Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Geophys Res Lett ; 48(11): e2021GL092744, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34149111

ABSTRACT

Responses to COVID-19 have resulted in unintended reductions of city-scale carbon dioxide (CO2) emissions. Here, we detect and estimate decreases in CO2 emissions in Los Angeles and Washington DC/Baltimore during March and April 2020. We present three lines of evidence using methods that have increasing model dependency, including an inverse model to estimate relative emissions changes in 2020 compared to 2018 and 2019. The March decrease (25%) in Washington DC/Baltimore is largely supported by a drop in natural gas consumption associated with a warm spring whereas the decrease in April (33%) correlates with changes in gasoline fuel sales. In contrast, only a fraction of the March (17%) and April (34%) reduction in Los Angeles is explained by traffic declines. Methods and measurements used herein highlight the advantages of atmospheric CO2 observations for providing timely insights into rapidly changing emissions patterns that can empower cities to course-correct CO2 reduction activities efficiently.

2.
Sci Data ; 9(1): 361, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750672

ABSTRACT

Urban regions emit a large fraction of anthropogenic emissions of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) that contribute to modern-day climate change. As such, a growing number of urban policymakers and stakeholders are adopting emission reduction targets and implementing policies to reach those targets. Over the past two decades research teams have established urban GHG monitoring networks to determine how much, where, and why a particular city emits GHGs, and to track changes in emissions over time. Coordination among these efforts has been limited, restricting the scope of analyses and insights. Here we present a harmonized data set synthesizing urban GHG observations from cities with monitoring networks across North America that will facilitate cross-city analyses and address scientific questions that are difficult to address in isolation.

SELECTION OF CITATIONS
SEARCH DETAIL