Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
EMBO Rep ; 22(8): e50922, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34060205

ABSTRACT

Several studies have examined the functions of nucleic acids in small extracellular vesicles (sEVs). However, much less is known about the protein cargos of sEVs and their functions in recipient cells. This study demonstrates the presence of lysine-specific demethylase 1 (LSD1), which is the first identified histone demethylase, in the culture medium of gastric cancer cells. We show that sEVs derived from gastric cancer cells and the plasma of patients with gastric cancer harbor LSD1. The shuttling of LSD1-containing sEVs from donor cells to recipient gastric cancer cells promotes cancer cell stemness by positively regulating the expression of Nanog, OCT4, SOX2, and CD44. Additionally, sEV-delivered LSD1 suppresses oxaliplatin response of recipient cells in vitro and in vivo, whereas LSD1-depleted sEVs do not. Taken together, we demonstrate that LSD1-loaded sEVs can promote stemness and chemoresistance to oxaliplatin. These findings suggest that the LSD1 content of sEV could serve as a biomarker to predict oxaliplatin response in gastric cancer patients.


Subject(s)
Extracellular Vesicles , Stomach Neoplasms , Histone Demethylases/genetics , Humans , Lysine , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics
2.
Zhongguo Zhong Yao Za Zhi ; 48(1): 140-147, 2023 Jan.
Article in Zh | MEDLINE | ID: mdl-36725266

ABSTRACT

This study used the zebrafish model to explore the hepatotoxicity of Rhododendri Mollis Flos(RMF). The mortality was calculated according to the number of the survival of zebrafish larvae 4 days after fertilization under different concentration of RMF, and the dose-toxicity curve was fitted to preliminarily evaluate the toxicity of RMF. The liver phenotypes under the sublethal concentration of RMF in the treatment group and the blank control group were observed by hematoxylin-eosin(HE) staining and acridine orange(AO) staining. Meanwhile, the activities of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were determined to confirm the hepatotoxicity of RMF. Real-time quantitative polymerase chain reaction(real-time PCR) and Western blot were used to determine the expressions of genes and proteins in zebrafish larvae. Gas chromatography time-of-flight mass spectrometry(GC-TOF-MS) was used to conduct untargeted metabolomics testing to explore the mechanism. The results showed that the toxicity of RMF to zebrafish larvae was dose-dependent, with 1 100 µg·mL~(-1) of the absolute lethal concentration and 448 µg·mL~(-1) of sublethal concentration. The hepatocyte apoptosis and degeneration appeared in the zebrafish larvae under the sublethal concentration of RMF. The content of ALT and AST in zebrafish larvae at the end of the experiment was significantly increased in a dose-dependent manner. Under the sublethal concentration, the expressions of genes and proteins related to apoptosis in zebrafish larvae were significantly increased as compared with the blank control group. The results of untargeted metabolomics showed that the important metabolites related to the he-patotoxicity of RMF were mainly enriched in alanine, aspartic acid, glutamic acid, and other pathways. In conclusion, it is inferred that RMF has certain hepatotoxicity to zebrafish larvae, and its mechanism may be related to apoptosis.


Subject(s)
Chemical and Drug Induced Liver Injury , Zebrafish , Animals , Zebrafish/genetics , Apoptosis , Larva
3.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2712-2720, 2022 May.
Article in Zh | MEDLINE | ID: mdl-35718491

ABSTRACT

This study aims to evaluate the anti-tumor and analgesic activities of Compound Kushen Injection(CKI) based on zebrafish model in vivo and investigate the anti-tumor mechanism. To be specific, zebrafish tumor xenotransplantation model was established by microinjection of murine LPC H12 cells into yolk sac. Then the high-dose CKI(H-CKI), medium-dose CKI(M-CKI), low-dose CKI(L-CKI) groups, and the model group were set. The anti-tumor activity of CKI was evaluated with the tumor area growth fold and integral absorbance(IA) growth fold 72 h after administration. The peripheral pain and central pain in zebrafish were respectively induced with acetic acid(AA) and phorbol myristate acetate(PMA). Zebralab ViewPoint system was employed to monitor behavioral trajectory of zebrafish, and movement times, movement time, movement distance, and movement velocity were used to evaluate the analgesic activity of CKI. Finally, real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) was performed to detect the expression levels of apoptosis-related B lymphocyte tumor-2(Bcl-2) and phosphatidylinositol-3-kinase(PI3 K)/protein kinase B(Akt or PKB) pathway-related genes, for the verification of the anti-tumor mechanism. Compared with the model group, M-CKI and H-CKI significantly reduced the growth folds of tumor area and IA, relief the peripheral pain and central pain. The mechanism was that CKI can up-regulate the expression of cysteine aspartic acid specific protease-3(caspase-3, Casp3) and caspase-9(Casp9), down-regulate the expression of phosphoinositide 3-kinase(PI3 K) and Akt, and significantly reduce the expression of Bcl-2, hypoxia-inducible factor-1α(HIF-1α), and vascular endothelial growth factor(VEGF). In conclusion, CKI has significant inhibitory effect on tumor growth and pain, which is related to the PI3 K/Akt signaling pathway. The pathway mediates cell apoptosis, suppresses tumor growth, and alleviates tumor pain.


Subject(s)
Antineoplastic Agents , Neoplasms , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Drugs, Chinese Herbal , Hypoxia-Inducible Factor 1, alpha Subunit , Mice , Neoplasms/drug therapy , Pain/drug therapy , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-bcl-2 , Vascular Endothelial Growth Factor A , Zebrafish
4.
Pharmacol Res ; 159: 104991, 2020 09.
Article in English | MEDLINE | ID: mdl-32504836

ABSTRACT

LSD1 (histone lysine specific demethylase 1) takes part in the physiological process of cell differentiation, EMT (epithelial-mesenchymal transition) and immune response. In this study, we found LSD1 expression in metastatic gastric cancer tissues was significantly higher than that in normal tissues. Furthermore, LSD1 deletion was found to suppress gastric cancer migration by decreasing intracellular miR-142-5p, which further led to the upregulation of migration suppressor CD9, a newly identified target of miR-142-5p. While LSD1 was reported as a demethylase of H3K4me1/2, H3K9me1/2 and several non-histone proteins, this is a new evidence for LSD1 as a functional regulator of miRNA. On the other hand, our data suggested that promoting the secretion of miR-142-5p using small extracellular vesicles as vehicles is a new mechanism for LSD1 abrogation to down-regulate intracellular miR-142-5p. Taken together, this study uncovered a new mechanism for LSD1 that can contribute to gastric cancer migration by facilitating miR-142-5p to target CD9.


Subject(s)
Cell Movement , Gene Deletion , Histone Demethylases/metabolism , MicroRNAs/metabolism , Stomach Neoplasms/enzymology , Tetraspanin 29/metabolism , Animals , Cell Line, Tumor , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Histone Demethylases/genetics , Humans , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , MicroRNAs/genetics , Neoplasm Invasiveness , Neoplasm Metastasis , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tetraspanin 29/genetics
5.
Eur J Mass Spectrom (Chichester) ; 30(3-4): 199-206, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38656147

ABSTRACT

Gastric cancer (GC) is one of the most malignant tumors with high morbidity and mortality in the world. Compound a2, a Jiyuan oridonin derivative, exhibited excellent anti-proliferative activity against GC cells. To investigate the gastric cellular response to a2 therapy as a novel drug candidate, we adopted a pseudotargeted metabolomics method to explore metabolic variation in a2-induced MGC-803 gastric cells using liquid chromatography tandem mass spectrometry combined with multivariate statistical analysis. The results showed that a2 treatment induced significant metabolic changes in the levels of aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism, pyrimidine metabolism, and tricarboxylic acid cycle, approximately 80% of the metabolites were down-regulated in the low-dose and high-dose groups including aspartate, tryptophan, sedoheptulose 7-phosphate, succinate, 2'-deoxyadenosine, uridine, cytidine, etc. which can provide evidence for a new therapy of GC.


Subject(s)
Metabolomics , Stomach Neoplasms , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Humans , Metabolomics/methods , Cell Line, Tumor , Tandem Mass Spectrometry/methods , Metabolome/drug effects
6.
RSC Adv ; 11(47): 29702-29710, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-35479555

ABSTRACT

A mild, efficient and eco-friendly method for the oxidation of 1-Bn-DHIQs to 1-Bz-DHIQs without concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs is very important for the syntheses of 1-Bz-DHIQ alkaloids and analogues. In this article, we developed a novel Cu(ii)-catalyzed and acid-promoted highly regioselective oxidation of tautomerizable C(sp3)-H bonds adjacent to the C-1 positions of various 1-Bn-DHIQs. It was observed that when 0.2 equiv. of Cu(OAc)2·2H2O was used as the catalyst, 3.0 equiv. of AcOH was used as the additive and air (O2) was used as a clean oxidant, various 1-Bn-DHIQs could be efficiently oxidized to corresponding 1-Bz-DHIQs at 25 °C in DMSO. Especially, almost no concomitant excessive oxidation of 1-Bz-DHIQs to 1-Bz-IQs was observed during the above reaction. In addition, this method was successfully applied in the first total synthesis of the alkaloid canelillinoxine.

7.
Food Funct ; 12(20): 10281-10290, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34549762

ABSTRACT

Alcoholic liver disease (ALD) is a major health issue globally due to the consumption of alcoholic beverages. Thymus quinquecostatus Celak is a food additive and an edible herb that is widely used in Asia and possesses hepatoprotective activity, but the underlying mechanisms behind this protective activity are not completely understood. The purpose of this study was to investigate the hepatoprotective effects of Thymus quinquecostatus Celak extract (TQE) against ALD as well as the underlying mechanism based on gut microbiota and the gut-liver axis. TQE supplementation markedly alleviated chronic alcohol-induced liver injury in C57 mice. TQE also ameliorated gut barrier dysfunction induced by alcohol. Consequently, the activation of the lipopolysaccharide (LPS) translocation-mediated TLR4 pathway and the subsequent inflammatory response and ROS overproduction in the liver were suppressed. Meanwhile, alcohol-induced gut microbiota dysbiosis was also corrected by TQE. To further investigate the contribution of gut dysbiosis correction to the beneficial effects of TQE on ALD, a fecal microbiota transplantation study was conducted. TQE-manipulated gut microbiota transplantation markedly counteracted the alcohol-induced gut dysbiosis in the recipient mice. In parallel with gut dysbiosis correction, liver damage was partly ameliorated in the recipient mice. Gut barrier dysfunction, endotoxemia, TLR4 pathway induction as well as downstream inflammatory response and ROS overproduction were also partly suppressed due to gut dysbiosis correction in alcohol-fed recipient mice. In summary, these results suggest that gut dysbiosis correction contributes to the hepatoprotective effects of TQE against alcohol through the gut-liver axis.


Subject(s)
Dysbiosis/drug therapy , Liver Diseases, Alcoholic/prevention & control , Plant Extracts/pharmacology , Protective Agents/pharmacology , Thymus Plant/chemistry , Animals , Dysbiosis/metabolism , Ethanol/adverse effects , Fecal Microbiota Transplantation/methods , Gastrointestinal Microbiome/drug effects , Lipopolysaccharides/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Toll-Like Receptor 4/metabolism
8.
J Ethnopharmacol ; 280: 114439, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34293455

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Curcumae Rhizoma-Sparganii Rhizoma (CR-SR), an ancient and classical herbal couple, has been extensively used for tumor treatment in clinic of traditional Chinese medicines (TCMs). AIM OF THE STUDY: The study aimed to uncover the anti-tumor active materials of CR-SR water decoction (CR:SR = 1:1) via an integrated approach of spectrum-effect relationship, molecular docking, and ADME evaluation. MATERIALS AND METHODS: The anti-tumor activities toward A549, HepG2, Hela, BGC-823, and MCF-7 cells of the different polar elution fractions (DPEFs) of CR, SR, and CR-SR were determined by Cell Counting Kit-8 (CCK-8) assay. Likewise, the DPEFs' combinations of CR and SR were also tested. The chemical fingerprints of these fractions were profiled by HPLC. Meanwhile, HPLC-ESI-Q-TOF-MS/MS was applied for the identification of chemical components. The main effect-related compounds were screened out by spectrum-effect relationship and molecular docking method. The oral bioavailability and druggability of these active components were subsequently evaluated. Finally, five monomeric compounds were validated experimentally using HepG2 cells. RESULTS: The 80% ethanol elution fraction of CR, SR, and CR-SR showed strong anti-tumor effects toward five cells. Also, the combinations with the 80% ethanol elution fraction of CR and SR showed stronger tumor inhibition effects among the DPEFs' combinations of CR and SR. By spectrum-effect relationship, HPLC-MS, and molecular docking analysis, 24 main effect-related compounds seemed to have potential anti-tumor effects. ADME evaluation showed rutin performed low oral bioavailability and druggability. Therefore, we suppose that 23 compounds (including 4 unknown compounds) are the primary anti-tumor active components of CR-SR water decoction. Among them, zederone, curcumol, chlorogenic acid, calycosin, and curcumenol were validated successfully with good tumor inhibition effects. CONCLUSIONS: In summary, this study demonstrated that the multi-components of CR-SR contribute to its anti-tumor effects. It established a rapid and useful strategy to explore the active material basis of traditional Chinese herbal couples with a multi-technology integrated approach in practice, including chromatography, mass spectrometry, machine algorithm models, online databases, and in vitro cell experiments.


Subject(s)
Antineoplastic Agents/pharmacology , Curcuma/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Drugs, Chinese Herbal/therapeutic use , Plant Roots/chemistry , Typhaceae/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Molecular Docking Simulation , Phytotherapy , Reproducibility of Results
9.
Chin J Integr Med ; 26(12): 921-928, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31630361

ABSTRACT

OBJECTIVE: To analyze the effective components of Chinese medicine (CM) contained in Chaihu Shugan Powder (, CSP) in the treatment of depressive disorders and to predict its anti-depressant mechanism by network pharmacology. METHODS: Absorption, distribution, metabolism, excretion, and toxicity calculation method was used to screen the active components of CSP. Traditional Chinese Medicine System Pharmacological Database Analysis Platform and text mining tool (GoPuMed database) were used to predict and screen the active ingredients of CSP and anti-depressive targets. Through Genetic Association Database, Therapeutic Target Database, and PharmGkb database targets for depression were obtained. Cytoscape3.2.1 software was used to establish a network map of the active ingredients-targets of CSP, and to analyze gene function and metabolic pathways through Database for Annotation, Visualization and Integrated Discovery and the Omicshare database. RESULTS: The 121 active ingredients and 15 depression-related targets which were screened from the database can exert antidepressant effects by improving the neural plasticity, growth, transfer condition and gene expression of neuronal cell, and the raise of the expression of gap junction protein. The 15 targets passed 14 metabolic pathways, mainly involved in the regulation of neurotransmitters (5-hydroxytryptamine, dopamine and epinephrine), inflammatory mediator regulation of TRP channels, calcium signaling pathway, cyclic adenosine monophosphate signaling pathway and neuroactive ligand-receptor interaction and other signal channels to exert anti-depressant effects. CONCLUSION: This article reveals the possible mechanism of CSP in the treatment of depression through network pharmacology research, and lays a foundation for further target studies.


Subject(s)
Antidepressive Agents/pharmacology , Depression/drug therapy , Drugs, Chinese Herbal/pharmacology , Antidepressive Agents/chemistry , Drugs, Chinese Herbal/chemistry , Humans , Metabolic Networks and Pathways/drug effects , Powders
10.
Article in English | MEDLINE | ID: mdl-31677481

ABSTRACT

Amino acids play key roles in cellular protein biosynthesis and energy metabolism pathways. In this study, a simple, rapid and sensitive method was developed for the simultaneous determination of 24 free amino acids in cell samples using hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS/MS). Cell samples were deproteinized with methanol/H2O (80:20, v/v) without intricate derivatization process. The analytes were separated on a Waters BEH Amide column (2.1 mm × 100 mm, 1.7 µm), and accomplished within 5 min at a flow rate of 0.2 mL/min. The good linearity was obtained for all analytes (r2 > 0.99) with the limits of quantification from 0.1 to 25 ng/mL. The intra- and inter-day precision ranged from 0.35 to 10.36% and from 2.22 to 9.93%, respectively. The recoveries of most analytes were between 80% and 120% with RSD less than 10.0%. The developed method was then applied to the direct analysis of 24 underivatized amino acids in human gastric cancer cell line MGC803 treated with the antitumor candidate drug J3, and significant differences in the concentration levels of amino acids were also assessed.


Subject(s)
Amino Acids/analysis , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Cell Line, Tumor , Humans , Hydrophobic and Hydrophilic Interactions , Linear Models , Reproducibility of Results , Sensitivity and Specificity
11.
ACS Omega ; 3(7): 8243-8252, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-31458961

ABSTRACT

A green chemical method for mild oxidation of 1,2,3,4-tetrahydroisoquinolines (THIQs) and 3,4-dihydroisoquinolines (DHIQs) has been developed using air (O2) as a clean oxidant. DHIQs and THIQs could be efficiently oxidized to isoquinolines in dimethyl sulfoxide at 25 °C under an open air atmosphere with CuBr2 (20 mol %) as the catalyst; different bases [NaOEt and/or 1,8-diazabicyclo[5,4,0]undec-7-ene] were used for the reaction according to the patterns of substituents (R1, R2).

12.
RSC Adv ; 8(51): 28997-29007, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-35548004

ABSTRACT

Novel total syntheses of oxoaporphine alkaloids such as liriodenine, dicentrinone, cassameridine, lysicamine, oxoglaucine and O-methylmoschatoline were developed. The key step of these total syntheses is Cu-catalyzed conversion of 1-benzyl-3,4-dihydro-isoquinolines (1-Bn-DHIQs) to 1-benzoyl-isoquinolines (1-Bz-IQs) via tandem oxidation/aromatization. This novel Cu-catalyzed conversion has been studied in detail, and was successfully used for constructing the 1-Bz-IQ core.

SELECTION OF CITATIONS
SEARCH DETAIL