Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Plant Physiol ; 192(4): 2723-2736, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37099480

ABSTRACT

Glandular trichomes (GTs) are outgrowths of plant epidermal cells that secrete and store specialized secondary metabolites that protect plants against biotic and abiotic stresses and have economic importance for human use. While extensive work has been done to understand the molecular mechanisms of trichome organogenesis in Arabidopsis (Arabidopsis thaliana), which forms unicellular, nonglandular trichomes (NGTs), little is known about the mechanisms of GT development or regulation of secondary metabolites in plants with multicellular GTs. Here, we identified and functionally characterized genes associated with GT organogenesis and secondary metabolism in GTs of cucumber (Cucumis sativus). We developed a method for effective separation and isolation of cucumber GTs and NGTs. Transcriptomic and metabolomic analyses showed that flavonoid accumulation in cucumber GTs is positively associated with increased expression of related biosynthesis genes. We identified 67 GT development-related genes, the functions of 7 of which were validated by virus-induced gene silencing. We further validated the role of cucumber ECERIFERUM1 (CsCER1) in GT organogenesis by overexpression and RNA interference transgenic approaches. We further show that the transcription factor TINY BRANCHED HAIR (CsTBH) serves as a central regulator of flavonoid biosynthesis in cucumber GTs. Work from this study provides insight into the development of secondary metabolite biosynthesis in multicellular GTs.


Subject(s)
Arabidopsis , Cucumis sativus , Humans , Cucumis sativus/metabolism , Trichomes/metabolism , Gene Expression Profiling , Plants/genetics , Arabidopsis/genetics , Flavonoids/genetics , Flavonoids/metabolism , Gene Expression Regulation, Plant
2.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673993

ABSTRACT

Cucumber (Cucumis sativus L.) is a globally prevalent and extensively cultivated vegetable whose yield is significantly influenced by various abiotic stresses, including drought, heat, and salinity. Transcription factors, such as zinc finger-homeodomain proteins (ZHDs), a plant-specific subgroup of Homeobox, play a crucial regulatory role in stress resistance. In this study, we identified 13 CsZHDs distributed across all six cucumber chromosomes except chromosome 7. Phylogenetic analysis classified these genes into five clades (ZHDI-IV and MIF) with different gene structures but similar conserved motifs. Collinearity analysis revealed that members of clades ZHD III, IV, and MIF experienced amplification through segmental duplication events. Additionally, a closer evolutionary relationship was observed between the ZHDs in Cucumis sativus (C. sativus) and Arabidopsis thaliana (A. thaliana) compared to Oryza sativa (O. sativa). Quantitative real-time PCR (qRT-PCR) analysis demonstrated the general expression of CsZHD genes across all tissues, with notable expression in leaf and flower buds. Moreover, most of the CsZHDs, particularly CsZHD9-11, exhibited varying responses to drought, heat, and salt stresses. Virus-induced gene silencing (VIGS) experiments highlighted the potential functions of CsZHD9 and CsZHD10, suggesting their positive regulation of stomatal movement and responsiveness to drought stress. In summary, these findings provide a valuable resource for future analysis of potential mechanisms underlying CsZHD genes in response to stresses.


Subject(s)
Cucumis sativus , Evolution, Molecular , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Stress, Physiological , Cucumis sativus/genetics , Cucumis sativus/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers/genetics , Droughts , Chromosomes, Plant/genetics , Gene Expression Profiling
3.
Small ; 19(42): e2303266, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37292047

ABSTRACT

Lithium-sulfur (Li-S) batteries with high energy density and low cost are the most promising competitor in the next generation of new energy reserve devices. However, there are still many problems that hinder its commercialization, mainly including shuttle of soluble polysulfides, slow reaction kinetics, and growth of Li dendrites. In order to solve above issues, various explorations have been carried out for various configurations, such as electrodes, separators, and electrolytes. Among them, the separator in contact with both anode and cathode is in a particularly special position. Reasonable design-modified material of separator can solve above key problems. Heterostructure engineering as a promising modification method can combine characteristics of different materials to generate synergistic effect at heterogeneous interface that is conducive to Li-S electrochemical behavior. This review not only elaborates the role of heterostructure-modified separators in dealing with above problems, but also analyzes the improvement of wettability and thermal stability of separators by modification of heterostructure materials, systematically clarifies its advantages, and summarizes some related progress in recent years. Finally, future development direction of heterostructure-based separator in Li-S batteries is given.

4.
Small ; 19(26): e2300188, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36938692

ABSTRACT

NiCo2 S4 is an attractive anode for sodium-ion batteries (SIBs) due to its high capacity and excellent redox reversibility. Practical deployment of NiCo2 S4 electrode in SIBs, however, is still hindered by the inferior capacity and unsatisfactory cycling performance, which result from the mismatch between the electrolyte chemistry and electrode. Herein, a functional electrolyte containing 1.0 m NaCF3 SO3 in diethylene glycol dimethyl ether (DEGDME) (1.0 m NaCF3 SO3 -DEGDME) is developed, which can be readily used for NiCo2 S4 anode with high initial coulomb efficiency (96.2%), enhanced cycling performance, and boosted capacities (341.7 mA h g-1 after 250 continuous cycles at the current density of 200 mA g-1 ). The electrochemical tests and related phase characterization combined with density functional theory (DFT) calculation indicate the ether-based electrolyte is more suitable for the NiCo2 S4 anode in SIBs due to the formation of a stable electrode-electrolyte interface. Additionally, the importance of the voltage window is also demonstrated to further optimize the electrochemical performance of the NiCo2 S4 electrode. The formation of sulfide intermediates during charging and discharging is predicted by combining DFT and verified by in situ XRD and HRTEM. The findings indicate that electrolyte engineering would be an effective way of performance enhancement for sulfides in practical SIBs.

5.
Platelets ; 34(1): 2200836, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37114424

ABSTRACT

Thrombocytopenia represents one of the most prevalent hematologic complications observed in patients infected with the human immunodeficiency virus (HIV). In this study, we sought to analyze the clinical characteristics and treatment outcomes of patients with coexisting HIV and thrombocytopenia. Specifically, we retrospectively examined the medical records of 45 patients diagnosed with HIV/AIDS and thrombocytopenia at the Yunnan Infectious Diseases Specialist Hospital between January 2010 and December 2020, all of whom received highly active antiretroviral therapy (HAART) with/without glucocorticoids. The median follow-up period was 79 days, ranging between 14 and 368 days, the total platelet count was higher after receiving treatment than before (Z = -5.662, P < .001). Among the cohort, 27 patients (60.0%) responded to treatment, with 12 patients (44.44%) experiencing relapse during the follow-up period. The response rate (80.00%) of newly diagnosed ITP were significantly higher than of persistent ITP (28.57%) and chronic ITP (38.46%) (\x 2 = 9.560, P = .008) and the relapse rate of the newly diagnosed ITP (30.00%) was significantly lower than the persistent ITP and chronic ITP (100.00%, 80.00%) (\x2 = 6.750, P = .034). Notably, we found that the number of CD4+ T cells, duration of HIV infection, selection of HAART and type of glucocorticoids administered displayed no statistically significant effect on platelet count, treatment response, or relapse rate. However, we observed a significant decrease in platelet count in hepatitis C virus-positive individuals coinfected with HIV compared to those with HIV alone (Z = -2.855, P = .003). Our findings suggest that patients diagnosed with HIV and thrombocytopenia exhibit a low response rate to treatment and have an increased likelihood of relapse.


Subject(s)
HIV Infections , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , Purpura, Thrombocytopenic, Idiopathic/complications , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Purpura, Thrombocytopenic, Idiopathic/diagnosis , HIV Infections/complications , HIV Infections/drug therapy , HIV , Retrospective Studies , China , Thrombocytopenia/complications , Thrombocytopenia/drug therapy , Recurrence
6.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38138999

ABSTRACT

Pre-harvest sprouting (PHS), the germination of seeds on the plant prior to harvest, poses significant challenges to agriculture. It not only reduces seed and grain yield, but also impairs the commodity quality of the fruit, ultimately affecting the success of the subsequent crop cycle. A deeper understanding of PHS is essential for guiding future breeding strategies, mitigating its impact on seed production rates and the commercial quality of fruits. PHS is a complex phenomenon influenced by genetic, physiological, and environmental factors. Many of these factors exert their influence on PHS through the intricate regulation of plant hormones responsible for seed germination. While numerous genes related to PHS have been identified in food crops, the study of PHS in vegetable crops is still in its early stages. This review delves into the regulatory elements, functional genes, and recent research developments related to PHS in vegetable crops. Meanwhile, this paper presents a novel understanding of PHS, aiming to serve as a reference for the study of this trait in vegetable crops.


Subject(s)
Plant Breeding , Vegetables , Vegetables/genetics , Germination/genetics , Phenotype , Seeds/genetics
7.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047408

ABSTRACT

Glandular trichomes (GTs), specialized structures formed by the differentiation of plant epidermal cells, are known to play important roles in the resistance of plants to external biotic and abiotic stresses. These structures are capable of storing and secreting secondary metabolites, which often have important agricultural and medicinal values. In order to better understand the molecular developmental mechanisms of GTs, studies have been conducted in a variety of crops, including tomato (Solanum lycopersicum), sweetworm (Artemisia annua), and cotton (Gossypium hirsutum). The MYC transcription factor of the basic helix-loop-helix (bHLH) transcription factor family has been found to play an important role in GT development. In this study, a total of 13 cucumber MYC transcription factors were identified in the cucumber (Cucumis sativus L.) genome. After performing phylogenetic analyses and conserved motifs on the 13 CsMYCs in comparison to previously reported MYC transcription factors that regulate trichome development, seven candidate MYC transcription factors were selected. Through virus-induced gene silencing (VIGS), CsMYC2 is found to negatively regulate GT formation while CsMYC4, CsMYC5, CsMYC6, CsMYC7, and CsMYC8 are found to positively regulate GT formation. Furthermore, the two master effector genes, CsMYC2 and CsMYC7, are observed to have similar expression patterns indicating that they co-regulate the balance of GT development in an antagonistic way.


Subject(s)
Cucumis sativus , Trichomes , Trichomes/genetics , Trichomes/metabolism , Cucumis sativus/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gossypium/genetics , Gene Expression Regulation, Plant
8.
Water Sci Technol ; 88(6): 1438-1446, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37768747

ABSTRACT

Ecological compensation (EC) is essential to promote the coordinated and sustainable development of the watershed. Firstly, the synergetic development index system of the watershed EC was proposed, which includes the economic benefits, water conservation, pollution treatment, and environmental supervision. Then, the order degree of subsystems was calculated. Finally, the synergetic development level of the watershed EC was evaluated. Taking the upstream (Ma'anshan) and the downstream (Nanjing) of the Chu River as the case study area, the results showed that: (1) From 2011 to 2020, the synergetic development level between Ma'anshan and Nanjing has showed an upward trend; (2) The synergetic development level of the watershed EC in the Chu River has reached basic synergy in 2020; (3) Ma'anshan concentrates on protecting the water ecological environment while Nanjing concentrates on economic growth and water pollution control will improve the synergy degree. This study can provide references for the optimization of watershed EC mechanism, and to promote watershed coordinated development.


Subject(s)
Conservation of Water Resources , Environmental Pollution , Rivers , Sustainable Development , Water
9.
J Environ Sci (China) ; 124: 655-666, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182171

ABSTRACT

Stormwater reuse is one of the most important ways to mitigate water resource shortage. However, urban stormwater contains many bacteria species, which threaten the reuse safety. Therefore, stormwater disinfection is highly needed. Although disinfection has been widely conducted in the drinking water and reclaimed water, it is rarely carried out for stormwater. This study collected the roof stormwater and undertook chlorination disinfection. Two typical bacteria, Escherichia coli (E. coli) and Staphylococcus aureus (S.aureus) were selected in this study to investigate the disinfection efficiency. It is found that bacteria species present in the stormwater had an important influence on disinfection efficiency while the original stormwater quality did not show an obvious affect. However, when the disinfected stormwater was stored, the stormwater quality was highly variable during its storage process and the variability was affected by bacteria species. The S.aureus containing stormwater showed a high variability of quality and S.aureus significantly regrew. However, the E.coli containing stormwater quality had a relatively low variability and E.coli did not significantly regrew. Additionally, it is noted that after storage, the dissolved form of stormwater was more positive to the freshwater algae's growth while the particulate form (including bacteria and other particulate matters) was less. This implies that a further treatment such as filtration is needed before the stored stormwater is recharged into receiving waters in order to remove particulate forms. These research outcomes can provide useful insight to effective stormwater disinfection and ensure reuse safety.


Subject(s)
Disinfection , Drinking Water , Escherichia coli , Fresh Water/microbiology , Water Quality
10.
J Virol ; 95(19): e0092221, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34287048

ABSTRACT

Several viruses have been proven to inhibit the formation of RNA processing bodies (P-bodies); however, knowledge regarding whether enterovirus blocks P-body formation remains unclear, and the detailed molecular mechanisms and functions of picornavirus regulation of P-bodies are limited. Here, we show the crucial role of 2A protease in inhibiting P-bodies to promote viral replication during enterovirus 71 infection. Moreover, we found that the activity of 2A protease is essential to inhibit P-body formation, which was proven by the result that infection with EV71-2AC110S, a 2A protease activity-inactivated recombinant virus, failed to block the formation of P-bodies. Furthermore, we show that DDX6, a scaffolding protein of P-bodies, interacted with viral RNA to facilitate viral replication rather than viral translation, by using a Renilla luciferase mRNA reporter system and nascent RNA capture assay. Altogether, our data first demonstrate that the 2A protease of enterovirus inhibits P-body formation to facilitate viral RNA synthesis by recruiting the P-body components to viral RNA. IMPORTANCE Processing bodies (P-bodies) are constitutively present in eukaryotic cells and play an important role in the mRNA cycle, including regulation of gene expression and mRNA degradation. The P-body is the structure that viruses manipulate to facilitate their survival. Here, we show that the 2A protease alone was efficient to block P-body formation during enterovirus 71 infection, and its activity is essential. When the assembly of P-bodies was blocked by 2A protease, DDX6 and 4E-T, which were required for P-body formation, bound to viral RNA to facilitate viral RNA synthesis. We propose a model revealing that EV71 manipulates P-body formation to generate an environment that is conducive to viral replication by facilitating viral RNA synthesis: 2A protease blocked P-body assembly to make it possible for virus to take advantage of P-body components.


Subject(s)
Cytoplasmic Granules/metabolism , Enterovirus A, Human/metabolism , Peptide Hydrolases/metabolism , RNA, Viral/biosynthesis , Cell Line, Tumor , Cytoplasmic Granules/ultrastructure , DEAD-box RNA Helicases/metabolism , Enterovirus A, Human/enzymology , Enterovirus A, Human/physiology , HeLa Cells , Humans , Nucleocytoplasmic Transport Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Ribonucleoproteins/metabolism , Virus Replication
11.
Molecules ; 27(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36431863

ABSTRACT

The shuttle effect is understood to be the most significant issue that needs to be solved to improve the performance of lithium-sulfur batteries. In this study, ultrathin two-dimensional Fe-Co bimetallic oxide nanosheets were prepared using graphene as a template, which could rapidly catalyze the conversion of polysulfides and inhibit the shuttle effect. Additionally, such ultrathin nanostructures based on graphene provided sufficient active sites and fast diffusion pathways for lithium ions. Taking into account the aforementioned benefits, the ultrathin two-dimensional Fe-Co bimetallic oxide nanosheets modified separator assembled lithium-sulfur batteries delivered an incredible capacity of 1044.2 mAh g-1 at 1 C and retained an excellent reversible capacity of 859.4 mAh g-1 after 100 cycles. Even under high loading, it still achieved high area capacity and good cycle stability (92.6% capacity retention).

12.
J Clin Lab Anal ; 35(10): e23986, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34462984

ABSTRACT

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a malignant carcinoma with high rate of mortality. The current treatment is ineffective with poor survival time. Therefore, there is an urgent need for effective therapeutic drug regimens. The multi-target tyrosine kinase inhibitor (TKI) anlotinib has been approved for treating non-small cell lung cancer (NSCLC); however, the combined therapeutic regimen of anlotinib for ICC has not been investigated yet. This study aims to investigate the inhibitory effect of anlotinib and the mechanism of gemcitabine combination for ICC treatment. METHODS: Two ICC cell lines, HCCC-9810 and RBE cells, were used in this study. Cell Counting Kit-8 (CCK-8) was used to study the cell viability, and flow cytometry (FCM) was used to evaluate the apoptosis and cell cycle arrest. Compusyn software was used to calculate the combination index (CI) of anlotinib and gemcitabine. The protein expression rate of cleaved PARP/PARP and cleaved caspase-3/caspase-3 was detected by Western blotting. RESULTS: Our result showed that the anlotinib and gemcitabine combination significantly inhibits the growth of ICC cell lines. Compusyn software results showed that the combination regimen had an anti-tumor synergistic effect. FCM results showed that it promoted apoptosis. Moreover, it increased the protein expression rate of cleaved PARP/PARP and cleaved caspase-3/caspase-3. Finally, we found a synergistic anti-tumor effect by increasing G0/G1 cell cycle arrest. CONCLUSION: The combination of anlotinib and gemcitabine can increase the anti-tumor effect and may be a potential therapeutic drug regimen in a clinical setting.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cholangiocarcinoma/metabolism , Deoxycytidine/analogs & derivatives , G1 Phase Cell Cycle Checkpoints/drug effects , Indoles/pharmacology , Quinolines/pharmacology , Cell Line, Tumor , Deoxycytidine/pharmacology , Drug Therapy, Combination , Humans , Gemcitabine
13.
Zhongguo Zhong Yao Za Zhi ; 46(3): 645-660, 2021 Feb.
Article in Zh | MEDLINE | ID: mdl-33645032

ABSTRACT

A high performance liquid chromatography with a diode array detector combined with electrospray ionization ion trap time-of-flight multistage mass spectrometry(HPLC-DAD-ESI-IT-TOF-MS~n, HPLC-MS~n) method was established for qualitative analysis of the chemical components of ethyl acetate extract from Sinopodophylli Fructus. The analysis was performed on a Kromasil 100-5 C_(18)(4.6 mm×250 mm, 5 µm) column, with a mobile phase consisted of 0.1% formic acid(A) and acetonitrile(B) for gradient at a flow rate of 1.0 mL·min~(-1). Electrospray ionization ion trap time-of-flight multistage mass spectrometry was applied for qualitative analysis under positive and negative ion modes. With use of reference substance, characteristic fragmentation and their HR-MS data, 102 components were identified, including 67 flavonoids and 35 lignans. Among them, 45 compounds were reported in Sinopodophylli Fructus for the first time and 19 compounds were identified as new compounds. PharmMapper was used to predict the bioactivity of compounds that were first reported in Sinopodophylli Fructus, and 20 compounds of them were identified to have potential anticancer activity. The results showed that there were many isomers in the ethyl acetate extract of Folium Nelumbinis, and a total of 19 groups of isomers were found. Among them, C_(21)H_(20)O_8 had the highest number of isomers(18 compounds), all of which were α-peltatin or its isomers; C_(21)H_(20)O_7 ranked second, with 10 compounds, all of which were 8-prenylquercetin-3-methyl ether or its isomers. In conclusion, an HPLC-MS~n method was established for qualitative analysis of the ethyl acetate extract(with anti-breast cancer activity) from Sinopodophylli Fructus in this study, which will provide the evidence for clarifying pharmacological active ingredients of the ethyl acetate extract from Sinopodophylli Fructus against breast cancer.


Subject(s)
Acetates , Spectrometry, Mass, Electrospray Ionization , Chromatography, High Pressure Liquid , Fruit
14.
Article in English | MEDLINE | ID: mdl-32085895

ABSTRACT

Glaucoma is a leading cause of blindness worldwide with complex pathogenesis. The excessive proliferation and fibrosis of human tenon capsule fibroblasts (HTFs) trigger the scar formation after glaucoma filtration surgery. The purpose was to investigate the role of long intergenic non-protein coding RNA 28 (LINC00028) and mechanism in transforming growth factor ß1 (TGFß1)-treated HTFs. The detection of LINC00028 and miR-204-5p expression was conducted using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay. Cell migration and invasion were monitored by transwell assay. The expression of Epithelial-mesenchymal transition (EMT)-related markers, including E-cadherin, α-Smooth muscle actin (α-SMA), fibronectin and ß-catenin, and autophagy-related markers, including Beclin 1 and light chain 3 (LC3-II and LC3-I) at the protein level was quantified using western blot. The prediction of the relationship between LINC00028 and miR-204-5p was performed by the online tool miRcode, and the verification of the relationship between them was conducted using dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. The expression of LINC00028 was elevated in glaucoma tissues and TGFß1-treated HTFs. LINC00028 downregulation blocked proliferation, migration, invasion, EMT, fibrosis and autophagy of TGFß1-treated HTFs. MiR-204-5p was a target of LINC00028, and its reintroduction exerted a similar role of LINC00028 downregulation. The inhibition of miR-204-5p reversed the effects of LINC00028 downregulation in TGFß1-treated HTFs. LINC00028 regulated proliferation, migration, invasion, EMT, fibrosis and autophagy to induce the development of HTFs by competitively targeting miR-204-5p, and LINC00028 was regarded as a promising biomarker for glaucoma filtration treatment.

15.
PLoS Pathog ; 14(2): e1006901, 2018 02.
Article in English | MEDLINE | ID: mdl-29415027

ABSTRACT

Stress granules (SGs) contain stalled messenger ribonucleoprotein complexes and are related to the regulation of mRNA translation. Picornavirus infection can interfere with the formation of SGs. However, the detailed molecular mechanisms and functions of picornavirus-mediated regulation of SG formation are not clear. Here, we found that the 2A protease of a picornavirus, EV71, induced atypical stress granule (aSG), but not typical stress granule (tSG), formation via cleavage of eIF4GI. Furthermore, 2A was required and sufficient to inhibit tSGs induced by EV71 infection, sodium arsenite, or heat shock. Infection of 2A protease activity-inactivated recombinant EV71 (EV71-2AC110S) failed to induce aSG formation and only induced tSG formation, which is PKR and eIF2α phosphorylation-dependent. By using a Renilla luciferase mRNA reporter system and RNA fluorescence in situ hybridization assay, we found that EV71-induced aSGs were beneficial to viral translation through sequestering only cellular mRNAs, but not viral mRNAs. In addition, we found that the 2A protease of other picornaviruses such as poliovirus and coxsackievirus also induced aSG formation and blocked tSG formation. Taken together, our results demonstrate that, on one hand, EV71 infection induces tSG formation via the PKR-eIF2α pathway, and on the other hand, 2A, but not 3C, blocks tSG formation. Instead, 2A induces aSG formation by cleaving eIF4GI to sequester cellular mRNA but release viral mRNA, thereby facilitating viral translation.


Subject(s)
Cysteine Endopeptidases/physiology , Cytoplasmic Granules/metabolism , Host-Pathogen Interactions , Picornaviridae/enzymology , Stress, Physiological/physiology , Viral Proteins/metabolism , Eukaryotic Initiation Factor-4G/metabolism , HEK293 Cells , HeLa Cells , Humans , Picornaviridae/metabolism , Protein Biosynthesis , Proteolysis
17.
J Med Syst ; 43(9): 304, 2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31407110

ABSTRACT

Due to insufficient samples, the generalization performance of deep network is insufficient. In order to solve this problem, an improved U-net based image automatic segmentation and diagnosis algorithm was proposed, in which the max-pooling operation in original U-net model was replaced by the convolution operation to keep more feature information. Firstly, the regions of 128×128 were extracted from all slices of the patients as data samples. Secondly, the patient samples were divided into training sample set and testing sample set, and data augmentation was performed on the training samples. Finally, all the training samples were adopted to train the model. Compared with Fully Convolutional Network (FCN) model and max-pooling based U-net model, DSC and CR coefficients of the proposed method achieve the best results, while PM coefficient is 2.55 percentage lower than the maximum value in the two comparison models, and Average Symmetric Surface Distance is slightly higher than the minimum value of the two comparison models by 0.004. The experimental results show that the proposed model can achieve good segmentation and diagnosis results.


Subject(s)
Diabetic Retinopathy/diagnosis , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Retina/diagnostic imaging , Algorithms , Humans , Sensitivity and Specificity
18.
Zhongguo Zhong Yao Za Zhi ; 44(22): 4924-4931, 2019 Nov.
Article in Zh | MEDLINE | ID: mdl-31872602

ABSTRACT

This experiment aims to explore the metabolites of n-butanol and water soluble fraction of an ethanol extracts from Angelicae Sinensis Radix in rats. The chemical constituents of n-butanol and water extracts from Angelicae Sinensis Radix were identified by HPLC-DAD-ESI-IT-TOF-MS~n,and the in vivo metabolites of n-butanol and water extracts were analyzed. By analyzing n-butanol and water extracts from Angelicae Sinensis Radix,25 compounds were detected and identified,in which 11 phthalide glycosides were firstly reported. And 19 compounds were detected and identified in rat urine,including 2 prototype constituents and 17 metabolites,and the17 metabolites were new compounds. The method can identify the main constituents and metabolites of extracts from traditional Chinese medicine accurately and rapidly,and provide evidence for interpreting effective forms and pharmacodynamics substance( prototype,metabolites,or both) of Angelicae Sinensis Radix.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Animals , Chromatography, High Pressure Liquid , Glycosides , Rats , Spectrometry, Mass, Electrospray Ionization
19.
Zhongguo Zhong Yao Za Zhi ; 44(19): 4212-4218, 2019 Oct.
Article in Zh | MEDLINE | ID: mdl-31872701

ABSTRACT

To study the effects of combination of Aconiti Lateralis Radix Praeparata( Fuzi) with Trichosanthis Fructus( Gualou) on cardiac function,electrocardiogram,inflammatory response and myocardial fibrosis in pressure overload( PO) rats,and further explore the mechanism based on ß2-AR/PKA signaling. PO rat model was established by constricting the abdominal aorta. Twelve weeks after the operation,these rats were randomly divided into model goup( PO),low dose Fuzi group( FL,5. 4 g·kg-1·d-1),Gualou group( GL,5. 4 g·kg-1·d-1),Fuzi and Gualou combination group( FG,5. 4 g·kg-1·d-1+5. 4 g·kg-1·d-1) and high dose Fuzi group( FH,10. 8 g·kg-1·d-1). At the same time,sham operation group was set. After intervention for 6 weeks,carotid blood pressure,cardiac function,electrocardiogram and heart mass index were measured. HE staining was used to observe the inflammatory response in the rat heart and kidney. Masson staining was used to determine the myocardial fibrosis. Western blot was used to detect the protein expression of ß2-AR and PKA. As compared with sham operation group,the blood pressure and heart mass index were obviously increased in PO model group,but there was no significant difference in various treatment groups in the above indexes. As compared with PO model group,FH treatment significantly increased the ejection fraction( EF) and GL treatment effectively enhanced the cardiac output( CO),but other treatment groups had no significant effect on these parameters. Moreover,FG treatment can synergistically attenuate QT and QTc internal prolongation,but it also aggravated inflammatory response in the heart and kidney tissues and promoted myocardial fibrosis as compared to FZ or GL alone treatment,with toxic effects equivalent to FH treatment group. Following FG and FH treatment,simultaneously,ß2-AR and PKA protein levels were significantly elevated,indicating that the increasing toxicity of FG could be associated with activation of ß2-AR/PKA signaling. These results suggested that combination of FZ and GL could synergistically enhance toxicity of FZ in special pathological states such as pressure overload,and caution should be taken in clinical application.


Subject(s)
Aconitum , Drugs, Chinese Herbal , Animals , Fibrosis , Fruit , Rats , Signal Transduction
20.
Cancer Sci ; 109(8): 2576-2589, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29908094

ABSTRACT

Flavokawain B (FKB), a natural kava chalcone, shows potent antitumor activity in various types of cancer, although the mechanism of action remains unclear. In this study, we report that FKB has profound effects on the metabolic state of human thyroid cancer (TCa) cells, leading to high autophagy flux through upregulation of AMP-activated protein kinase, which in turn inhibits mTOR and activates Beclin-1 in TCa cells. We further report that the autophagy induced by FKB plays a prosurvival role in TCa cells both in vitro and in vivo. In conclusion, our findings provide evidence that combination treatment with FKB and pharmacological autophagy inhibitors will be a potential therapeutic strategy for the treatment of TCa.


Subject(s)
Adenosine Monophosphate/metabolism , Autophagy/drug effects , Flavonoids/pharmacology , TOR Serine-Threonine Kinases/metabolism , Thyroid Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/pharmacology , Beclin-1/metabolism , Cell Line, Tumor , Humans , Thyroid Gland/drug effects , Thyroid Gland/metabolism , Thyroid Neoplasms/metabolism , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL