refine LADC grade assessment. Thus, the trained models are promising tools that may assist in the routine evaluation of LADC subtypes and grades in clinical practice.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Deep Learning , Lung Neoplasms , Humans , GRADE Approach , Lung Neoplasms/pathology , Adenocarcinoma/pathology
4.
Mol Ther ; 31(9): 2681-2701, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37340634

ABSTRACT

Virus-induced lung injury is associated with loss of pulmonary epithelial-endothelial tight junction integrity. While the alveolar-capillary membrane may be an indirect target of injury, viruses may interact directly and/or indirectly with miRs to augment their replication potential and evade the host antiviral defense system. Here, we expose how the influenza virus (H1N1) capitalizes on host-derived interferon-induced, microRNA (miR)-193b-5p to target occludin and compromise antiviral defenses. Lung biopsies from patients infected with H1N1 revealed increased miR-193b-5p levels, marked reduction in occludin protein, and disruption of the alveolar-capillary barrier. In C57BL/6 mice, the expression of miR-193b-5p increased, and occludin decreased, 5-6 days post-infection with influenza (PR8). Inhibition of miR-193b-5p in primary human bronchial, pulmonary microvascular, and nasal epithelial cells enhanced antiviral responses. miR-193b-deficient mice were resistant to PR8. Knockdown of occludin, both in vitro and in vivo, and overexpression of miR-193b-5p reconstituted susceptibility to viral infection. miR-193b-5p inhibitor mitigated loss of occludin, improved viral clearance, reduced lung edema, and augmented survival in infected mice. Our results elucidate how the innate immune system may be exploited by the influenza virus and how strategies that prevent loss of occludin and preserve tight junction function may limit susceptibility to virus-induced lung injury.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Lung Injury , MicroRNAs , Humans , Animals , Mice , Influenza, Human/complications , Influenza, Human/genetics , Influenza, Human/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Occludin/genetics , Occludin/metabolism , Lung Injury/metabolism , Tight Junctions/metabolism , Viral Load , Influenza A Virus, H1N1 Subtype/genetics , Mice, Inbred C57BL , Antiviral Agents
5.
J Infect Dis ; 227(12): 1364-1375, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36763010

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection triggers activation of the NLRP3 inflammasome, which promotes inflammation and aggravates severe COVID-19. Here, we report that SARS-CoV-2 induces upregulation and activation of human caspase-4/CASP4 (mouse caspase-11/CASP11), and this process contributes to NLRP3 activation. In vivo infections performed in transgenic hACE2 humanized mice, deficient or sufficient for Casp11, indicate that hACE2 Casp11-/- mice were protected from disease development, with the increased pulmonary parenchymal area, reduced clinical score of the disease, and reduced mortality. Assessing human samples from fatal cases of COVID-19, we found that CASP4 was expressed in patient lungs and correlated with the expression of inflammasome components and inflammatory mediators, including CASP1, IL1B, IL18, and IL6. Collectively, our data establish that CASP4/11 promotes NLRP3 activation and disease pathology, revealing a possible target for therapeutic interventions for COVID-19.


Subject(s)
COVID-19 , Inflammasomes , Mice , Animals , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophages/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Mice, Transgenic
6.
J Cell Mol Med ; 27(19): 2956-2969, 2023 10.
Article in English | MEDLINE | ID: mdl-37654004

ABSTRACT

We employed an early training exercise program, immediately after recovery from surgery, and before severe cardiac hypertrophy, to study the underlying mechanism involved with the amelioration of cardiac dysfunction in aortic stenosis (AS) rats. As ET induces angiogenesis and oxygen support, we aimed to verify the effect of exercise on myocardial lipid metabolism disturbance. Wistar rats were divided into Sham, trained Sham (ShamT), AS and trained AS (AST). The exercise consisted of 5-week sessions of treadmill running for 16 weeks. Statistical analysis was conducted by anova or Kruskal-Wallis test and Goodman test. A global correlation between variables was also performed using a two-tailed Pearson's correlation test. AST rats displayed a higher functional capacity and a lower cardiac remodelling and dysfunction when compared to AS, as well as the myocardial capillary rarefaction was prevented. Regarding metabolic properties, immunoblotting and enzymatic assay raised beneficial effects of exercise on fatty acid transport and oxidation pathways. The correlation assessment indicated a positive correlation between variables of angiogenesis and FA utilisation, as well as between metabolism and echocardiographic parameters. In conclusion, early exercise improves exercise tolerance and attenuates cardiac structural and functional remodelling. In parallel, exercise attenuated myocardial capillary and lipid metabolism derangement in rats with aortic stenosis-induced heart failure.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Physical Conditioning, Animal , Rats , Animals , Rats, Wistar , Lipid Metabolism , Heart Failure/metabolism
7.
Clin Immunol ; 257: 109836, 2023 12.
Article in English | MEDLINE | ID: mdl-37951516

ABSTRACT

BACKGROUND: COVID-19 causes consequences such as imbalance of the immune system and thrombotic events. During the infection process, NETs in excess induce a pro-inflammatory response and disseminated intravascular coagulation. We evaluated the role of enoxaparin as a potential inhibitor of NETs. METHODS: K18-hACE2 animals infected with the SARS-CoV-2 virus and a group of 23 individuals admitted to the hospital with COVID-19 treated with enoxaparin or without treatment and controls without the disease were included. RESULTS: Enoxaparin decreased the levels of NETs, reduced the signs of the disease and mitigated lung damage in the animals infected with SARS-CoV-2. These effects were partially associated with prevention of SARS-CoV-2 entry and NETs synthesis. Clinical data revealed that treatment with enoxaparin decreased the levels of inflammatory markers, the levels of NETs in isolated neutrophils and the organ dysfunction. CONCLUSION: This study provides evidence for the beneficial effects of enoxaparin in COVID-19 in addition to its anticoagulant role.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Animals , Neutrophils , Enoxaparin/pharmacology , SARS-CoV-2
8.
Blood ; 138(25): 2702-2713, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34407544

ABSTRACT

Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.


Subject(s)
Extracellular Traps/genetics , Gene Deletion , Intracellular Signaling Peptides and Proteins/genetics , Multiple Organ Failure/genetics , Phosphate-Binding Proteins/genetics , Sepsis/genetics , Acetaldehyde Dehydrogenase Inhibitors/therapeutic use , Adoptive Transfer , Aged , Animals , Cells, Cultured , Disulfiram/therapeutic use , Female , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Male , Mice, Inbred C57BL , Middle Aged , Multiple Organ Failure/pathology , Multiple Organ Failure/therapy , Phosphate-Binding Proteins/antagonists & inhibitors , Sepsis/pathology , Sepsis/therapy
9.
Respir Res ; 24(1): 66, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36864506

ABSTRACT

BACKGROUND: COVID-19 is characterized by severe acute lung injury, which is associated with neutrophil infiltration and the release of neutrophil extracellular traps (NETs). COVID-19 treatment options are scarce. Previous work has shown an increase in NETs release in the lung and plasma of COVID-19 patients suggesting that drugs that prevent NETs formation or release could be potential therapeutic approaches for COVID-19 treatment. METHODS: Here, we report the efficacy of NET-degrading DNase I treatment in a murine model of COVID-19. SARS-CoV-2-infected K18-hACE2 mice were performed for clinical sickness scores and lung pathology. Moreover, the levels of NETs were assessed and lung injuries were by histopathology and TUNEL assay. Finally, the injury in the heart and kidney was assessed by histopathology and biochemical-specific markers. RESULTS: DNase I decreased detectable levels of NETs, improved clinical disease, and reduced lung, heart, and kidney injuries in SARS-CoV-2-infected K18-hACE2 mice. Furthermore, our findings indicate a potentially deleterious role for NETs lung tissue in vivo and lung epithelial (A549) cells in vitro, which might explain part of the pathophysiology of severe COVID-19. This deleterious effect was diminished by the treatment with DNase I. CONCLUSIONS: Together, our results support the role of NETs in COVID-19 immunopathology and highlight NETs disruption pharmacological approaches as a potential strategy to ameliorate COVID-19 clinical outcomes.


Subject(s)
Acute Lung Injury , COVID-19 , Extracellular Traps , Animals , Humans , Mice , SARS-CoV-2 , COVID-19 Drug Treatment , Disease Models, Animal , Neutrophils , Deoxyribonuclease I/pharmacology , Deoxyribonuclease I/therapeutic use
10.
Pharmacol Res ; 191: 106749, 2023 05.
Article in English | MEDLINE | ID: mdl-37004830

ABSTRACT

Left congenital diaphragmatic hernia (CDH) can lead to pulmonary arteries abnormalities in the contralateral and ipsilateral sides of the diaphragm. Nitric oxide (NO) is the main therapy used to attenuate the vascular effects of CDH, but it is not always effective. We hypothesized that the left and right pulmonary arteries do not respond similarly to NO donors during CDH. Therefore, vasorelaxant responses of the left and right pulmonary arteries to sodium nitroprusside (SNP, a NO donor) were determined in a rabbit experimental model of left CDH. CDH was surgically induced in the fetuses of rabbits on the 25th day of pregnancy. On the 30th day of pregnancy, a midline laparotomy was performed to access the fetuses. The fetuses' left and right pulmonary arteries were isolated and mounted in myograph chambers. Vasodilation was evaluated by cumulative concentration-effect curves to SNP. Protein expression of guanylate cyclase isoforms (GCα, GCß) and the α isoform of cGMP-dependent protein kinase 1 (PKG1α), and the concentration of NO and cGMP were determined in the pulmonary arteries. The left and right pulmonary arteries of newborns with CDH exhibited increased vasorelaxant responses to SNP (i.e. the potency of SNP was increased) compared to the control group. GCα, GCß, and PKG1α expression were decreased, while NO and cGMP concentrations were increased in the pulmonary arteries of newborns with CDH compared to the control group. The increased cGMP mobilization may be responsible for the increased vasorelaxant responses to the SNP in the pulmonary arteries during left CDH.


Subject(s)
Hernias, Diaphragmatic, Congenital , Animals , Pregnancy , Female , Rabbits , Hernias, Diaphragmatic, Congenital/metabolism , Pulmonary Artery , Nitric Oxide/metabolism , Lung , Vasodilator Agents/pharmacology
11.
J Nucl Cardiol ; 30(6): 2327-2337, 2023 12.
Article in English | MEDLINE | ID: mdl-37165114

ABSTRACT

BACKGROUND: Myocardial perfusion defect (MPD) is common in chronic Chagas cardiomyopathy (CCC) and is associated with inflammation and development of left ventricular systolic dysfunction. We tested the hypothesis that pentoxifylline (PTX) could reduce inflammation and prevent the development of MPD in a model of CCC in hamsters. METHODS AND RESULTS: We investigated with echocardiogram and rest myocardial perfusion scintigraphy at baseline (6-months after T. cruzi infection/saline) and post-treatment (after additional 2-months of PTX/saline administration), female Syrian hamsters assigned to 3 groups: T. cruzi-infected animals treated with PTX (CH + PTX) or saline (CH + SLN); and uninfected control animals (CO). At the baseline, all groups showed similar left ventricular ejection fraction (LVEF) and MPD areas. At post-treatment evaluation, there was a significant increase of MPD in CH + SLN group (0.8 ± 1.6 to 9.4 ± 9.7%), but not in CH + PTX (1.9 ± 3.0% to 2.7 ± 2.7%) that exhibited MPD area similar to CO (0.0 ± 0.0% to 0.0 ± 0.0%). The LVEF decreased in both infected groups. Histological analysis showed a reduced inflammatory infiltrate in CH + PTX group (395.7 ± 88.3 cell/mm2), as compared to CH + SLN (515.1 ± 133.0 cell/mm2), but larger than CO (193.0 ± 25.7 cell/mm2). The fibrosis and TNF-α expression was higher in both infected groups. CONCLUSIONS: The prolonged use of PTX is associated with positive effects, including prevention of MPD development and reduction of inflammation in the chronic hamster model of CCC.


Subject(s)
Chagas Cardiomyopathy , Chagas Disease , Pentoxifylline , Cricetinae , Animals , Female , Chagas Cardiomyopathy/diagnostic imaging , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Stroke Volume , Ventricular Function, Left , Tomography, X-Ray Computed , Inflammation , Perfusion
12.
J Pharm Pharm Sci ; 26: 11136, 2023.
Article in English | MEDLINE | ID: mdl-36942299

ABSTRACT

Purpose: To investigate whether interindividual variability in the CYP2C9 (*2 and *3 alleles) and VKORC1 (rs9923231) genes is associated with increased risk of upper gastrointestinal bleeding (UGIB) in users of non-steroidal anti-inflammatory drugs (NSAIDs) or low-dose aspirin (LDA). Methods: A full case-control study including 200 cases of patients diagnosed with UGIB and 706 controls was conducted in a Brazilian hospital complex. To perform an analysis of NSAIDs dose-effect, the defined daily dose (DDD) for NSAIDs was calculated in the 7-day etiologic window preceding the data index. Three categories of DDD, considering the genotypes of the genetic variants, were established: non-users of NSAIDs (DDD = 0), DDD ≤0.5, and DDD >0.5. Genetic variants and LDA or NSAIDs use synergism was estimated through Synergism Index (SI) and Relative Excess Risk Due To Interaction (RERI). Results: For DDDs of NSAIDs upward of 0.50, a risk of UGIB was identified in carriers of the *3 allele (OR: 15,650, 95% CI: 1.41-174.10) and in carriers of the variant homozygous genotype (TT) of rs9923231 (OR: 38,850, 95% CI: 2.70-556.00). In LDA users, the risk of UGIB was observed to be similar between carriers of the wild type homozygous genotype and carriers of the variant alleles for the CYP2C9 and VKORC1 genes. No synergism was identified. Conclusion: Our findings suggest an increased risk of UGIB in carriers of the variant allele of rs9923231 and in carriers of the *3 allele associated with doses of NSAIDs greater than 0.5. Hence, the assessment of these variants might reduce the incidence of NSAIDs-related UGIB and contribute to the safety of the NSAIDs user.


Subject(s)
Aspirin , Gastrointestinal Hemorrhage , Humans , Cytochrome P-450 CYP2C9/genetics , Case-Control Studies , Gastrointestinal Hemorrhage/chemically induced , Gastrointestinal Hemorrhage/genetics , Aspirin/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Genotype , Anticoagulants , Vitamin K Epoxide Reductases/genetics
13.
Parasitol Res ; 122(9): 2147-2154, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37428312

ABSTRACT

Neurocysticercosis is a heterogeneous disease, and the patient's sex seems to play a role in this heterogeneity. Hosts' sexual dimorphism in cysticercosis has been largely explored in the murine model of intraperitoneal Taenia crassiceps cysticercosis. In this study, we investigated the sexual dimorphism of inflammatory responses in a rat model of extraparenchymal neurocysticercosis caused by T. crassiceps. T. crassiceps cysticerci were inoculated in the subarachnoid space of Wistar rats (25 females, 22 males). Ninety days later, the rats were euthanized for histologic, immunohistochemistry, and cytokines studies. Ten animals also underwent a 7-T magnetic resonance imaging (MRI). Female rats presented a higher concentration of immune cells in the arachnoid-brain interface, reactive astrogliosis in the periventricular region, in situ pro-inflammatory cytokine (interleukin [IL]-6) and anti-inflammatory cytokine (IL-10), and more intense hydrocephalus on MRI than males. Intracranial hypertension signals were not observed during the observational period. Overall, these results suggest sexual dimorphism in the intracranial inflammatory response that accompanied T. crassiceps extraparenchymal neurocysticercosis.


Subject(s)
Cysticercosis , Neurocysticercosis , Taenia , Male , Mice , Female , Rats , Animals , Neurocysticercosis/diagnostic imaging , Neurocysticercosis/pathology , Disease Models, Animal , Sex Characteristics , Rats, Wistar , Cytokines , Interleukin-6 , Mice, Inbred BALB C
14.
Crit Care ; 26(1): 206, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35799268

ABSTRACT

BACKGROUND: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. OBJECTIVES: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19. METHODS: We performed a single-cell transcriptome analysis in public data of bronchoalveolar lavage. Then, we enrolled 63 hospitalized patients with moderate and severe COVID-19. We analyze in blood and lung tissue samples the expression of GSDMD, presence of NETs, and signaling pathways upstreaming. Furthermore, we analyzed the treatment with disulfiram in a mouse model of SARS-CoV-2 infection. RESULTS: We found that the SARS-CoV-2 virus directly activates the pore-forming protein GSDMD that triggers NET production and organ damage in COVID-19. Single-cell transcriptome analysis revealed that the expression of GSDMD and inflammasome-related genes were increased in COVID-19 patients. High expression of active GSDMD associated with NETs structures was found in the lung tissue of COVID-19 patients. Furthermore, we showed that activation of GSDMD in neutrophils requires active caspase1/4 and live SARS-CoV-2, which infects neutrophils. In a mouse model of SARS-CoV-2 infection, the treatment with disulfiram inhibited NETs release and reduced organ damage. CONCLUSION: These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology and suggests GSDMD as a novel potential target for improving the COVID-19 therapeutic strategy.


Subject(s)
COVID-19 Drug Treatment , Extracellular Traps , Animals , Disulfiram/metabolism , Extracellular Traps/metabolism , Mice , Neutrophils/metabolism , SARS-CoV-2
15.
J Cell Mol Med ; 25(2): 1314-1318, 2021 01.
Article in English | MEDLINE | ID: mdl-33300293

ABSTRACT

The aim of this study is to evaluate whether the alterations in glucose metabolism and insulin resistance are mechanisms presented in cardiac remodelling induced by the toxicity of cigarette smoke. Male Wistar rats were assigned to the control group (C; n = 12) and the cigarette smoke-exposed group (exposed to cigarette smoke over 2 months) (CS; n = 12). Transthoracic echocardiography, blood pressure assessment, serum biochemical analyses for catecholamines and cotinine, energy metabolism enzymes activities assay; HOMA index (homeostatic model assessment); immunohistochemistry; and Western blot for proteins involved in energy metabolism were performed. The CS group presented concentric hypertrophy, systolic and diastolic dysfunction, and higher oxidative stress. It was observed changes in energy metabolism, characterized by a higher HOMA index, lower concentration of GLUT4 (glucose transporter 4) and lower 3-hydroxyl-CoA dehydrogenase activity, suggesting the presence of insulin resistance. Yet, the cardiac glycogen was depleted, phosphofructokinase (PFK) and lactate dehydrogenase (LDH) increased, with normal pyruvate dehydrogenase (PDH) activity. The activity of citrate synthase, mitochondrial complexes and ATP synthase (adenosine triphosphate synthase) decreased and the expression of Sirtuin 1 (SIRT1) increased. In conclusion, exposure to cigarette smoke induces cardiac remodelling and dysfunction. The mitochondrial dysfunction and heart damage induced by cigarette smoke exposure are associated with insulin resistance and glucose metabolism changes.


Subject(s)
Glucose/metabolism , Insulin Resistance , Smoking/adverse effects , Ventricular Remodeling , Animals , Catecholamines/blood , Cotinine/blood , Electrocardiography , Energy Metabolism , Male , Oxidative Stress , Rats, Wistar
16.
Dermatol Ther ; 34(1): e14565, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33219572

ABSTRACT

COVID-19 generates a complex systemic inflammatory response that can lead to death due to wide macrophage activation, endothelial damage, and coagulation in critically ill patients. SARS-CoV-2-induced lung injury due to inflammatory mediated thrombosis could be similar to the livedoid vasculopathy in the skin, supporting a translational comparison of these clinical settings. In this article, we discuss anticoagulation, suppression of inflammatory response, and hyperbaric oxygen therapy in the context of severe COVID-19 and livedoid vasculopathy.


Subject(s)
COVID-19 , Hyperbaric Oxygenation , Skin Diseases/etiology , Anticoagulants/adverse effects , COVID-19/complications , Heparin, Low-Molecular-Weight , Humans , Inflammation/therapy , SARS-CoV-2
17.
BMC Pulm Med ; 21(1): 184, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34074264

ABSTRACT

BACKGROUND: Current interstitial lung disease (ILD) diagnostic guidelines assess criteria across clinical, radiologic and pathologic domains. Significant interobserver variation in histopathologic evaluation has previously been shown but the specific source of these discrepancies is poorly documented. We sought to document specific areas of difficulty and develop improved criteria that would reduce overall interobserver variation. METHODS: Using an internet-based approach, we reviewed selected images of specific diagnostic features of ILD histopathology and whole slide images of fibrotic ILD. After an initial round of review, we confirmed the presence of interobserver variation among our group. We then developed refined criteria and reviewed a second set of cases. RESULTS: The initial round reproduced the existing literature on interobserver variation in diagnosis of ILD. Cases which were pre-selected as inconsistent with usual interstitial pneumonia/idiopathic pulmonary fibrosis (UIP/IPF) were confirmed as such by multi-observer review. Cases which were thought to be in the spectrum of chronic fibrotic ILD for which UIP/IPF were in the differential showed marked variation in nearly all aspects of ILD evaluation including extent of inflammation and extent and pattern of fibrosis. A proposed set of more explicit criteria had only modest effects on this outcome. While we were only modestly successful in reducing interobserver variation, we did identify specific reasons that current histopathologic criteria of fibrotic ILD are not well defined in practice. CONCLUSIONS: Any additional classification scheme must address interobserver variation in histopathologic diagnosis of fibrotic ILD order to remain clinically relevant. Improvements to tissue-based diagnostics may require substantial resources such as larger datasets or novel technologies to improve reproducibility. Benchmarks should be established for expected outcomes among clinically defined subgroups as a quality metric.


Subject(s)
Idiopathic Pulmonary Fibrosis/pathology , Lung Diseases, Interstitial/pathology , Observer Variation , Reference Standards , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Internationality , Lung Diseases, Interstitial/diagnosis , Reproducibility of Results
18.
Pathobiology ; 87(6): 356-366, 2020.
Article in English | MEDLINE | ID: mdl-33099553

ABSTRACT

Several studies have reported the pathophysiologic and molecular mechanisms responsible for pulmonary arterial hypertension (PAH). However, the in situ evidence of collagen V (Col V) and interleukin-17 (IL-17)/interleukin-6 (IL-6) activation in PAH has not been fully elucidated. We analyzed the effects of collagen I (Col I), Col V, IL-6, and IL-17 on vascular remodeling and hemodynamics and its possible mechanisms of action in monocrotaline (MCT)-induced PAH. Twenty male Wistar rats were randomly divided into two groups. In the PAH group, animals received MCT 60 mg/kg intraperitoneally, whereas the control group (CTRL) received saline. On day 21, the pulmonary blood pressure (PAP) and right ventricular systolic pressure (RVSP) were determined. Lung histology (smooth muscle cell proliferation [α-smooth muscle actin; α-SMA] and periadventitial fibrosis), immunofluorescence (Col I, Col V, and α-SMA), immunohistochemistry (IL-6, IL-17, and transforming growth factor-beta [TGF-ß]), and transmission electron microscopy to detect fibronexus were evaluated. The RVSP (40 ± 2 vs. 24 ± 1 mm Hg, respectively; p < 0.0001), right ventricle hypertrophy index (65 ± 9 and 25 ± 5%, respectively; p < 0.0001), vascular periadventitial Col I and Col V, smooth muscle cell α-SMA+, fibronexus, IL-6, IL-17, and TGF-ß were higher in the MCT group than in the CTRL group. In conclusion, our findings indicate in situ evidence of Col V and IL-6/IL-17 activation in vascular remodeling and suggest that increase of Col V may yield potential therapeutic targets for treating patients with PAH.


Subject(s)
Collagen/genetics , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/physiopathology , Interleukin-17/immunology , Interleukin-6/immunology , Vascular Remodeling/immunology , Animals , Collagen/classification , Collagen/metabolism , Disease Models, Animal , Hypertension, Pulmonary/chemically induced , Interleukin-17/genetics , Interleukin-6/genetics , Male , Monocrotaline/administration & dosage , Rats , Rats, Wistar
19.
Eur J Vasc Endovasc Surg ; 58(4): 583-591, 2019 10.
Article in English | MEDLINE | ID: mdl-31474494

ABSTRACT

OBJECTIVES: Telangiectasia is a common venous formation that mainly affects women and causes discomfort, including psychological distress. This study compared photodynamic therapy (PDT) with glucose for vessel sclerosis in a rabbit ear model. METHODS: Thirty-six ears of 18 rabbits were randomly divided into four groups: Group 1: only injection of Photogem (4 mg/mL); Group 2: only light (635 nm, 100 mW/cm2, 8 min, 48 J/cm2); Group 3: glucose 75% injection; Group 4: PDT procedure with injection of Photogem and illumination immediately after. Injections were made into the central ear artery. After injection or sham procedures, manual compression of the marginal vein was maintained for 8 min in all ears. Follow up was immediately after the procedures, and one and six days later. The percentage of length reduction of spider veins, the target vessels, was analysed in digital photographs with Image J software. Ear thermographs were made with a thermocamera device and average temperatures were collected for analysis. Ear biopsies were obtained after six days. Endothelium average, inflammation, fibrosis, necrosis, skin burn, and vascular thrombosis were assessed using a specific score. RESULTS: The mean vessel length reduction was 26% for Group 4, 2.4% for Group 3, .4% for Group 1, and 0 for Group 2, highlighting that in Group 4, the vessel lengths were significantly reduced compared with the other groups (p < .001). In the thermal analysis, in Group 3, the temperature was unchanged from the initial temperature and the central diameter vessel increased after six days, while, in Group 4, the temperature decreased and the vessels were not clearly detected, suggesting a reduction of the vessels and smaller infusion. Histology showed no difference among groups and one case of necrosis was found in Group 4. CONCLUSIONS: PDT was associated with significantly more target vessel sclerosis than glucose injection and controls.


Subject(s)
Aortic Aneurysm, Abdominal , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Photochemotherapy , Telangiectasis , Animals , Female , Glucose , Humans , Incidence , Rabbits , Registries
20.
Acta Vet Hung ; 67(2): 296-306, 2019 06.
Article in English | MEDLINE | ID: mdl-31238730

ABSTRACT

The aim of this study was the preparation and histological evaluation of Leukocyte- and Thrombocyte-Rich Fibrin (L-TRF) membranes obtained from the blood of four bird species. Forty adult healthy birds were divided into four groups of equal size: G1 - macaws, G2 - domestic chickens, G3 - parrots, G4 - toco toucans. A total of 0.5 mL of blood was collected from each bird, put into a glass tube without anticoagulant and centrifuged at 3000 rpm for 10 min. L-TRF membranes produced after compression of the clot were processed for histological analysis. The ratio of thrombocytes/area was not significantly different among Groups G2, G3 and G4, but a significant difference was found between Groups G1 and G2 with the highest thrombocyte concentration/area in G1. The groups did not differ statistically in the number of leukocytes/area. The fibrin-to-cells ratio did not vary statistically among Groups G1, G2 and G3, but this ratio was significantly higher in Group G4 than in the other groups. The thrombocyte-to-leukocyte ratio was the highest in Group G1, but it did not differ among Groups G2, G3 and G4. In conclusion, the centrifugation protocol allowed the production of L-TRF membranes in the four bird species studied. Histologically, cell ratios were analogous in domestic chickens and parrots, and macaws had the highest ratio of thrombocytes.


Subject(s)
Blood Platelets/metabolism , Fibrin/metabolism , Leukocytes/metabolism , Membranes/metabolism , Animals , Birds , Chickens , Parrots , Platelet-Rich Fibrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL