Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.322
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(6): e2219630120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36716379

ABSTRACT

Endothelial progenitor cells (EPCs) play an important role in vascular repair and re-endothelialization after vessel injury. EPCs in blood vessels are subjected to cyclic stretch (CS) due to the pulsatile pressure, but the role of CS in metabolic reprogramming of EPC, particularly its vascular homing and repair, is largely unknown. In the current study, physiological CS applied to EPCs at a magnitude of 10% and a frequency of 1 Hz significantly promoted their vascular adhesion and endothelial differentiation. CS enhanced mitochondrial elongation and oxidative phosphorylation (OXPHOS), as well as adenosine triphosphate production. Metabolomic study and Ultra-high performance liquid chromatography-mass spectrometry assay revealed that CS significantly decreased the content of long-chain fatty acids (LCFAs) and markedly induced long-chain fatty acyl-CoA synthetase 1 (Acsl1), which in turn facilitated the catabolism of LCFAs in mitochondria via fatty acid ß-oxidation and OXPHOS. In a rat carotid artery injury model, transplantation of EPCs overexpressing Acsl1 enhanced the adhesion and re-endothelialization of EPCs in vivo. MRI and vascular morphology staining showed that Acsl1 overexpression in EPCs improved vascular repair and inhibited vascular stenosis. This study reveals a mechanotransduction mechanism by which physiological CS enhances endothelial repair via EPC patency.


Subject(s)
Endothelial Progenitor Cells , Rats , Animals , Mechanotransduction, Cellular , Cell Differentiation , Mitochondria/metabolism , Fatty Acids/metabolism
2.
FASEB J ; 38(11): e23729, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847786

ABSTRACT

Diabetic nephropathy (DN) is one of the common microvascular complications in diabetic patients. Marrow mesenchymal stem cells (MSCs) have attracted attention in DN therapy but the underlying mechanism remains unclear. Here, we show that MSC administration alleviates high glucose (HG)-induced human kidney tubular epithelial cell (HK-2 cell) injury and ameliorates renal injury in DN mice. We identify that Smad2/3 is responsible for MSCs-regulated DN progression. The activity of Smad2/3 was predominantly upregulated in HG-induced HK-2 cell and DN mice and suppressed with MSC administration. Activation of Smad2/3 via transforming growth factor-ß1 (TGF-ß1) administration abrogates the protective effect of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Smad2/3 has been reported to interact with methyltransferase of N6-methyladenosine (m6A) complex and we found a methyltransferase, Wilms' tumor 1-associating protein (WTAP), is involved in MSCs-Smad2/3-regulated DN development. Moreover, WTAP overexpression abrogates the improvement of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Subsequently, α-enolase (ENO1) is the downstream target of WTAP-mediated m6A modification and contributes to the MSCs-mediated regulation. Collectively, these findings reveal a molecular mechanism in DN progression and indicate that Smad2/3/WTAP/ENO1 may present a target for MSCs-mediated DN therapy.


Subject(s)
Diabetic Nephropathies , Mesenchymal Stem Cells , Smad2 Protein , Smad3 Protein , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Mesenchymal Stem Cells/metabolism , Smad2 Protein/metabolism , Mice , Humans , Smad3 Protein/metabolism , Male , Mice, Inbred C57BL , Adenosine/metabolism , Adenosine/analogs & derivatives , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Signal Transduction , Methyltransferases/metabolism , Methyltransferases/genetics , Mesenchymal Stem Cell Transplantation/methods , Transforming Growth Factor beta1/metabolism , Cell Line
3.
J Pathol ; 263(2): 203-216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551071

ABSTRACT

Urothelial damage and barrier dysfunction emerge as the foremost mechanisms in Hunner-type interstitial cystitis/bladder pain syndrome (HIC). Although treatments aimed at urothelial regeneration and repair have been employed, their therapeutic effectiveness remains limited due to the inadequate understanding of specific cell types involved in damage and the lack of specific molecular targets within these mechanisms. Therefore, we harnessed single-cell RNA sequencing to elucidate the heterogeneity and developmental trajectory of urothelial cells within HIC bladders. Through reclustering, we identified eight distinct clusters of urothelial cells. There was a significant reduction in UPK3A+ umbrella cells and a simultaneous increase in progenitor-like pluripotent cells (PPCs) within the HIC bladder. Pseudotime analysis of the urothelial cells in the HIC bladder revealed that cells faced challenges in differentiating into UPK3A+ umbrella cells, while PPCs exhibited substantial proliferation to compensate for the loss of UPK3A+ umbrella cells. The urothelium in HIC remains unrepaired, despite the substantial proliferation of PPCs. Thus, we propose that inhibiting the pivotal signaling pathways responsible for the injury to UPK3A+ umbrella cells is paramount for restoring the urothelial barrier and alleviating lower urinary tract symptoms in HIC patients. Subsequently, we identified key molecular pathways (TLR3 and NR2F6) associated with the injury of UPK3A+ umbrella cells in HIC urothelium. Finally, we conducted in vitro and in vivo experiments to confirm the potential of the TLR3-NR2F6 axis as a promising therapeutic target for HIC. These findings hold the potential to inhibit urothelial injury, providing promising clues for early diagnosis and functional bladder self-repair strategies for HIC patients. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Cystitis, Interstitial , Toll-Like Receptor 3 , Urothelium , Animals , Female , Humans , Mice , Cell Differentiation , Cell Proliferation , Cystitis, Interstitial/pathology , Cystitis, Interstitial/metabolism , Cystitis, Interstitial/genetics , Mice, Inbred C57BL , Signal Transduction , Single-Cell Analysis , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 3/genetics , Urinary Bladder/pathology , Urinary Bladder/metabolism , Urothelium/pathology , Urothelium/metabolism
4.
EMBO J ; 39(19): e104319, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32915464

ABSTRACT

The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that senses xenobiotics, diet, and gut microbial-derived metabolites, is increasingly recognized as a key regulator of intestinal biology. However, its effects on the function of colonic stem and progenitor cells remain largely unexplored. Here, we observed that inducible deletion of AhR in Lgr5+ stem cells increases the percentage of colonic stem cells and enhances organoid initiating capacity and growth of sorted stem and progenitor cells, while AhR activation has the opposite effect. Moreover, intestinal-specific AhR knockout increases basal stem cell and crypt injury-induced cell proliferation and promotes colon tumorigenesis in a preclinical colitis-associated tumor model by upregulating FoxM1 signaling. Mechanistically, AhR transcriptionally suppresses FoxM1 expression. Activation of AhR in human organoids recapitulates phenotypes observed in mice, such as reduction in the percentage of colonic stem cells, promotion of stem cell differentiation, and attenuation of FoxM1 signaling. These findings indicate that the AhR-FoxM1 axis, at least in part, mediates colonic stem/progenitor cell behavior.


Subject(s)
Colon/metabolism , Forkhead Box Protein M1/metabolism , Receptors, Aryl Hydrocarbon/deficiency , Signal Transduction , Stem Cells/metabolism , Animals , Female , Forkhead Box Protein M1/genetics , Gene Knockout Techniques , Humans , Male , Mice , Mice, Transgenic , Receptors, Aryl Hydrocarbon/metabolism
5.
J Cell Sci ; 135(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35297486

ABSTRACT

Vascular intimal injury initiates various cardiovascular disease processes. Exposure to subendothelial collagen can cause platelet activation, leading to collagen-activated platelet-derived microvesicles (aPMVs) secretion. In addition, vascular smooth muscle cells (VSMCs) exposed to large amounts of aPMVs undergo abnormal energy metabolism; they proliferate excessively and migrate after the loss of endothelium, eventually contributing to neointimal hyperplasia. However, the roles of aPMVs in VSMC energy metabolism are still unknown. Our carotid artery intimal injury model indicated that platelets adhered to injured blood vessels. In vitro, phosphorylated Pka (cAMP-dependent protein kinase) content was increased in aPMVs. We also found that aPMVs significantly reduced VSMC glycolysis and increased oxidative phosphorylation, and promoted VSMC migration and proliferation by upregulating phosphorylated PRKAA (α catalytic subunit of AMP-activated protein kinase) and phosphorylated FoxO1. Compound C, an inhibitor of PRKAA, effectively reversed the enhancement of cellular function and energy metabolism triggered by aPMVs in vitro and neointimal formation in vivo. We show that aPMVs can affect VSMC energy metabolism through the Pka-PRKAA-FoxO1 signaling pathway and this ultimately affects VSMC function, indicating that the shift in VSMC metabolic phenotype by aPMVs can be considered a potential target for the inhibition of hyperplasia. This provides a new perspective for regulating the abnormal activity of VSMCs after injury.


Subject(s)
Carotid Artery Injuries , Muscle, Smooth, Vascular , AMP-Activated Protein Kinases/metabolism , Animals , Blood Platelets/metabolism , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Disease Models, Animal , Energy Metabolism , Humans , Hyperplasia/complications , Hyperplasia/metabolism , Hyperplasia/pathology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/complications , Neointima/metabolism , Neointima/pathology
6.
Diabetes Obes Metab ; 26(3): 901-910, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38100147

ABSTRACT

AIM: To assess the safety, tolerability, pharmacokinetics (PKs) and pharmacodynamics of HRS-7535, a novel glucagon-like peptide-1 receptor agonist (GLP-1RA), in healthy participants. MATERIALS AND METHODS: This phase 1 trial consisted of single-ascending dose (SAD), food effect (FE) and multiple-ascending dose (MAD) parts. In the SAD part, participants were randomized (6:2) to receive HRS-7535 (at doses of 15, 60 and 120 mg; administered orally once daily) or placebo. In the FE part, participants were randomized (8:2) to receive a single dose of 90-mg HRS-7535 or placebo, in both fed and fasted states. In the MAD part, participants were randomized (18:6) to receive daily HRS-7535 (120 mg [30/60/90/120-mg titration scheme]) or placebo for 28 days. The primary endpoints were safety and tolerability. RESULTS: Nausea and vomiting were the most frequently reported AEs across all three parts. In the SAD part, the median Tmax was 5.98-5.99 hours and the geometric mean t1/2 was 5.28-9.08 hours across the HRS-7535 dosing range. In the MAD part, the median Tmax was 5.98-10.98 hours and the geometric mean t1/2 was 6.48-8.42 hours on day 28 in participants on HRS-7535. PKs were approximately dose-proportional. On day 29 in the MAD part, the mean (percentage) reduction in body weight from baseline was 4.38 kg (6.63%) for participants who received HRS-7535, compared with 0.8 kg (1.18%) for those participants who received a placebo. CONCLUSIONS: HRS-7535 exhibited a safety and tolerability profile consistent with other GLP-1RAs and showed PKs suitable for once-daily dosing. These findings support further clinical development of HRS-7535 for type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor Agonists , Healthy Volunteers , Body Weight , Area Under Curve , Double-Blind Method , Dose-Response Relationship, Drug
7.
Inorg Chem ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39106318

ABSTRACT

Electrochemical ion exchange has recently been demonstrated to be a unique method for the preparation of novel cathode materials, which cannot be accessible by traditional direct synthesis routes. In this study, the vanadium borophosphate compound K1.33Na0.67[VO(B2O)(PO4)2(HPO4)]·1.63H2O (KNVBP) with zeolitic framework exhibits fast electrochemical Na+/K+ ion exchange when used as cathode material in sodium-ion batteries (SIBs). Ex situ structural analyses and electrochemical measurements confirm that most of the K+ ions in the parent KNVBP can be extracted and exchanged by Na+ ions after the first charge/discharge cycle. The in situ-generated Na-rich phase shows reversible electrochemical activity at approximately 3.9 V versus Na+/Na with a specific capacity of 52.9 mAh g-1, comparable to 96.2% of the theoretical capacity. Moreover, enhanced ionic diffusion kinetics can be achieved after the Na+/K+ exchange. This study provides a valuable insight into the electrochemical ion exchange in polyanion compounds toward application in metal-ion batteries.

8.
BMC Cardiovasc Disord ; 24(1): 350, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987722

ABSTRACT

BACKGROUND: Antineoplastic medications, including doxorubicin, idarubicin, and epirubicin, have been found to adversely affect the heart due to oxidative stress - mitochondrial dysfunction - ferroptosis (ORMFs), which act as contributing attributes to anthracycline-induced cardiotoxicity. To better understand this phenomenon, the time-resolved measurements of ORMFS genes were analyzed in this study. METHODS: The effect of three anthracycline drugs on ORMFs genes was studied using a human 3D cardiac microtissue cell model. Transcriptome data was collected over 14 days at two doses (therapeutic and toxic). WGCNA identified key module-related genes, and functional enrichment analysis investigated the biological processes quantified by ssGSEA, such as immune cell infiltration and angiogenesis. Biopsies were collected from heart failure patients and control subjects. GSE59672 and GSE2965 were collected for validation. Molecular docking was used to identify anthracyclines's interaction with key genes. RESULTS: The ORMFs genes were screened in vivo or in vitro. Using WGCNA, six co-expressed gene modules were grouped, with MEblue emerging as the most significant module. Eight key genes intersecting the blue module with the dynamic response genes were obtained: CD36, CDH5, CHI3L1, HBA2, HSD11B1, OGN, RPL8, and VWF. Compared with control samples, all key genes except RPL8 were down-regulated in vitro ANT treatment settings, and their expression levels varied over time. According to functional analyses, the key module-related genes were engaged in angiogenesis and the immune system pathways. In all ANT-treated settings, ssGSEA demonstrated a significant down-regulation of angiogenesis score and immune cell activity, including Activated CD4 T cell, Immature B cell, Memory B cell, Natural killer cell, Type 1 T helper cell, and Type 2 T helper cell. Molecular docking revealed that RPL8 and CHI3L1 show significant binding affinity for anthracyclines. CONCLUSION: This study focuses on the dynamic characteristics of ORMFs genes in both human cardiac microtissues and cardiac biopsies from ANT-treated patients. It has been highlighted that ORMFs genes may contribute to immune infiltration and angiogenesis in cases of anthracycline-induced cardiotoxicity. A thorough understanding of these genes could potentially lead to improved diagnosis and treatment of the disease.


Subject(s)
Cardiotoxicity , Ferroptosis , Molecular Docking Simulation , Oxidative Stress , Humans , Oxidative Stress/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/genetics , Gene Regulatory Networks , Time Factors , Transcriptome , Epirubicin/adverse effects , Doxorubicin , Antibiotics, Antineoplastic/adverse effects , Case-Control Studies , Idarubicin , Heart Failure/chemically induced , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Gene Expression Profiling , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Longitudinal Studies , Anthracyclines/adverse effects , Gene Expression Regulation , Signal Transduction
9.
Clin Exp Pharmacol Physiol ; 51(6): e13863, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38650114

ABSTRACT

Chronic hyperglycaemia is a chief feature of diabetes mellitus and complicates with many systematic anomalies. Non-human primates (NHPs) are excellent for studying hyperglycaemia or diabetes and associated comorbidities, but lack behavioural observation. In the study, behavioural, brain imaging and histological analysis were performed in a case of spontaneously hyperglycaemic (HGM) Macaca fascicularis. The results were shown that the HGM monkey had persistent body weight loss, long-term hyperglycaemia, insulin resistance, dyslipidemia, but normal concentrations of insulin, C-peptide, insulin autoantibody, islet cell antibody and glutamic acid decarboxylase antibody. Importantly, an impaired working memory in a delayed response task and neurological dysfunctions were found in the HGM monkey. The tendency for atrophy in hippocampus was observed by magnetic resonance imaging. Lenticular opacification, lens fibres disruptions and vacuole formation also occurred to the HGM monkey. The data suggested that the spontaneous HGM monkey might present diabetes-like characteristics and associated neurobehavioral anomalies in this case. This study first reported cognitive deficits in a spontaneous hyperglycaemia NHPs, which might provide evidence to use macaque as a promising model for translational research in diabetes and neurological complications.


Subject(s)
Cataract , Hyperglycemia , Macaca fascicularis , Animals , Hyperglycemia/metabolism , Cataract/pathology , Male , Cognition Disorders/etiology , Cognition Disorders/pathology , Nervous System Diseases , Hippocampus/pathology , Hippocampus/metabolism
10.
Aging Clin Exp Res ; 36(1): 154, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078432

ABSTRACT

Mild cognitive impairment (MCI) is recognized as the prodromal phase of dementia, a condition that can be either maintained or reversed through timely medical interventions to prevent cognitive decline. Considerable studies using functional magnetic resonance imaging (fMRI) have indicated that altered activity in the medial prefrontal cortex (mPFC) serves as an indicator of various cognitive stages of aging. However, the impacts of intrinsic functional connectivity in the mPFC as a mediator on cognitive performance in individuals with and without MCI have not been fully understood. In this study, we recruited 42 MCI patients and 57 healthy controls, assessing their cognitive abilities and functional brain connectivity patterns through neuropsychological evaluations and resting-state fMRI, respectively. The MCI patients exhibited poorer performance on multiple neuropsychological tests compared to the healthy controls. At the neural level, functional connectivity between the mPFC and the anterior cingulate cortex (ACC) was significantly weaker in the MCI group and correlated with multiple neuropsychological test scores. The result of the mediation analysis further demonstrated that functional connectivity between the mPFC and ACC notably mediated the relationship between the MCI and semantic fluency performance. These findings suggest that altered mPFC-ACC connectivity may have a plausible causal influence on cognitive decline and provide implications for early identifications of neurodegenerative diseases and precise monitoring of disease progression.


Subject(s)
Cognitive Dysfunction , Gyrus Cinguli , Magnetic Resonance Imaging , Prefrontal Cortex , Humans , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Male , Female , Aged , Magnetic Resonance Imaging/methods , Middle Aged , Neuropsychological Tests , Case-Control Studies
11.
Psychiatry Clin Neurosci ; 78(1): 60-68, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37807577

ABSTRACT

AIM: Despite the emphasis on sensory dysfunction phenotypes in the revised diagnostic criteria for autism spectrum disorder (ASD), there has been limited research, particularly in the field of neurobiology, investigating the concordance in sensory features between individuals with ASD and their genetic relatives. Therefore, our objective was to examine whether neurobehavioral sensory patterns could serve as endophenotypic markers for ASD. METHODS: We combined questionnaire- and lab-based sensory evaluations with sensory fMRI measures to examine the patterns of sensory responsivity in 30 clinically diagnosed with ASD, 26 matched controls (CON), and 48 biological parents for both groups (27 parents of individuals with ASD [P-ASD] and 21 for individuals with CON [P-CON]). RESULTS: The ASD and P-ASD groups had higher sensory responsivity and rated sensory stimuli as more unpleasant than the CON and P-CON groups, respectively. They also exhibited greater hemodynamic responses within the sensory cortices. Overlapping activations were observed within these sensory cortices in the ASD and P-ASD groups. Using a machine learning approach with robust prediction models across cohorts, we demonstrated that the sensory profile of biological parents accurately predicted the likelihood of their offspring having ASD, achieving a prediction accuracy of 71.4%. CONCLUSIONS: These findings provide support for the hereditary basis of sensory alterations in ASD and suggest a potential avenue to improve ASD diagnosis by utilizing the sensory signature of biological parents, especially in families with a high risk of ASD. This approach holds promising prospects for early detection, even before the birth of the offspring.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Parents , Surveys and Questionnaires , Endophenotypes
12.
Biochem Biophys Res Commun ; 675: 1-9, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37429067

ABSTRACT

BACKGROUND: Reportedly, ovarian cancer (OC) is a major threat to women's health. Long non-coding RNA (lncRNA) ASB16-AS1 has been uncovered to participate in cancer progression. Nevertheless, the role of ASB16-AS1 in OC remains to be revealed. PURPOSE: This study aimed to unveil the biological function of ASB16-AS1 and its underlying mechanisms in OC cells. METHODS: QRT-PCR was done to test ASB16-AS1 expression in OC cells. Functional assays were performed to evaluate the malignant behaviors and cisplatin resistance of OC cells. Mechanistic analyses were done to investigate the regulatory molecular mechanism in OC cells. RESULTS: ASB16-AS1 was found to be highly expressed in OC cells. ASB16-AS1 knockdown repressed proliferation, migration, and invasion of OC cells, while facilitating cell apoptosis. ASB16-AS1 was further validated to up-regulate GOLM1 through competitively binding with miR-3918. Moreover, miR-3918 overexpression was corroborated to suppress OC cell growth. Rescue assays further uncovered that ASB16-AS1 modulated the malignant processes of OC cells via targeting miR-3918/GOLM1 axis. CONCLUSION: ASB16-AS1 facilitates the malignant processes and chemoresistance of OC cells via serving as miR-3918 sponge and positively modulating GOLM1 expression.


Subject(s)
MicroRNAs , Ovarian Neoplasms , RNA, Long Noncoding , Humans , Female , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Drug Resistance, Neoplasm/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Membrane Proteins/metabolism
13.
Bioinformatics ; 38(5): 1244-1251, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34875015

ABSTRACT

MOTIVATION: Molecule generation, which is to generate new molecules, is an important problem in bioinformatics. Typical tasks include generating molecules with given properties, molecular property improvement (i.e. improving specific properties of an input molecule), retrosynthesis (i.e. predicting the molecules that can be used to synthesize a target molecule), etc. Recently, deep-learning-based methods received more attention for molecule generation. The labeled data of bioinformatics is usually costly to obtain, but there are millions of unlabeled molecules. Inspired by the success of sequence generation in natural language processing with unlabeled data, we would like to explore an effective way of using unlabeled molecules for molecule generation. RESULTS: We propose a new method, back translation for molecule generation, which is a simple yet effective semisupervised method. Let X be the source domain, which is the collection of properties, the molecules to be optimized, etc. Let Y be the target domain which is the collection of molecules. In particular, given a main task which is about to learn a mapping from the source domain X to the target domain Y, we first train a reversed model g for the Y to X mapping. After that, we use g to back translate the unlabeled data in Y to X and obtain more synthetic data. Finally, we combine the synthetic data with the labeled data and train a model for the main task. We conduct experiments on molecular property improvement and retrosynthesis, and we achieve state-of-the-art results on four molecule generation tasks and one retrosynthesis benchmark, USPTO-50k. AVAILABILITY AND IMPLEMENTATION: Our code and data are available at https://github.com/fyabc/BT4MolGen. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Benchmarking , Natural Language Processing
14.
Bioinformatics ; 38(22): 5100-5107, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36205562

ABSTRACT

MOTIVATION: The interaction between drugs and targets (DTI) in human body plays a crucial role in biomedical science and applications. As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from biomedical literature, which are usually triplets about drugs, targets and their interaction, becomes an urgent demand in the industry. Existing methods of discovering biological knowledge are mainly extractive approaches that often require detailed annotations (e.g. all mentions of biological entities, relations between every two entity mentions, etc.). However, it is difficult and costly to obtain sufficient annotations due to the requirement of expert knowledge from biomedical domains. RESULTS: To overcome these difficulties, we explore an end-to-end solution for this task by using generative approaches. We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations. Further, we propose a semi-supervised method, which leverages the aforementioned end-to-end model to filter unlabeled literature and label them. Experimental results show that our method significantly outperforms extractive baselines on DTI discovery. We also create a dataset, KD-DTI, to advance this task and release it to the community. AVAILABILITY AND IMPLEMENTATION: Our code and data are available at https://github.com/bert-nmt/BERT-DTI. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Publications , Software , Humans , Drug Interactions
15.
Br J Clin Pharmacol ; 89(12): 3659-3668, 2023 12.
Article in English | MEDLINE | ID: mdl-37464978

ABSTRACT

AIMS: This study evaluated the effects of SHR0302 on the pharmacokinetics of cytochrome P450 (CYP) probe substrates. METHODS: We performed a single-centre, open-label, three-period drug-drug interaction (DDI) study in 24 healthy subjects (NCT05392127). Subjects received a single oral dose of 5 mg warfarin (CYP2C9), 20 mg omeprazole (CYP2C19) and 15 mg midazolam (CYP3A4) on Days 1, 8 and 22, and received 0.5 mg repaglinide (CYP2C8) on Days 7, 14 and 28. Multiple oral doses of 8 mg SHR0302 were administered once daily from Day 8 to Day 28. RESULTS: The exposure of S-warfarin and repaglinide were comparable before and after SHR0302 administration. AUC of midazolam was not affected by SHR0302, whereas the administration of SHR0302 slightly decreased the Cmax of midazolam by 7.6% (single dose) and 15.7% (once daily for 14 days). The AUC0-t , AUC0-inf , and Cmax of omeprazole were slightly decreased after a single dose of SHR0302 by 19.2%, 21.8% and 23.5%, respectively. In the presence of SHR0302 for 14 days, the AUC0-t , AUC0-inf , and Cmax of omeprazole were marginally reduced by 3.0%, 16.4% and 8.3%, respectively. According to the induction mechanism of the CYP enzyme, for the investigation of the induction effect, the results of multiple administrations of the perpetrator were more reliable than those of the single dose. CONCLUSIONS: The results demonstrated that co-administration of SHR0302 8 mg once daily is unlikely to have a clinically meaningful effect on the exposure of drugs metabolized by CYP3A4, CYP2C8, CYP2C9 and CYP2C19 in healthy subjects.


Subject(s)
Cytochrome P-450 CYP3A , Midazolam , Humans , Cytochrome P-450 CYP3A/metabolism , Midazolam/pharmacokinetics , Cytochrome P-450 CYP2C8/metabolism , Cytochrome P-450 CYP2C9 , Warfarin , Cytochrome P-450 CYP2C19/genetics , Drug Interactions , Cytochrome P-450 Enzyme System/metabolism , Omeprazole/pharmacokinetics , Healthy Volunteers
16.
Neuropsychobiology ; 82(3): 131-149, 2023.
Article in English | MEDLINE | ID: mdl-37075733

ABSTRACT

INTRODUCTION: Although abundant research delving into the acute exercise-induced modulation of cognitive performance and the P300-ERP component has been conducted, there is a lack of consensus regarding whether or not this type of intervention has a beneficial effect on cognition and how it relates to the P300-ERP. METHODS: To examine the possible sources of this discrepancy, we conducted a meta-analysis of ERP results together with cognitive performance that were systemically stratified by relevant demographic and methodological moderators. RESULTS: Our results indicate that while acute exercise exerted an overall stable effect on cognitive improvement, associated with enlarged P300 amplitudes, the effect size varied across factors of age, biological sex, exercise intensity, exercise type, control type, and experimental design. Future research taking into consideration modulating factors as to avoid misestimating the beneficial effects of acute exercise are encouraged. CONCLUSION: All in all, and to our knowledge, this is the first meta-analysis quantitatively summarizing the relevant literature on the associations between P300-ERP correlates, acute exercise, and its positive influence on attention and cognitive performance in healthy individuals.


Subject(s)
Electroencephalography , Exercise , Humans , Exercise/psychology , Cognition , Attention , Event-Related Potentials, P300
17.
BMC Neurol ; 23(1): 111, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932413

ABSTRACT

BACKGROUND: Lymphomas are malignant tumors of the immune system that arise in lymphoid organs and can impact the central nervous system. However, lymphomas with acute myelitis as the first manifestation are exceedingly rare, and most of them are symptoms of spinal cord damage due to the lack of specificity in their clinical manifestations. The rate of early misdiagnosis is exceedingly high, and the prognosis is dire. Here, we report a case of mature B-cell lymphoma with acute myelitis as the first presentation and review the related literature. CASE PRESENTATION: In this study, We report a case of a 70-year-old male patient with bilateral lower extremity weakness, bowel and bladder dysfunction, and recurrent fever. A paraureteral mass was seen beneath the right kidney on imaging, and the final pathological biopsy revealed: CD20 ( +), mature B-cell tumor, The patient refused to undergo additional tests to ascertain the type of lymphoma and subsequent therapy and asked to be discharged. In mid-November 2020, the patient died. CONCLUSIONS: This case report shows that patients with lymphoma can present with acute myelitis as the first symptom, especially if they have recurrent fever, that conventional treatment for myelitis is ineffective, and that tumors are considered after other causes of myelitis have been ruled out. Furthermore, a focused search for tumor-related evidence, as well as early identification and therapy, may help patients live longer lives.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Myelitis , Male , Humans , Aged , Myelitis/diagnostic imaging , Myelitis/etiology , Lymphoma, B-Cell/complications , Lymphoma, B-Cell/diagnosis , Lymphoma/pathology
18.
Exp Lung Res ; 49(1): 178-192, 2023.
Article in English | MEDLINE | ID: mdl-37874145

ABSTRACT

PURPOSE/AIM: Bronchopulmonary dysplasia (BPD) is associated with poor survival in preterm infants. Intrauterine infection can aggravate the degree of obstruction of alveolar development in premature infants; however, the pathogenic mechanism remains unclear. In this study, we sought to determine whether pyroptosis could be inhibited by downregulating mammalian target of rapamycin (mTOR) activation and inducing autophagy in BPD-affected lung tissue. MATERIALS AND METHODS: We established a neonatal rat model of BPD induced by intrauterine infection via intraperitoneally injecting pregnant rats with lipopolysaccharide (LPS). Subsequently, mTOR levels and pyroptosis were evaluated using immunohistochemistry, immunofluorescence, TUNEL staining, and western blotting. The Shapiro-Wilk test was employed to assess the normality of the experimental data. Unpaired t-tests were used to compare the means between two groups, and comparisons between multiple groups were performed using analysis of variance. RESULTS: Pyroptosis of lung epithelial cells increased in BPD lung tissues. After administering an mTOR phosphorylation inhibitor (rapamycin) to neonatal rats with BPD, the level of autophagy increased, while the expression of autophagy cargo adaptors, LC3 and p62, did not differ. Following rapamycin treatment, NLRP3, Pro-caspase-1, caspase-1, pro-IL-1ß, IL-1ß, IL-18/Pro-IL-18, N-GSDMD/GSDMD, Pro-caspase-11, and caspase-11 were negatively regulated in BPD lung tissues. The opposite results were observed after treatment with the autophagy inhibitor MHY1485, showing an increase in pyroptosis and a significant decrease in the number of alveoli in BPD. CONCLUSIONS: Rapamycin reduces pyroptosis in neonatal rats with LPS-induced BPD by inhibiting mTOR phosphorylation and inducing autophagy; hence, it may represent a potential therapeutic for treating BPD.


Subject(s)
Bronchopulmonary Dysplasia , Animals , Female , Humans , Pregnancy , Rats , Autophagy , Bronchopulmonary Dysplasia/drug therapy , Bronchopulmonary Dysplasia/metabolism , Caspases/metabolism , Infant, Premature , Interleukin-18/metabolism , Phosphorylation , Pyroptosis , Sirolimus/pharmacology , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/metabolism
19.
BMC Psychiatry ; 23(1): 291, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37101196

ABSTRACT

BACKGROUND: Non-suicidal self-injury (NSSI) is a risk factor for suicide. This study aimed to investigate the prevalence of NSSI and professional psychological help-seeking status and influencing factors among left-behind children (LBC) in China. METHODS: We implemented a population-based cross-sectional study in participants aged 10-18 years. Sociodemographic characteristics, NSSI, help-seeking status and coping style were measured by self-reported questionnaires. A total of 16,866 valid questionnaires were collected, including 6096 LBC. Binary logistic regression models were used to analyze the factors influencing NSSI and professional psychological help-seeking. RESULTS: The incidence of NSSI among LBC was 4.6%, significantly higher than that of non-left-behind children (NLBC). This incidence was higher among girls. Moreover, 53.9% of LBC with NSSI did not receive any treatment and only 22.0% sought professional psychological help. LBC often adopt emotion-oriented coping styles, specifically, those with NSSI. LBC with NSSI who seek professional help tend to adopt problem-oriented coping styles. Logistic regression analysis revealed that girls, learning stage, single-parent, remarried families, patience, and emotional venting were risk factors for NSSI in LBC, while problem-solving and social support seeking were protective factors. Moreover, problem-solving was also a predictor for seeking professional psychological help, patience will prevent it. LIMITATIONS: This was an online survey. CONCLUSIONS: The prevalence of NSSI in LBC is high. Gender, grade, family structure, and coping style affect the occurrence of NSSI among LBC. Only a few LBC with NSSI seek professional psychological help, while the coping style will affect the help-seeking behavior.


Subject(s)
East Asian People , Self-Injurious Behavior , Child , Female , Humans , China/epidemiology , Cross-Sectional Studies , Emotions , Prevalence , Risk Factors , Self-Injurious Behavior/epidemiology , Self-Injurious Behavior/psychology , Surveys and Questionnaires , Male , Adolescent
20.
J Nanobiotechnology ; 21(1): 27, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36694219

ABSTRACT

BACKGROUND: Magnetofection-mediated gene delivery shows great therapeutic potential through the regulation of the direction and degree of differentiation. Lumbar degenerative disc disease (DDD) is a serious global orthopaedic problem. However, even though intervertebral fusion is the gold standard for the treatment of DDD, its therapeutic effect is unsatisfactory. Here, we described a novel magnetofection system for delivering therapeutic miRNAs to promote osteogenesis and angiogenesis in patients with lumbar DDD. RESULTS: Co-stimulation with electromagnetic field (EMF) and iron oxide nanoparticles (IONPs) enhanced magnetofection efficiency significantly. Moreover, in vitro, magnetofection of miR-21 into bone marrow mesenchymal stem cells (BMSCs) and human umbilical endothelial cells (HUVECs) influenced their cellular behaviour and promoted osteogenesis and angiogenesis. Then, gene-edited seed cells were planted onto polycaprolactone (PCL) and hydroxyapatite (HA) scaffolds (PCL/HA scaffolds) and evolved into the ideal tissue-engineered bone to promote intervertebral fusion. Finally, our results showed that EMF and polyethyleneimine (PEI)@IONPs were enhancing transfection efficiency by activating the p38 MAPK pathway. CONCLUSION: Our findings illustrate that a magnetofection system for delivering miR-21 into BMSCs and HUVECs promoted osteogenesis and angiogenesis in vitro and in vivo and that magnetofection transfection efficiency improved significantly under the co-stimulation of EMF and IONPs. Moreover, it relied on the activation of p38 MAPK pathway. This magnetofection system could be a promising therapeutic approach for various orthopaedic diseases.


Subject(s)
Electromagnetic Fields , Intervertebral Disc Degeneration , MicroRNAs , Osteogenesis , Humans , Cell Differentiation , Endothelial Cells , Magnetic Iron Oxide Nanoparticles , MicroRNAs/genetics , Osteogenesis/genetics , Osteogenesis/physiology , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/therapy
SELECTION OF CITATIONS
SEARCH DETAIL