Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Publication year range
1.
Blood ; 143(3): 279-289, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37738655

ABSTRACT

ABSTRACT: TCRαß/CD19 cell depletion is a promising graft manipulation technique frequently used in the context of human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (HSCT). We previously reported the results of a phase I-II clinical trial (NCT01810120) to assess the safety and the efficacy of this type of exvivo T-cell depletion in 80 children with acute leukemia, showing promising survival outcomes. We now report an updated analysis on a cohort of 213 children with a longer follow-up (median, 47.6 months for surviving patients). With a 5-year cumulative incidence of nonrelapse mortality of 5.2% (95% confidence interval [CI], 2.8%-8.8%) and a cumulative incidence of relapse of 22.7% (95% CI, 16.9%-29.2%), projected 10-year overall and disease-free survival (DFS) were 75.4% (95% CI, 68.6%-80.9%) and 71.6% (95% CI, 64.4%-77.6%), respectively. Cumulative incidence of both grade II-IV acute and chronic graft-versus-host disease were low (14.7% and 8.1%, respectively). In a multivariable analysis for DFS including type of disease, use of total body irradiation in the conditioning regimen (hazard ratio [HR], 0.5; 95% CI, 0.26-0.98; P = .04), disease status at HSCT (complete remission [CR] ≥3 vs CR 1/2; HR, 2.23; 95% CI, 1.20-4.16; P = .01), and high levels of pre-HSCT minimal residual disease (HR, 2.09; 95% CI, 1.01-4.33; P = .04) were independently associated with outcome. In summary, besides confirming the good outcome results already reported (which are almost superimposable on those of transplant from HLA-matched donors), this clinical update allows the identification of patients at higher risk of treatment failure for whom personalized approaches, aimed at reducing the risk of relapse, are warranted.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Child , Humans , Receptors, Antigen, T-Cell, alpha-beta , Transplantation, Haploidentical/adverse effects , HLA Antigens , Hematopoietic Stem Cell Transplantation/methods , Histocompatibility Antigens Class II , Recurrence , Transplantation Conditioning/methods , Retrospective Studies
2.
J Transl Med ; 22(1): 582, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902710

ABSTRACT

BACKGROUND: Exosomes are nanosized vesicles released from all cells into surrounding biofluids, including cancer cells, and represent a very promising direction in terms of minimally invasive approaches to early disease detection. They carry tumor-specific biological contents such as DNA, RNA, proteins, lipids, and sugars, as well as surface molecules that are able to pinpoint the cellular source. By the above criteria, exosomes may be stratified according to the presence of tissue and disease-specific signatures and, due to their stability in such biofluids as plasma and serum, they represent an indispensable source of vital clinical insights from liquid biopsies, even at the earliest stages of cancer. Therefore, our work aimed to isolate and characterize LCa patients' derived exosomes from serum by Flow Cytometry in order to define a specific epitope signature exploitable for early diagnosis. METHODS: Circulating exosomes were collected from serum collected from 30 LCa patients and 20 healthy volunteers by the use of antibody affinity method exploiting CD63 specific surface marker. Membrane epitopes were then characterized by Flow cytometry multiplex analysis and compared between LCa Patients and Healthy donors. Clinical data were also matched to obtain statistical correlation. RESULTS: A distinct overexpression of CD1c, CD2, CD3, CD4, CD11c, CD14, CD20, CD44, CD56, CD105, CD146, and CD209 was identified in LCa patients compared to healthy controls, correlating positively with tumor presence. Conversely, CD24, CD31, and CD40, though not overexpressed in tumor samples, showed a significant correlation with nodal involvement in LCa patients (p < 0.01). CONCLUSION: This approach could allow us to set up a cost-effective and less invasive liquid biopsy protocol from a simple blood collection in order to early diagnose LCa and improve patients' outcomes and quality of life.


Subject(s)
Early Detection of Cancer , Exosomes , Laryngeal Neoplasms , Humans , Exosomes/metabolism , Early Detection of Cancer/methods , Male , Female , Middle Aged , Laryngeal Neoplasms/diagnosis , Laryngeal Neoplasms/blood , Laryngeal Neoplasms/pathology , Aged , Case-Control Studies , Flow Cytometry , Epitopes/immunology , Epitopes/blood , Biomarkers, Tumor/blood , Adult
3.
Article in English | MEDLINE | ID: mdl-38771342

ABSTRACT

OBJECTIVE: To explore the potential role of miR-449a as biomarker for laryngeal squamous cell carcinoma (LSCC), especially in the decision strategy of neck dissection (ND). METHODS: Each patient underwent total laryngectomy and bilateral ND (levels II-IV); during surgery, tissue samples of around 1 × 0.5 cm were extracted from both healthy tissue adjacent to the tumor and the visibly affected tumor tissue. The extraction of total RNA, encompassing miRNA, was performed using a mirVana PARIS kit. To detect miR449a, cDNA was synthesized from 200 ng of RNA using a TaqMan miRNA reverse transcription kit. RESULTS: The study group was formed of 66 patients (62 males, and 4 females) with LSCC, aged between 39 and 77 years (mean 60 + 14.56 yr). MiR-449a was up-regulated in twenty-eight tumors (42%), while it was down-regulated in 38 samples (58%). In the present study, there was a statistical relevance for miR-449a tissue expression for pN staging (p = 0.017), and PNI (p = 0.005). Eight tumors (12%) cN0 became pN + showing occult cervical lymph node metastases at the final histopathological examination, and all of these patients showed miR-449a downregulation. CONCLUSION: Super-selective ND (sparing the sub evels IIb and IV) might be the approach to cT3-T4 N0 LSCCs with upregulation of miR-449a; on the other hand, to ensure and effective control of occult neck metastases it would be appropriate to reserve elective ND (including sublevels IIb and IV) for cT3-T4 N0 LSCCs with miR-449a downregulation. Although promising, due to the small size of the cohort, the results of this work can be considered preliminary and need to be confirmed by prospective and larger studies.

4.
Int J Mol Sci ; 24(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37175469

ABSTRACT

MicroRNA (miRNA) are constituted of approximately 22 nucleotides and play an important role in the regulation of many physiological functions and diseases. In the last 10 years, an increasing interest has been recorded in studying the expression profile of miRNAs in cancer. Real time-quantitative polymerase chain reaction (RT-qPCR), microarrays, and small RNA sequencing represent the gold standard techniques used in the last 30 years as detection methods. The advent of nanotechnology has allowed the fabrication of nanostructured biosensors which are widely exploited in the diagnostic field. Nanostructured biosensors offer many advantages: (i) their small size allows the construction of portable, wearable, and low-cost products; (ii) the large surface-volume ratio enables the loading of a great number of biorecognition elements (e.g., probes, receptors); and (iii) direct contact of the recognition element with the analyte increases the sensitivity and specificity inducing low limits of detection (LOD). In this review, the role of nanostructured biosensors in miRNA detection is explored, focusing on electrochemical and optical sensing. In particular, four types of nanomaterials (metallic nanoparticles, graphene oxide, quantum dots, and nanostructured polymers) are reported for both detection strategies with the aim to show their distinct properties and applications.


Subject(s)
Biosensing Techniques , MicroRNAs , Nanostructures , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/analysis , Nanostructures/chemistry , Nanotechnology , Biosensing Techniques/methods , Neoplasms/diagnosis , Neoplasms/genetics , Electrochemical Techniques/methods
5.
Semin Cell Dev Biol ; 98: 139-153, 2020 02.
Article in English | MEDLINE | ID: mdl-31154010

ABSTRACT

Mitochondria are the key energy-producing organelles and cellular source of reactive species. They are responsible for managing cell life and death by a balanced homeostasis passing through a network of structures, regulated principally via fission and fusion. Herein we discuss about the most advanced findings considering mitochondria as dynamic biophysical systems playing compelling roles in the regulation of energy metabolism in both physiologic and pathologic processes controlling cell death and survival. Precisely, we focus on the mitochondrial commitment to the onset, maintenance and counteraction of apoptosis, autophagy and senescence in the bioenergetic reprogramming of cancer cells. In this context, looking for a pharmacological manipulation of cell death processes as a successful route for future targeted therapies, there is major biotechnological challenge in underlining the location, function and molecular mechanism of mitochondrial proteins. Based on the critical role of mitochondrial functions for cellular health, a better knowledge of the main molecular players in mitochondria disfunction could be decisive for the therapeutical control of degenerative diseases, including cancer.


Subject(s)
Apoptosis , Autophagy , Cellular Senescence , Mitochondria/metabolism , Animals , Humans
6.
Trends Immunol ; 39(7): 577-590, 2018 07.
Article in English | MEDLINE | ID: mdl-29793748

ABSTRACT

Natural killer (NK) cells are involved in innate defenses against viruses and tumors. Their function is finely tuned by activating and inhibitory receptors. Among the latter, killer immunoglobulin-like receptors and CD94/NKG2A recognize human leukocyte antigen (HLA) Class I molecules, allowing NK cells to discriminate between normal and aberrant cells, as well as to recognize allogeneic cells, because of their ability to sense HLA polymorphisms. This latter phenomenon plays a key role in HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) for high-risk acute leukemia patients transplanted from an NK-alloreactive donor. Different haplo-HSCT settings have been developed, either T depleted or T replete - the latter requiring graft-versus-host disease prophylaxis. A novel graft manipulation, based on depletion of αß T cells and B cells, allows infusion of fully mature, including alloreactive, NK cells. The excellent patient clinical outcome underscores the importance of these innate cells in cancer therapy.


Subject(s)
Graft vs Leukemia Effect/immunology , Killer Cells, Natural/immunology , Leukemia/immunology , HLA Antigens/immunology , Hematopoietic Stem Cell Transplantation/methods , Humans
7.
J Immunol ; 201(5): 1460-1467, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30068594

ABSTRACT

Four killer cell Ig-like receptor (KIR) genes, collectively referred to as framework genes, characterize almost all KIR haplotypes. In particular, KIR3DL3 and KIR3DL2 mark the ends of the locus, whereas KIR3DP1 and KIR2DL4 are located in the central part. A recombination hot spot, mapped between KIR3DP1 and KIR2DL4, splits the haplotypes into two regions: a centromeric (Cen) region (spanning from KIR3DL3 to KIR3DP1) and a telomeric region (from KIR2DL4 to KIR3DL2), both varying in KIR gene content. In this study, we analyzed KIR3DP1 polymorphism in a cohort of 316 healthy, unrelated individuals. To this aim, we divided KIR3DP1 alleles into two groups by the use of a sequence-specific primer- PCR approach. Our data clearly indicated that KIR3DP1 alleles present on haplotypes carrying Cen-A or Cen-B1 regions differ from those having Cen-B2 motifs. Few donors (∼3%) made exceptions, and they were all, except one, characterized by uncommon haplotypes, including either KIR deletions or KIR duplications. Consequently, as KIR2DL1 is present in Cen-A and Cen-B1 regions but absent in Cen-B2 regions, we demonstrated that KIR3DP1 polymorphism might represent a suitable marker for KIR2DL1 gene copy number analysis. Moreover, because Cen-B1 and Cen-B2 regions are characterized by different KIR3DP1 alleles, we showed that KIR3DP1 polymorphism analysis also provides information to dissect between Cen-B1/Cen-B1 and Cen-B1/Cen-B2 donors. Taken together, our data suggest that the analysis of KIR3DP1 polymorphism should be included in KIR repertoire evaluation.


Subject(s)
Alleles , Centromere/genetics , Haplotypes , Polymorphism, Genetic , Receptors, KIR2DL4/genetics , Receptors, KIR3DS1/genetics , Centromere/immunology , Female , Gene Deletion , Gene Duplication , Humans , Male , Receptors, KIR2DL4/immunology , Receptors, KIR3DS1/immunology
8.
Blood ; 130(5): 677-685, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28588018

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) from an HLA-haploidentical relative (haplo-HSCT) is a suitable option for children with acute leukemia (AL) either relapsed or at high-risk of treatment failure. We developed a novel method of graft manipulation based on negative depletion of αß T and B cells and conducted a prospective trial evaluating the outcome of children with AL transplanted with this approach. Eighty AL children, transplanted between September 2011 and September 2014, were enrolled in the trial. All children were given a fully myeloablative preparative regimen. Anti-T-lymphocyte globulin from day -5 to -3 was used for preventing graft rejection and graft-versus-host disease (GVHD); no patient received any posttransplantation GVHD prophylaxis. Two children experienced primary graft failure. The cumulative incidence of skin-only, grade 1-2 acute GVHD was 30%; no patient developed extensive chronic GVHD. Four patients died, the cumulative incidence of nonrelapse mortality being 5%, whereas 19 relapsed, resulting in a 24% cumulative incidence of relapse. With a median follow-up of 46 months for surviving patients, the 5-year probability of chronic GVHD-free, relapse-free survival (GRFS) is 71%. Total body irradiation-containing preparative regimen was the only variable favorably influencing relapse incidence and GRFS. The outcomes of these 80 patients are comparable to those of 41 and 51 children given transplantation from an HLA-identical sibling or a 10/10 allelic-matched unrelated donor in the same period. These data indicate that haplo-HSCT after αß T- and B-cell depletion represents a competitive alternative for children with AL in need of urgent allograft. This trial was registered at www.clinicaltrials.gov as #NCT01810120.


Subject(s)
B-Lymphocytes , Hematopoietic Stem Cell Transplantation , Leukemia , Lymphocyte Depletion , Receptors, Antigen, T-Cell, alpha-beta , T-Lymphocytes , Acute Disease , Adolescent , Adult , Allografts , Antilymphocyte Serum/administration & dosage , Child , Child, Preschool , Disease-Free Survival , Female , Follow-Up Studies , Graft vs Host Disease/mortality , Graft vs Host Disease/prevention & control , Humans , Infant , Leukemia/mortality , Leukemia/therapy , Male , Survival Rate
9.
J Biol Chem ; 292(51): 21149-21158, 2017 12 22.
Article in English | MEDLINE | ID: mdl-28972140

ABSTRACT

αß T cell receptors (TCRs) interact with peptides bound to the polymorphic major histocompatibility complex class Ia (MHC-Ia) and class II (MHC-II) molecules as well as the essentially monomorphic MHC class Ib (MHC-Ib) molecules. Although there is a large amount of information on how TCRs engage with MHC-Ia and MHC-II, our understanding of TCR/MHC-Ib interactions is very limited. Infection with cytomegalovirus (CMV) can elicit a CD8+ T cell response restricted by the human MHC-Ib molecule human leukocyte antigen (HLA)-E and specific for an epitope from UL40 (VMAPRTLIL), which is characterized by biased TRBV14 gene usage. Here we describe an HLA-E-restricted CD8+ T cell able to recognize an allotypic variant of the UL40 peptide with a modification at position 8 (P8) of the peptide (VMAPRTLVL) that uses the TRBV9 gene segment. We report the structures of a TRBV9+ TCR in complex with the HLA-E molecule presenting the two peptides. Our data revealed that the TRBV9+ TCR adopts a different docking mode and molecular footprint atop HLA-E when compared with the TRBV14+ TCR-HLA-E ternary complex. Additionally, despite their differing V gene segment usage and different docking mechanisms, mutational analyses showed that the TCRs shared a conserved energetic footprint on the HLA-E molecule, focused around the peptide-binding groove. Hence, we provide new insights into how monomorphic MHC molecules interact with T cells.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Energy Metabolism , Histocompatibility Antigens Class I/metabolism , Models, Molecular , Receptors, Antigen, T-Cell, alpha-beta/agonists , Amino Acid Sequence , Binding Sites , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Clone Cells , Conserved Sequence , Crystallography, X-Ray , Epitope Mapping , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Humans , Molecular Docking Simulation , Mutagenesis, Site-Directed , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , HLA-E Antigens
10.
Eur J Immunol ; 47(6): 1051-1061, 2017 06.
Article in English | MEDLINE | ID: mdl-28386908

ABSTRACT

X-linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)-associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV-infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig-like receptor (KIR)/KIR-L genotype and phenotypic repertoire of self-HLA class I specific inhibitory NK receptors (self-iNKRs). We also analyzed NK-cell cytotoxicity against CD48+ or CD48- KIR-ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self-iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48+ EBV-transformed B cells and M1 macrophages. Importantly, self-iNKR defective NK cells kill CD48- targets, such as mature DCs. Self-iNKR- NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK-cell maturation. Killing of autologous mature DC by self-iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients' immune defect.


Subject(s)
Killer Cells, Natural/immunology , Lymphoproliferative Disorders/immunology , Lymphoproliferative Disorders/physiopathology , Receptors, Natural Killer Cell/immunology , Signaling Lymphocytic Activation Molecule Family/metabolism , CD48 Antigen/immunology , CD48 Antigen/metabolism , Genes, MHC Class I , Humans , Killer Cells, Natural/metabolism , Lymphocyte Activation , Potassium Channels, Inwardly Rectifying/immunology , Receptors, Immunologic/metabolism , Signal Transduction , Signaling Lymphocytic Activation Molecule Associated Protein/metabolism , Signaling Lymphocytic Activation Molecule Family/immunology
11.
Eur J Immunol ; 46(6): 1511-7, 2016 06.
Article in English | MEDLINE | ID: mdl-26990677

ABSTRACT

KIR3DL1 is a natural killer (NK) cell receptor that recognizes the Bw4 epitope of human leukocyte antigen (HLA) class I molecules. Following hematopoietic stem cell transplantation for patients lacking Bw4, KIR3DL1-expressing NK cells from Bw4-positive donors can be alloreactive and eliminate tumor cells. However, KIR3DL1 alleles having T instead of C at nucleotide 320 (encoding leucine 86 instead of serine 86) are not expressed on the cell surface. Thus, not all individuals testing positive for KIR3DL1 are optimal donors for Bw4-negative recipients. Therefore, we developed a method for genotyping codon 86, which was validated by its perfect correlation with NK cell phenotype for 100 donors of diverse KIR3DL1/S1 genotype. We typed 600 donors and found that ∼12.2% had the KIR3DL1 gene, but did not express cell-surface KIR3DL1. By contrast, high-expressing allotypes were identified when haplotypes from four families with duplicated KIR3DL1/S1 genes were characterized at high resolution. Identifying donors who have KIR3DL1 but lack cell-surface KIR3DL1 would refine donor selection. With this technique, the number of individuals identified who may not be optimal donors for Bw4-negative patients increases by threefold, when compared with standard methods. Taken together, we propose that allele typing of killer cell Ig-like receptor (KIR) polymorphisms should become a standard practice when selecting donors.


Subject(s)
Codon , Donor Selection , HLA-B Antigens/immunology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Receptors, KIR3DL1/genetics , Receptors, KIR3DS1/genetics , Alleles , Cell Membrane/metabolism , Gene Expression , Genotype , Haplotypes , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Models, Biological , Polymorphism, Single Nucleotide , Receptors, KIR3DL1/metabolism , Receptors, KIR3DS1/metabolism , Transplantation, Homologous
12.
Cancer Immunol Immunother ; 65(4): 465-76, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26289090

ABSTRACT

It is well established that natural killer (NK) cells play an important role in the immunity against cancer, while the involvement of other recently identified, NK-related innate lymphoid cells is still poorly defined. In the haploidentical hematopoietic stem cell transplantation for the therapy of high-risk leukemias, NK cells have been shown to exert a key role in killing leukemic blasts residual after conditioning. While the clinical results in the cure of leukemias are excellent, the exploitation of NK cells in the therapy of solid tumors is still limited and unsatisfactory. In solid tumors, NK cell function may be inhibited via different mechanisms, occurring primarily at the tumor site. The cellular interactions in the tumor microenvironment involve tumor cells, stromal cells and resident or recruited leukocytes and may favor tumor evasion from the host's defenses. In this context, a number of cytokines, growth factors and enzymes synthesized by tumor cells, stromal cells, suppressive/regulatory myeloid and lymphoid cells may substantially impair the function of different tumor-reactive effector cells, including NK cells. The identification and characterization of such mechanisms may offer clues for the development of new immunotherapeutic strategies to restore effective anti-tumor responses. In order to harness NK cell-based immunotherapies, several approaches have been proposed, including reinforcement of NK cell cytotoxicity by means of specific cytokines, antibodies or drugs. These new tools may improve NK cell function and/or increase tumor susceptibility to NK-mediated killing. Hence, the integration of NK-based immunotherapies with conventional anti-tumor therapies may increase chances of successful cancer treatment.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Immunotherapy, Adoptive/methods , Killer Cells, Natural/transplantation , Leukemia/therapy , Neoplasms/therapy , Cell Communication/immunology , Cytotoxicity, Immunologic/immunology , Humans , Killer Cells, Natural/immunology , Leukemia/immunology , Models, Immunological , Neoplasms/immunology , Tumor Microenvironment/immunology
13.
Blood ; 124(5): 822-6, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-24869942

ABSTRACT

Twenty-three children with nonmalignant disorders received HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) after ex vivo elimination of αß(+) T cells and CD19(+) B cells. The median number of CD34(+), αß(+)CD3(+), and B cells infused was 16.8 × 10(6), 40 × 10(3), and 40 × 10(3) cells/kg, respectively. No patient received any posttransplantation pharmacologic prophylaxis for graft-versus-host disease (GVHD). All but 4 patients engrafted, these latter being rescued by a second allograft. Three patients experienced skin-only grade 1 to 2 acute GVHD. No patient developed visceral acute or chronic GVHD. Cumulative incidence of transplantation-related mortality was 9.3%. With a median follow-up of 18 months, 21 of 23 children are alive and disease-free, the 2-year probability of disease-free survival being 91.1%. Recovery of γδ(+) T cells was prompt, but αß(+) T cells progressively ensued over time. Our data suggest that this novel graft manipulation strategy is safe and effective for haplo-HSCT. This trial was registered at www.clinicaltrials.gov as #NCT01810120.


Subject(s)
B-Lymphocytes , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation , Lymphocyte Depletion , Receptors, Antigen, T-Cell, alpha-beta , T-Lymphocytes , Allografts , Antigens, CD/metabolism , Child , Child, Preschool , Female , Follow-Up Studies , Graft vs Host Disease/metabolism , Graft vs Host Disease/mortality , Humans , Infant , Male , Retrospective Studies
14.
Haematologica ; 101(3): 371-81, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26659918

ABSTRACT

We analyzed the impact of human cytomegalovirus infection on the development of natural killer cells in 27 pediatric patients affected by hematological malignancies, who had received a HLA-haploidentical hematopoietic stem cell transplantation, depleted of both α/ß+ T cells and B cells. In line with previous studies in adult recipients of umbilical cord blood transplantation, we found that human cytomegalovirus reactivation accelerated the emergence of mature natural killer cells. Thus, most children displayed a progressive expansion of a memory-like natural killer cell subset expressing NKG2C, a putative receptor for human cytomegalovirus, and CD57, a marker of terminal natural killer cell differentiation. NKG2C(+)CD57(+) natural killer cells were detectable by month 3 following hematopoietic stem cell transplantation and expanded until at least month 12. These cells were characterized by high killer Ig-like receptors (KIRs) and leukocyte inhibitory receptor 1 (LIR-1) and low Siglec-7, NKG2A and Interleukin-18Rα expression, killed tumor targets and responded to cells expressing HLA-E (a NKG2C ligand). In addition, they were poor Interferon-γ producers in response to Interleukin-12 and Interleukin-18. The impaired response to these cytokines, together with their highly differentiated profile, may reflect their skewing toward an adaptive condition specialized in controlling human cytomegalovirus. In conclusion, in pediatric patients receiving a type of allograft different from umbilical cord blood transplantation, human cytomegalovirus also induced memory-like natural killer cells, possibly contributing to controlling infections and reinforcing anti-leukemia effects.


Subject(s)
Cytomegalovirus Infections/therapy , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation , Immunologic Memory , Killer Cells, Natural/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/pathology , CD57 Antigens/genetics , CD57 Antigens/immunology , Child , Cytomegalovirus/immunology , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/immunology , Female , Gene Expression Regulation , Hematologic Neoplasms/complications , Hematologic Neoplasms/genetics , Hematologic Neoplasms/immunology , Histocompatibility Testing , Humans , Interleukin-12/pharmacology , Interleukin-18/pharmacology , Killer Cells, Natural/drug effects , Killer Cells, Natural/pathology , Lymphocyte Depletion , Male , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/immunology , Primary Cell Culture , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, KIR/genetics , Receptors, KIR/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Transplantation, Homologous
15.
J Immunol ; 192(4): 1471-9, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24442432

ABSTRACT

NK cells are the first lymphoid population recovering after allogeneic hematopoietic stem cell transplantation and play a crucial role in early immunity after the graft. Recently, it has been shown that human CMV (HCMV) infection/reactivation can deeply influence NK cell reconstitution after umbilical cord blood transplantation by accelerating the differentiation of mature NKG2A(-) killer Ig-like receptor (KIR)(+) NK cells characterized by the expression of the NKG2C-activating receptor. In view of the hypothesis that NKG2C could be directly involved in NK cell maturation driven by HCMV infection, we analyzed the maturation and function of NK cells developing in three patients with hematological malignancies given umbilical cord blood transplantation from donors carrying a homozygous deletion of the NKG2C gene. We show that HCMV infection can drive rapid NK maturation, characterized by the expansion of CD56(dim)NKG2A(-)KIR(+) cells, even in the absence of NKG2C expression. Interestingly, this expanded mature NK cell subset expressed surface-activating KIR that could trigger NK cell cytotoxicity, degranulation, and IFN-γ release. Given the absence of NKG2C, it is conceivable that activating KIRs may play a role in the HCMV-driven NK cell maturation and that NK cells expressing activating KIRs might contribute, at least in part, to the control of infections after transplantation.


Subject(s)
Cytomegalovirus/immunology , Fetal Blood/transplantation , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Adult , CD56 Antigen/metabolism , Cell Differentiation , Child , Cytomegalovirus Infections/immunology , Hematopoietic Stem Cell Transplantation , Humans , Interferon-gamma/metabolism , NK Cell Lectin-Like Receptor Subfamily C/genetics , Receptors, KIR/metabolism , Receptors, KIR2DL2/metabolism , Receptors, KIR2DL3/metabolism , Receptors, KIR3DL1/metabolism , Receptors, KIR3DS1/metabolism
16.
Radiol Oncol ; 50(1): 14-20, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-27069445

ABSTRACT

BACKGROUND: Pancreatic adenocarcinoma is currently one of the deadliest cancers with high mortality rate. This disease leads to an aggressive local invasion and early metastases, and is poorly responsive to treatment with chemotherapy or chemo-radiotherapy. Radical resection is still the only curative treatment for pancreatic cancer, but it is generally accepted that a multimodality strategy is necessary for its management. Therefore, new alternative therapies have been considered for local treatment. CONCLUSIONS: Chemotherapeutic resistance in pancreatic cancer is associated to a low penetration of drugs into tumour cells due to the presence of fibrotic stroma surrounding cells. In order to increase the uptake of chemotherapeutic drugs into tumour cells, electrochemotherapy can be used for treatment of pancreatic adenocarcinoma leading to an increased tumour response rate. This review will summarize the published papers reported in literature on the efficacy and safety of electrochemotherapy in pre-clinical and clinical studies on pancreatic cancer.

17.
Eur J Immunol ; 44(5): 1526-34, 2014 May.
Article in English | MEDLINE | ID: mdl-24496997

ABSTRACT

X-linked lymphoproliferative disease 1 (XLP1) is a rare congenital immunodeficiency caused by SH2D1A (Xq25) mutations resulting in lack or dysfunction of SLAM-associated protein adaptor molecule. In XLP1 patients, upon ligand (CD48) engagement, 2B4 delivers inhibitory signals that impair the cytolytic activity of NK (and T) cells. This causes the selective inability to control EBV infections and the occurrence of B-cell lymphomas. Here, we show that in the absence of SLAM-associated protein, co-engagement of 2B4 with different activating receptors, either by antibodies or specific ligands on target cells, inhibits different ITAM-dependent signaling pathways including activating killer Ig-like receptors. In XLP1 NK cells, 2B4 affected both the cytolytic and IFN-γ production capabilities, functions that were restored upon disruption of the 2B4/CD48 interactions. Notably, we provide evidence that 2B4 dysfunction does not affect the activity of DNAM-1 and NKG2D triggering receptors. Thus, while CD48(+) B-EBV and lymphoma B cells devoid of NKG2D and DNAM-1 ligands were resistant to lysis, the preferential usage of these receptors allowed XLP1 NK cells to kill lymphomas that expressed sufficient amounts of the specific ligands. The study sheds new light on the XLP1 immunological defect and on the cross-talk of inhibitory 2B4 with triggering NK (and T) receptors.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Killer Cells, Natural/immunology , Lymphoproliferative Disorders/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology , Receptors, Immunologic/immunology , Signal Transduction/immunology , Antigens, CD/genetics , Antigens, Differentiation, T-Lymphocyte/genetics , CD48 Antigen , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/pathology , Female , Herpesvirus 4, Human/immunology , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Killer Cells, Natural/pathology , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/pathology , Male , NK Cell Lectin-Like Receptor Subfamily K/genetics , Receptors, Immunologic/genetics , Signal Transduction/genetics , Signaling Lymphocytic Activation Molecule Family
18.
J Allergy Clin Immunol ; 134(6): 1381-1387.e7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24985396

ABSTRACT

BACKGROUND: Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening, heterogeneous, hyperinflammmatory disorder. Prompt identification of inherited forms resulting from mutation in genes involved in cellular cytotoxicity can be crucial. X-linked lymphoproliferative disease 1 (XLP1), due to mutations in SH2D1A (Xq25) encoding signaling lymphocyte activation molecule-associated protein (SAP), may present with HLH. Defective SAP induces paradoxical inhibitory function of the 2B4 coreceptor and impaired natural killer (NK) (and T) cell response against EBV-infected cells. OBJECTIVE: To characterize a cohort of patients with HLH and XLP1 for SAP expression and 2B4 function in lymphocytes, proposing a rapid diagnostic screening to direct mutation analysis. METHODS: We set up rapid assays for 2B4 function (degranulation or (51)Cr-release) to be combined with intracellular SAP expression in peripheral blood NK cells. We studied 12 patients with confirmed mutation in SH2D1A and some family members. RESULTS: The combined phenotypic/functional assays allowed efficient and complete diagnostic evaluation of all patients with XLP1, thus directing mutation analysis and treatment. Nine cases were SAP(-), 2 expressed SAP with mean relative fluorescence intensity values below the range of healthy controls (SAP(dull)), and 1, carrying the R55L mutation, was SAP(+). NK cells from all patients showed inhibitory 2B4 function and defective killing of B-EBV cells. Carriers with SH2D1A mutations abolishing SAP expression and low percentage of SAP(+) cells showed neutral 2B4 function at the polyclonal NK cell level. Three novel SH2D1A mutations have been identified. CONCLUSIONS: Study of SAP expression is specific but may have insufficient sensitivity for screening XLP1 as a single tool. Combination with 2B4 functional assay allows identification of all cases.


Subject(s)
Antigens, CD/immunology , Intracellular Signaling Peptides and Proteins/immunology , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphoproliferative Disorders/diagnosis , Receptors, Immunologic/immunology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Intracellular Signaling Peptides and Proteins/genetics , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/immunology , Male , Mutation , Signaling Lymphocytic Activation Molecule Associated Protein , Signaling Lymphocytic Activation Molecule Family , Young Adult
19.
Blood ; 119(2): 399-410, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22096237

ABSTRACT

Natural killer (NK) cells play a crucial role in early immunity after hematopoietic stem cell transplantation because they are the first lymphocyte subset recovering after the allograft. In this study, we analyzed the development of NK cells after intrabone umbilical cord blood (CB) transplantation in 18 adult patients with hematologic malignancies. Our data indicate that, also in this transplantation setting, NK cells are the first lymphoid population detectable in peripheral blood. However, different patterns of NK-cell development could be identified. Indeed, in a group of patients, a relevant fraction of NK cells expressed a mature phenotype characterized by the KIR(+)NKG2A(-) signature 3-6 months after transplantation. In other patients, most NK cells maintained an immature phenotype even after 12 months. A possible role for cytomegalovirus in the promotion of NK-cell development was suggested by the observation that a more rapid NK-cell maturation together with expansion of NKG2C(+) NK cells was confined to patients experiencing cytomegalovirus reactivation. In a fraction of these patients, an aberrant and hyporesponsive CD56(-)CD16(+)p75/AIRM1(-) NK-cell subset (mostly KIR(+)NKG2A(-)) reminiscent of that described in patients with viremic HIV was detected. Our data support the concept that cytomegalovirus infection may drive NK-cell development after umbilical CB transplantation.


Subject(s)
Cord Blood Stem Cell Transplantation , Cytomegalovirus Infections/immunology , Fetal Blood/cytology , Graft vs Leukemia Effect/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Leukemia, Myeloid, Acute/therapy , Adult , Antigens, CD/immunology , Antigens, CD/metabolism , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/microbiology , Cytomegalovirus Infections/pathology , Female , Fetal Blood/metabolism , Humans , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/microbiology , Male , Middle Aged , Phenotype , Young Adult
20.
Mol Ther Nucleic Acids ; 35(1): 102140, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38425711

ABSTRACT

MicroRNAs (miRNAs) are involved in post-transcriptional gene expression regulation and in mechanisms of cancer growth and metastases. In this light, miRNAs could be promising therapeutic targets and biomarkers in clinical practice. Therefore, we investigated if specific miRNAs and their target genes contribute to laryngeal squamous cell carcinoma (LSCC) development. We found a significant decrease of miR-449a in LSCC patients with nodal metastases (63.3%) compared with patients without nodal involvement (44%). The AmpliSeq Transcriptome of HNO-210 miR-449a-transfected cell lines allowed the identification of IL6-R as a potential target. Moreover, the downregulation of IL6-R and the phosphorylation reduction of the downstream signaling effectors, suggested the inhibition of the IL-6 trans-signaling pathway. These biochemical effects were paralleled by a significant inhibition of invasion and migration in vitro and in vivo, supporting an involvement of epithelial-mesenchymal transition. These findings indicate that miR-449a contributes to suppress the metastasization of LSCC by the IL-6 trans-signaling block and affects sensitivity to external stimuli that mimic pro-inflammatory conditions.

SELECTION OF CITATIONS
SEARCH DETAIL