Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 49(11): 3852-3869, 2022 09.
Article in English | MEDLINE | ID: mdl-35536420

ABSTRACT

Positron emission tomography (PET) has been widely used in paediatric oncology. 2-Deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is the most commonly used radiopharmaceutical for PET imaging. For oncological brain imaging, different amino acid PET radiopharmaceuticals have been introduced in the last years. The purpose of this document is to provide imaging specialists and clinicians guidelines for indication, acquisition, and interpretation of [18F]FDG and radiolabelled amino acid PET in paediatric patients affected by brain gliomas. There is no high level of evidence for all recommendations suggested in this paper. These recommendations represent instead the consensus opinion of experienced leaders in the field. Further studies are needed to reach evidence-based recommendations for the applications of [18F]FDG and radiolabelled amino acid PET in paediatric neuro-oncology. These recommendations are not intended to be a substitute for national and international legal or regulatory provisions and should be considered in the context of good practice in nuclear medicine. The present guidelines/standards were developed collaboratively by the EANM and SNMMI with the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group and the Response Assessment in Paediatric Neuro-Oncology (RAPNO) working group. They summarize also the views of the Neuroimaging and Oncology and Theranostics Committees of the EANM and reflect recommendations for which the EANM and other societies cannot be held responsible.


Subject(s)
Fluorodeoxyglucose F18 , Glioma , Amino Acids , Child , Glioma/diagnostic imaging , Humans , Positron-Emission Tomography/methods , Radiopharmaceuticals
2.
Pediatr Nephrol ; 37(9): 2157-2166, 2022 09.
Article in English | MEDLINE | ID: mdl-35091836

ABSTRACT

BACKGROUND: Both the development of kidney function in healthy children and autoregulation ability of kidney function in patients with asymmetric kidneys are important in clinical diagnosis and treatment of kidney-related diseases, but there are however only limited studies. This study aimed to investigate development of kidney function in normal children with healthy symmetric kidneys and autoregulation of the healthy kidney compensating the functional loss of a diseased one in children with asymmetric kidneys. METHODS: Two hundred thirty-seven children (156 male, 81 female) from 0 to 20y (average 4.6y ± 5.1) undergoing 99mTc-MAG3 renography were included, comprising 134 with healthy symmetrically functioning kidneys and 103 with asymmetric kidneys. Clearance was calculated from kidney uptakes at 1-2 min. A developmental model between MAG3 clearance (CL) and patient age in normal group was identified (CL = 84.39Age0.395 ml/min, r = 0.957, p < 0.001). The clearance autoregulation rate in abnormal group with asymmetric kidneys was defined as the ratio of the measured MAG3 clearance and the normal value predicted from the renal developmental model of normal group. RESULTS: No significant difference of MAG3 clearance (p = 0.723) was found between independent abnormal group and normal group. The autoregulation rate of kidney clearance in abnormal group was 94.2% on average, and no significant differences were found between two age groups (p = 0.49), male and female (p = 0.39), and left kidney and right kidney (p = 0.92) but two different grades of asymmetric kidneys (p = 0.02). CONCLUSIONS: The healthy kidney of two asymmetric kidneys can automatically regulate total kidney function up to 94% of two symmetric kidneys in normal children.


Subject(s)
Kidney Diseases , Radioisotope Renography , Child , Female , Homeostasis , Humans , Kidney , Male , Radiopharmaceuticals , Retrospective Studies , Technetium Tc 99m Mertiatide
3.
J Appl Clin Med Phys ; 22(1): 4-10, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33533204

ABSTRACT

March 2021 will mark the eightieth anniversary of targeted radionuclide therapy, recognizing the first use of radioactive iodine to treat thyroid disease by Dr. Saul Hertz on March 31, 1941. The breakthrough of Dr. Hertz and collaborator physicist Arthur Roberts was made possible by rapid developments in the fields of physics and medicine in the early twentieth century. Although diseases of the thyroid gland had been described for centuries, the role of iodine in thyroid physiology had been elucidated only in the prior few decades. After the discovery of radioactivity by Henri Becquerel in 1897, rapid advancements in the field, including artificial production of radioactive isotopes, were made in the subsequent decades. Finally, the diagnostic and therapeutic use of radioactive iodine was based on the tracer principal that was developed by George de Hevesy. In the context of these advancements, Hertz was able to conceive the potential of using of radioactive iodine to treat thyroid diseases. Working with Dr. Roberts, he obtained the experimental data and implemented it in the clinical setting. Radioiodine therapy continues to be a mainstay of therapy for hyperthyroidism and thyroid cancer. However, Hertz struggled to gain recognition for his accomplishments and to continue his work and, with his early death in 1950, his contributions have often been overlooked until recently. The work of Hertz and others provided a foundation for the introduction of other radionuclide therapies and for the development of the concept of theranostics.


Subject(s)
Iodine , Thyroid Neoplasms , Humans , Iodine Radioisotopes/therapeutic use , Precision Medicine , Thyroid Neoplasms/radiotherapy
4.
Am J Gastroenterol ; 115(11): 1830-1839, 2020 11.
Article in English | MEDLINE | ID: mdl-33156102

ABSTRACT

INTRODUCTION: Adult standards for gastric emptying scintigraphy, including the type of meal and range of normative values for percent gastric emptying, are routinely used in pediatric practice, but to date have not been validated. The purpose of this study is to determine whether the use of adult criteria for gastric emptying scintigraphy is valid for children and whether alternative nonstandard meals can also be offered based on these criteria. METHODS: This retrospective study analyzed patients (n = 1,151 total) who underwent solid-phase gastric emptying scintigraphy. Patients were stratified into normal and delayed gastric emptying cohorts based on adult criteria, i.e., with normal gastric emptying defined as ≤10% gastric retention at 4 hours. Patients were further stratified based on the type of meal, namely complete or partial adult standard meals or alternative cheese-based meals. Percent gastric retention values at 1, 2, 3, and 4 hours were compared. RESULTS: The median (95% upper reference limit) percentage gastric retention values for the complete standard meal were 72% (93%) at 1 hour, 39% (65%) at 2 hours, 15% (33%) at 3 hours, and 6% (10 %) at 4 hours. By comparison, the values for cheese-based meals were 60% (87%) at 1 hour, 29% (61%) at 2 hours, 10% (30%) at 3 hours, and 5% (10%) at 4 hours. Consumption of at least 50% of the standard meal yielded similar retention percentages; 68% (89%) at 1 hour, 32% (57%) at 2 hours, 10% (29%) at 3 hours, and 5% (10%) at 4 hours. There were no significant age- or sex-specific differences using the adult criteria. DISCUSSION: The adult normative standards for gastric emptying scintigraphy are applicable for use in the pediatric population. These same standards can be also be applied to nonstandard meal options, including cheese-based alternative meals and partial standard meals.


Subject(s)
Diagnostic Techniques, Digestive System , Gastric Emptying , Meals , Radionuclide Imaging/methods , Radiopharmaceuticals , Adolescent , Cheese , Child , Eggs , Female , Food , Humans , Male , Reference Values , Young Adult
5.
Pediatr Radiol ; 47(12): 1599-1607, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28685191

ABSTRACT

BACKGROUND: When performing dynamic gastric emptying scintigraphy with continuous acquisition in children, a single posterior view acquisition is preferred because it allows the young patient to more easily interact with a parent or technologist even though this method tends toward overestimating gastric emptying. OBJECTIVES: The objective of our study was to develop a new attenuation correction (AC) method to improve the accuracy of the time activity curve and the measurement of residual gastric emptying from 1-h posterior images of gastric emptying scintigraphy with continuous acquisition. MATERIALS AND METHODS: We developed a frame-count-based AC for gastric emptying scintigraphy from the posterior view (posterior AC method). We retrospectively reviewed 122 gastric emptying studies performed in children using conjugated posterior and anterior views, and evaluated the statistical differences between posterior only (without AC) and posterior AC using the geometric mean method as a reference standard. RESULTS: The residual values obtained using posterior AC were not significantly different (P=0.813) compared to those using the geometric mean while the values using the posterior only were significantly different (P<0.001) from the geometric mean. CONCLUSION: The proposed method can replace the geometric mean method to estimate gastric emptying residual fraction using patient-friendly posterior view without a significant difference in 1-h gastric emptying scintigraphy with continuous acquisition.


Subject(s)
Gastric Emptying/physiology , Radionuclide Imaging/methods , Stomach/diagnostic imaging , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Retrospective Studies , Young Adult
7.
Pediatr Radiol ; 45(5): 706-13, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25367355

ABSTRACT

BACKGROUND: Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. OBJECTIVE: For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. MATERIALS AND METHODS: Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. RESULTS: Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients were age 5 years or younger. CONCLUSION: For 12 commonly performed pediatric nuclear medicine studies, updated radiation dose estimates can guide efforts to reduce radiation exposure and provide current information for discussing radiation exposure and risk with referring physicians, patients and families. There can be substantial differences in radiation exposure for the same procedure, depending upon which of these two guidelines is followed. This discordance identifies opportunities for harmonization of the guidelines, which may lead to further reduction in nuclear medicine radiation doses in children.


Subject(s)
Consensus , Pediatrics/statistics & numerical data , Positron-Emission Tomography/statistics & numerical data , Radiation Dosage , Tomography, Emission-Computed, Single-Photon/statistics & numerical data , Adolescent , Adult , Child , Child, Preschool , Europe , Female , Humans , Infant , Male , North America , Nuclear Medicine , Radiopharmaceuticals , Societies, Medical , United States , Young Adult
8.
J Appl Clin Med Phys ; 16(5): 3-13, 2015 09 08.
Article in English | MEDLINE | ID: mdl-26699325

ABSTRACT

The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear  medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics  Training. The mission of this task force was to assemble a representative group of stakeholders to:• Estimate the demand for board-certified nuclear medicine physicists in the next 5-10 years,• Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, and• Identify approaches that may be considered to facilitate the training of nuclear medicine physicists.As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face-to-face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission.


Subject(s)
Diagnostic Imaging/standards , Education, Medical/standards , Health Physics/education , Internship and Residency/standards , Nuclear Medicine/education , Radiation Oncology/education , Clinical Competence , Curriculum , Humans , Research Report
9.
J Nucl Med Technol ; 52(3): 199-204, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39137980

ABSTRACT

99mTc-labeled dimercaptosuccinic acid (99mTc-DMSA) imaging is a well-established and highly sensitive method for the diagnosis of several renal cortical disorders affecting children and adults. Beginning in 2014, 99mTc-DMSA availability was severely impaired when it was added to the Drug Shortages List of the U.S. Food and Drug Administration and was commercially unavailable thereafter. The agent shortage negatively impacted practitioners' ability to evaluate renal cortical defects in children and adults and changed renal imaging practice. A survey among pediatric nuclear medicine clinicians confirmed the clinical need for 99mTc-DMSA. Finally, in early 2023 the Food and Drug Administration again approved 99mTc-DMSA in the United States. During the 99mTc-DMSA shortage, established practitioners may not have had the opportunity of using 99mTc-DMSA as they were accustomed in their experience. Also, newer imaging specialists and referring physicians and technologists may not have benefited from having 99mTc-DMSA in their training. Therefore, it is time to bring back 99mTc-DMSA into the armamentarium of imaging methods available to evaluate regional cortical renal function.


Subject(s)
Kidney , Technetium Tc 99m Dimercaptosuccinic Acid , Humans , Kidney/diagnostic imaging
10.
Med Phys ; 51(2): 1019-1033, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37482927

ABSTRACT

BACKGROUND: Pediatric molecular imaging requires a balance between administering an activity that will yield sufficient diagnostic image quality while maintaining patient radiation exposure at acceptable levels. In current clinical practice, this balance is arrived at by the current North American Consensus Guidelines in which patient weight is used to recommend the administered activity (AA). PURPOSE: We have previously demonstrated that girth (waist circumference at the level of the kidneys) is better at equalizing image quality than patient weight for pediatric Tc-99m DMSA renal function imaging. However, the correlation between image quality (IQ), AA, and patient girth has not been rigorously and systematically developed. In this work, we generate a series of curves showing the tradeoff between AA and IQ as a function of patient girth, providing the data for standards bodies to develop the next generation of dosing guideline for pediatric DMSA SPECT. METHODS: An anthropomorphic phantom series that included variations in age (5, 10, and 15 years), gender (M, F), local body morphometry (5, 10, 50, 90, and 95th girth percentiles), and kidney size (±15% standard size), was used to generate realistic SPECT projections. A fixed and clinically challenging defect-to-organ volume percentage (0.49% of renal cortex value) was used to model a focal defect with zero uptake (i.e., full local loss of renal function). Task-based IQ assessment methods were used to rigorously measure IQ in terms of renal perfusion defect detectability. This assessment was performed at multiple count levels (corresponding to various AAs) for groups of patients that had similar girths and defect sizes. Receiver-operating characteristics (ROC) analysis was applied; the area under the ROC curve (AUC) was used as a figure-of-merit for task performance. Curves showing the tradeoff between AUC and AA were generated for these groups of phantoms. RESULTS: Overall, the girth-based dosing method suggested different amounts of AA compared to weight-based dosing for the phantoms that had a relatively large body weight but a small girth or phantoms with relatively small bodyweight but large girth. Reductions of AA to 62.9% compared to weight-based dosing guidelines can potentially be realized while maintaining a baseline (AUC = 0.80) IQ for certain 15-year-olds who have a relatively small girth and large defect size. Note that the task-based IQ results are heavily dependent on the simulated defect size for the defect detection task and the appropriate AUC value must be decided by the physicians for this diagnostic task. These results are based purely on simulation and are subject to future clinical validation. CONCLUSIONS: The study provides simulation-based IQ-AA data for a girth-based dosing method for pediatric renal SPECT, suggesting that patient waist circumference at the level of kidneys should be considered in selecting the AA needed to achieve an acceptable IQ. This data may be useful for standards bodies to develop girth-based dosing guidelines.


Subject(s)
Technetium Tc 99m Dimercaptosuccinic Acid , Tomography, Emission-Computed, Single-Photon , Child , Humans , Tomography, Emission-Computed, Single-Photon/methods , Kidney , Phantoms, Imaging , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL