Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Environ Sci Technol ; 58(9): 4415-4427, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38373279

ABSTRACT

Efficient mono- and divalent ion separation is pivotal for environmental conservation and energy utilization. Two-dimensional (2D) materials featuring interlayer nanochannels exhibit unique water and ion transport properties, rendering them highly suitable for water treatment membranes. In this work, we incorporated polydopamine/polyethylenimine (PDA/PEI) copolymers into 2D montmorillonite (MMT) nanosheet interlayer channels through electrostatic interactions and bioinspired bonding. A modified laminar structure was formed on the substrate surface via a straightforward vacuum filtration. The electrodialysis experiments reveal that these membranes could achieve monovalent permselectivity of 11.06 and Na+ flux of 2.09 × 10-8 mol cm-2 s-1. The enhanced permselectivity results from the synergistic effect of electrostatic and steric hindrance effect. In addition, the interaction between the PDA/PEI copolymer and the MMT nanosheet ensures the long-term operational stability of the membranes. Theoretical simulations reveal that Na+ has a lower migration energy barrier and higher migration rate for the modified MMT-based membrane compared to Mg2+. This work presents a novel approach for the development of monovalent permselective membranes.


Subject(s)
Bentonite , Water Purification , Ions , Filtration , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL