Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurophysiol ; 132(4): 1126-1141, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39196679

ABSTRACT

Walking in natural environments requires visually guided modifications, which can be more challenging when involving sideways steps rather than longer steps. This exploratory study investigated whether these two types of modifications involve different changes in the central drive to spinal motor neurons of leg muscles. Fifteen adults [age: 36 ± 6 (SD) years] walked on a treadmill (4 km/h) while observing a screen displaying the real-time position of their toes. At the beginning of the swing phase, a visual target appeared in front (forward) or medial-lateral (sideways) of the ground contact in random step cycles (approximately every third step). We measured three-dimensional kinematics and electromyographic activity from leg muscles bilaterally. Intermuscular coherence was calculated in the alpha (5-15 Hz), beta (15-30 Hz), and gamma bands (30-45 Hz) approximately 230 ms before and after ground contact in control and target steps. Results showed that adjustments toward sideways targets were associated with significantly higher error, lower foot lift, and higher cocontraction between antagonist ankle muscles. Movements toward sideways targets were associated with larger beta-band soleus (SOL): medial gastrocnemius (MG) coherence and a more narrow and larger peak of synchronization in the cumulant density before ground contact. In contrast, movements toward forward targets showed no significant differences in coherence or synchronization compared with control steps. Larger SOL:MG beta-band coherence and short-term synchronization were observed during sideways, but not forward, gait modifications. This suggests that visually guided gait modifications may involve differences in the central drive to spinal ankle motor neurons dependent on the level of task difficulty.NEW & NOTEWORTHY This exploratory study suggests a specific and temporally restricted increase of central (likely corticospinal) drive to ankle muscles in relation to visually guided gait modifications. The findings indicate that a high level of visual attention to control the position of the ankle joint precisely before ground contact may involve increased central drive to ankle muscles. These findings are important for understanding the neural mechanisms underlying visually guided gait and may help develop rehabilitation interventions.


Subject(s)
Gait , Motor Neurons , Muscle, Skeletal , Humans , Adult , Male , Female , Muscle, Skeletal/physiology , Motor Neurons/physiology , Gait/physiology , Biomechanical Phenomena/physiology , Electromyography , Visual Perception/physiology , Spinal Cord/physiology , Psychomotor Performance/physiology , Middle Aged , Walking/physiology , Leg/physiology
2.
PLoS Comput Biol ; 18(3): e1009887, 2022 03.
Article in English | MEDLINE | ID: mdl-35245281

ABSTRACT

Synchronization of neural oscillations is thought to facilitate communication in the brain. Neurodegenerative pathologies such as Parkinson's disease (PD) can result in synaptic reorganization of the motor circuit, leading to altered neuronal dynamics and impaired neural communication. Treatments for PD aim to restore network function via pharmacological means such as dopamine replacement, or by suppressing pathological oscillations with deep brain stimulation. We tested the hypothesis that brain stimulation can operate beyond a simple "reversible lesion" effect to augment network communication. Specifically, we examined the modulation of beta band (14-30 Hz) activity, a known biomarker of motor deficits and potential control signal for stimulation in Parkinson's. To do this we setup a neural mass model of population activity within the cortico-basal ganglia-thalamic (CBGT) circuit with parameters that were constrained to yield spectral features comparable to those in experimental Parkinsonism. We modulated the connectivity of two major pathways known to be disrupted in PD and constructed statistical summaries of the spectra and functional connectivity of the resulting spontaneous activity. These were then used to assess the network-wide outcomes of closed-loop stimulation delivered to motor cortex and phase locked to subthalamic beta activity. Our results demonstrate that the spatial pattern of beta synchrony is dependent upon the strength of inputs to the STN. Precisely timed stimulation has the capacity to recover network states, with stimulation phase inducing activity with distinct spectral and spatial properties. These results provide a theoretical basis for the design of the next-generation brain stimulators that aim to restore neural communication in disease.


Subject(s)
Deep Brain Stimulation , Motor Cortex , Parkinson Disease , Basal Ganglia/physiology , Deep Brain Stimulation/methods , Humans , Motor Cortex/physiology , Neurons/physiology , Parkinson Disease/therapy , Thalamus/physiology
3.
Cereb Cortex ; 33(2): 258-277, 2022 12 20.
Article in English | MEDLINE | ID: mdl-35238339

ABSTRACT

The cortical mechanisms underlying the act of taking a step-including planning, execution, and modification-are not well understood. We hypothesized that oscillatory communication in a parieto-frontal and corticomuscular network is involved in the neural control of visually guided steps. We addressed this hypothesis using source reconstruction and lagged coherence analysis of electroencephalographic and electromyographic recordings during visually guided stepping and 2 control tasks that aimed to investigate processes involved in (i) preparing and taking a step and (ii) adjusting a step based on visual information. Steps were divided into planning, initiation, and execution phases. Taking a step was characterized by an upregulation of beta/gamma coherence within the parieto-frontal network during planning followed by a downregulation of alpha and beta/gamma coherence during initiation and execution. Step modification was characterized by bidirectional modulations of alpha and beta/gamma coherence in the parieto-frontal network during the phases leading up to step execution. Corticomuscular coherence did not exhibit task-related effects. We suggest that these task-related modulations indicate that the brain makes use of communication through coherence in the context of large-scale, whole-body movements, reflecting a process of flexibly fine-tuning inter-regional communication to achieve precision control during human stepping.


Subject(s)
Electroencephalography , Muscle, Skeletal , Humans , Electromyography , Muscle, Skeletal/physiology , Cognition , Movement
4.
Article in English | MEDLINE | ID: mdl-35577510

ABSTRACT

In the last 6 years, following the first pathological description of presumed amyloid-beta (Aß) transmission in humans (in 2015) and subsequent experimental confirmation (in 2018), clinical cases of iatrogenic cerebral amyloid angiopathy (CAA)-attributed to the transmission of Aß seeds-have been increasingly recognised and reported. This newly described form of CAA is associated with early disease onset (typically in the third to fifth decade), and often presents with intracerebral haemorrhage, but also seizures and cognitive impairment. Although assumed to be rare, it is important that clinicians remain vigilant for potential cases, particularly as the optimal management, prognosis, true incidence and public health implications remain unknown. This review summarises our current understanding of the clinical spectrum of iatrogenic CAA and provides a diagnostic framework for clinicians. We provide clinical details for three patients with pathological evidence of iatrogenic CAA and present a summary of the published cases to date (n=20), identified following a systematic review. Our aims are: (1) To describe the clinical features of iatrogenic CAA, highlighting important similarities and differences between iatrogenic and sporadic CAA; and (2) To discuss potential approaches for investigation and diagnosis, including suggested diagnostic criteria for iatrogenic CAA.

5.
Brain ; 144(2): 682-693, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33313649

ABSTRACT

Reports of Guillain-Barré syndrome (GBS) have emerged during the Coronavirus disease 2019 (COVID-19) pandemic. This epidemiological and cohort study sought to investigate any causative association between COVID-19 infection and GBS. The epidemiology of GBS cases reported to the UK National Immunoglobulin Database was studied from 2016 to 2019 and compared to cases reported during the COVID-19 pandemic. Data were stratified by hospital trust and region, with numbers of reported cases per month. UK population data for COVID-19 infection were collated from UK public health bodies. In parallel, but separately, members of the British Peripheral Nerve Society prospectively reported incident cases of GBS during the pandemic at their hospitals to a central register. The clinical features, investigation findings and outcomes of COVID-19 (definite or probable) and non-COVID-19 associated GBS cases in this cohort were compared. The incidence of GBS treated in UK hospitals from 2016 to 2019 was 1.65-1.88 per 100 000 individuals per year. GBS incidence fell between March and May 2020 compared to the same months of 2016-19. GBS and COVID-19 incidences during the pandemic also varied between regions and did not correlate with one another (r = 0.06, 95% confidence interval: -0.56 to 0.63, P = 0.86). In the independent cohort study, 47 GBS cases were reported (COVID-19 status: 13 definite, 12 probable, 22 non-COVID-19). There were no significant differences in the pattern of weakness, time to nadir, neurophysiology, CSF findings or outcome between these groups. Intubation was more frequent in the COVID-19 affected cohort (7/13, 54% versus 5/22, 23% in COVID-19-negative) attributed to COVID-19 pulmonary involvement. Although it is not possible to entirely rule out the possibility of a link, this study finds no epidemiological or phenotypic clues of SARS-CoV-2 being causative of GBS. GBS incidence has fallen during the pandemic, which may be the influence of lockdown measures reducing transmission of GBS inducing pathogens such as Campylobacter jejuni and respiratory viruses.


Subject(s)
COVID-19/epidemiology , Guillain-Barre Syndrome/epidemiology , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Retrospective Studies , SARS-CoV-2 , United Kingdom/epidemiology , Young Adult
6.
Neurol Sci ; 43(9): 5643-5646, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35691973

ABSTRACT

BACKGROUND AND IMPORTANCE  : Classical infratentorial superficial siderosis (iSS) is characterised by repeated insidious bleeding into the subarachnoid space, leading to haemosiderin deposition within the subpial layers of the brainstem, cerebellum and spinal cord, sometimes with supratentorial involvement. Although nearly always associated with a dural defect (usually from previous trauma or neurosurgery) there is little evidence to support definitive investigation and management strategies. Here, we present a novel investigation strategy to identify a dural defect and subsequent successful surgical repair with biochemical resolution of subarachnoid bleeding. CLINICAL PRESENTATION: A 55-year-old gentleman presented with a 15-year progressive history of sensorineural deafness, followed by a slowly worsening gait ataxia. He had previously sustained cranio-spinal trauma. On examination there were features of myelopathy and ataxia. MRI demonstrated classical iSS, affecting cerebellum and cerebral cortices, with a cervicothoracic epidural CSF collection. Lumbar puncture (LP) revealed elevated ferritin 413 ng/mL and red cell count of 4160. Reverse CT myelography, a novel technique involving contrast injection into the collection, delineated a dural defect at the T9/T10 level that was not present on conventional myelography. Following surgical repair, repeat LP twelve months later demonstrated biochemical improvement (ferritin 18 ng/mL, red cells < 1). There was no further neurological deterioration in symptoms during eighteen months follow-up. CONCLUSION: We show the value of a rational targeted investigation pathway in identifying a surgically reparable dural defect underlying classical iSS. We also provide proof of concept that surgical repair can facilitate biochemical resolution of subarachnoid bleeding and might prevent progression of neurological disability.


Subject(s)
Siderosis , Subarachnoid Hemorrhage , Ferritins , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Myelography , Siderosis/complications , Siderosis/diagnostic imaging , Siderosis/surgery , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/diagnostic imaging , Subarachnoid Hemorrhage/surgery , Subarachnoid Space/surgery
7.
Pract Neurol ; 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35817559

ABSTRACT

The term superficial siderosis (SS) is derived from the Greek word 'sideros', meaning iron. It includes two subtypes, distinguished by their anatomical distribution, causes and clinical features: 'classical' infratentorial SS (iSS, which sometimes also affects supratentorial regions) and cortical SS (cSS, which affects only supratentorial regions). This paper considers iSS, a potentially disabling disorder usually associated with very slow persistent or intermittent subarachnoid bleeding from a dural defect, and characterised by progressive hearing and vestibular impairment, ataxia, myelopathy and cognitive dysfunction. The causal dural defect-most often spinal but sometimes in the posterior fossa-typically follows trauma or neurosurgery occurring decades before diagnosis. Increasing recognition of iSS with paramagnetic-sensitive MRI is leading to an unmet clinical need. Given the diagnostic challenges and complex neurological impairments in iSS, we have developed a multidisciplinary approach involving key teams. We discuss pathophysiology, diagnosis and management of iSS, including a proposed clinical care pathway.

8.
Neuroimage ; 236: 118020, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33839264

ABSTRACT

This paper describes and validates a novel framework using the Approximate Bayesian Computation (ABC) algorithm for parameter estimation and model selection in models of mesoscale brain network activity. We provide a proof of principle, first pass validation of this framework using a set of neural mass models of the cortico-basal ganglia thalamic circuit inverted upon spectral features from experimental, in vivo recordings. This optimization scheme relaxes an assumption of fixed-form posteriors (i.e. the Laplace approximation) taken in previous approaches to inverse modelling of spectral features. This enables the exploration of model dynamics beyond that approximated from local linearity assumptions and so fit to explicit, numerical solutions of the underlying non-linear system of equations. In this first paper, we establish a face validation of the optimization procedures in terms of: (i) the ability to approximate posterior densities over parameters that are plausible given the known causes of the data; (ii) the ability of the model comparison procedures to yield posterior model probabilities that can identify the model structure known to generate the data; and (iii) the robustness of these procedures to local minima in the face of different starting conditions. Finally, as an illustrative application we show (iv) that model comparison can yield plausible conclusions given the known neurobiology of the cortico-basal ganglia-thalamic circuit in Parkinsonism. These results lay the groundwork for future studies utilizing highly nonlinear or brittle models that can explain time dependant dynamics, such as oscillatory bursts, in terms of the underlying neural circuits.


Subject(s)
Algorithms , Basal Ganglia/physiology , Cerebral Cortex/physiology , Models, Theoretical , Nerve Net/physiology , Neuroimaging/methods , Parkinsonian Disorders/physiopathology , Thalamus/physiology , Animals , Basal Ganglia/diagnostic imaging , Bayes Theorem , Cerebral Cortex/diagnostic imaging , Computer Simulation , Connectome , Disease Models, Animal , Electrocorticography , Male , Parkinsonian Disorders/diagnostic imaging , Proof of Concept Study , Rats , Rats, Sprague-Dawley , Thalamus/diagnostic imaging
9.
Brain ; 143(10): 3104-3120, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32637987

ABSTRACT

Preliminary clinical data indicate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with neurological and neuropsychiatric illness. Responding to this, a weekly virtual coronavirus disease 19 (COVID-19) neurology multi-disciplinary meeting was established at the National Hospital, Queen Square, in early March 2020 in order to discuss and begin to understand neurological presentations in patients with suspected COVID-19-related neurological disorders. Detailed clinical and paraclinical data were collected from cases where the diagnosis of COVID-19 was confirmed through RNA PCR, or where the diagnosis was probable/possible according to World Health Organization criteria. Of 43 patients, 29 were SARS-CoV-2 PCR positive and definite, eight probable and six possible. Five major categories emerged: (i) encephalopathies (n = 10) with delirium/psychosis and no distinct MRI or CSF abnormalities, and with 9/10 making a full or partial recovery with supportive care only; (ii) inflammatory CNS syndromes (n = 12) including encephalitis (n = 2, para- or post-infectious), acute disseminated encephalomyelitis (n = 9), with haemorrhage in five, necrosis in one, and myelitis in two, and isolated myelitis (n = 1). Of these, 10 were treated with corticosteroids, and three of these patients also received intravenous immunoglobulin; one made a full recovery, 10 of 12 made a partial recovery, and one patient died; (iii) ischaemic strokes (n = 8) associated with a pro-thrombotic state (four with pulmonary thromboembolism), one of whom died; (iv) peripheral neurological disorders (n = 8), seven with Guillain-Barré syndrome, one with brachial plexopathy, six of eight making a partial and ongoing recovery; and (v) five patients with miscellaneous central disorders who did not fit these categories. SARS-CoV-2 infection is associated with a wide spectrum of neurological syndromes affecting the whole neuraxis, including the cerebral vasculature and, in some cases, responding to immunotherapies. The high incidence of acute disseminated encephalomyelitis, particularly with haemorrhagic change, is striking. This complication was not related to the severity of the respiratory COVID-19 disease. Early recognition, investigation and management of COVID-19-related neurological disease is challenging. Further clinical, neuroradiological, biomarker and neuropathological studies are essential to determine the underlying pathobiological mechanisms that will guide treatment. Longitudinal follow-up studies will be necessary to ascertain the long-term neurological and neuropsychological consequences of this pandemic.


Subject(s)
Coronavirus Infections , Nervous System Diseases , Pandemics , Pneumonia, Viral , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Drug Utilization/statistics & numerical data , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , London/epidemiology , Magnetic Resonance Imaging , Male , Middle Aged , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/drug therapy , Nervous System Diseases/epidemiology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Retrospective Studies , SARS-CoV-2 , Young Adult
10.
Neuroimage ; 218: 116796, 2020 09.
Article in English | MEDLINE | ID: mdl-32325209

ABSTRACT

BACKGROUND: 'Non-parametric directionality' (NPD) is a novel method for estimation of directed functional connectivity (dFC) in neural data. The method has previously been verified in its ability to recover causal interactions in simulated spiking networks in Halliday et al. (2015). METHODS: This work presents a validation of NPD in continuous neural recordings (e.g. local field potentials). Specifically, we use autoregressive models to simulate time delayed correlations between neural signals. We then test for the accurate recovery of networks in the face of several confounds typically encountered in empirical data. We examine the effects of NPD under varying: a) signal-to-noise ratios, b) asymmetries in signal strength, c) instantaneous mixing, d) common drive, e) data length, and f) parallel/convergent signal routing. We also apply NPD to data from a patient who underwent simultaneous magnetoencephalography and deep brain recording. RESULTS: We demonstrate that NPD can accurately recover directed functional connectivity from simulations with known patterns of connectivity. The performance of the NPD measure is compared with non-parametric estimators of Granger causality (NPG), a well-established methodology for model-free estimation of dFC. A series of simulations investigating synthetically imposed confounds demonstrate that NPD provides estimates of connectivity that are equivalent to NPG, albeit with an increased sensitivity to data length. However, we provide evidence that: i) NPD is less sensitive than NPG to degradation by noise; ii) NPD is more robust to the generation of false positive identification of connectivity resulting from SNR asymmetries; iii) NPD is more robust to corruption via moderate amounts of instantaneous signal mixing. CONCLUSIONS: The results in this paper highlight that to be practically applied to neural data, connectivity metrics should not only be accurate in their recovery of causal networks but also resistant to the confounding effects often encountered in experimental recordings of multimodal data. Taken together, these findings position NPD at the state-of-the-art with respect to the estimation of directed functional connectivity in neuroimaging.


Subject(s)
Algorithms , Brain/physiology , Computer Simulation , Models, Neurological , Nerve Net/physiology , Humans , Neuroimaging
11.
Exp Brain Res ; 238(7-8): 1627-1636, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32382862

ABSTRACT

Spastic movement disorder is characterized by reduced ability to selectively activate muscles with significant co-activation of antagonist muscles. It has traditionally been thought that hyperexcitable stretch reflexes have a central role in the pathophysiology and the clinical manifestations of the disorder. Here we argue that the main functional challenges for persons with spastic movement disorder are related to contractures, paresis, weak muscles and inappropriate central motor commands, whereas hyperexcitable reflexes play no or only an insignificant functional role. Co-activation of antagonist muscles and stiff posture and gait may rather be adaptations that aim to ensure joint and postural stability due to insufficient muscle strength. Aberrant (involuntary) muscle activity is likely related to an inadequate prediction of the sensory consequences of movement and a resulting impairment of muscle coordination. We argue that improvement of functional muscle strength and muscle coordination following central motor lesions may be achieved by optimizing integration of somatosensory information into central feedforward motor programs, whereas anti-spastic therapy that aims to reduce reflex activity may be less efficient. This opens for novel investigations into new treatment strategies that may improve functional control of movement and prevent reduced joint mobility in people with brain lesions.


Subject(s)
Movement Disorders , Muscle Spasticity , Electromyography , Humans , Movement , Movement Disorders/etiology , Muscle, Skeletal , Reflex , Reflex, Stretch
12.
Brain ; 142(3): 526-541, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30726881

ABSTRACT

Voluntary toe walking in adults is characterized by feedforward control of ankle muscles in order to ensure optimal stability of the ankle joint at ground impact. Toe walking is frequently observed in children with cerebral palsy, but the mechanisms involved have not been clarified. Here, we investigated maturation of voluntary toe walking in typically-developing children and typically-developed adults and compared it to involuntary toe walking in children with cerebral palsy. Twenty-eight children with cerebral palsy (age 3-14 years), 24 typically-developing children (age 2-14 years) and 15 adults (mean age 30.7 years) participated in the study. EMG activity was measured from the tibialis anterior and soleus muscles together with knee and ankle joint position during treadmill walking. In typically-developed adults, low step-to-step variability of the drop of the heel after ground impact was correlated with low tibialis anterior and high soleus EMG with no significant coupling between the antagonist muscle EMGs. Typically-developing children showed a significant age-related decline in EMG amplitude reaching an adult level at 10-12 years of age. The youngest typically-developing children showed a broad peak EMG-EMG synchronization (>100 ms) associated with large 5-15 Hz coherence between antagonist muscle activities. EMG coherence declined with age and at the age of 10-12 years no correlation was observed similar to adults. This reduction in coherence was closely related to improved step-to-step stability of the ankle joint position. Children with cerebral palsy generally showed lower EMG levels than typically-developing children and larger step-to-step variability in ankle joint position. In contrast to typically-developing children, children with cerebral palsy showed no age-related decline in tibialis anterior EMG amplitude. Motor unit synchronization and 5-15 Hz coherence between antagonist EMGs was observed more frequently in children with cerebral palsy when compared to typically-developing children and in contrast to typically-developing participants there was no age-related decline. We conclude that typically-developing children develop mature feedforward control of ankle muscle activity as they age, such that at age 10-12 years there is little agonist-antagonist muscle co-contraction around the time of foot-ground contact during toe walking. Children with cerebral palsy, in contrast, continue to co-contract agonist and antagonist ankle muscles when toe walking. We speculate that children with cerebral palsy maintain a co-contraction activation pattern when toe walking due to weak muscles and insufficient motor and sensory signalling necessary for optimization of feedforward motor programs. These findings are important for understanding of the pathophysiology and treatment of toe walking.


Subject(s)
Cerebral Palsy/physiopathology , Movement Disorders/physiopathology , Walking/physiology , Adolescent , Adult , Ankle/physiopathology , Ankle Joint/physiopathology , Biomechanical Phenomena , Child , Child, Preschool , Electromyography , Exercise Test , Female , Gait/physiology , Humans , Male , Muscle Contraction , Muscle, Skeletal/physiopathology , Toes/physiology
13.
J Physiol ; 596(11): 2159-2172, 2018 06.
Article in English | MEDLINE | ID: mdl-29572934

ABSTRACT

KEY POINTS: Activation of ankle muscles at ground contact during toe walking is unaltered when sensory feedback is blocked or the ground is suddenly dropped. Responses in the soleus muscle to transcranial magnetic stimulation, but not peripheral nerve stimulation, are facilitated at ground contact during toe walking. We argue that toe walking is supported by feedforward control at ground contact. ABSTRACT: Toe walking requires careful control of the ankle muscles in order to absorb the impact of ground contact and maintain a stable position of the joint. The present study aimed to clarify the peripheral and central neural mechanisms involved. Fifteen healthy adults walked on a treadmill (3.0 km h-1 ). Tibialis anterior (TA) and soleus (Sol) EMG, knee and ankle joint angles, and gastrocnemius-soleus muscle fascicle lengths were recorded. Peripheral and central contributions to the EMG activity were assessed by afferent blockade, H-reflex testing, transcranial magnetic brain stimulation (TMS) and sudden unloading of the planter flexor muscle-tendon complex. Sol EMG activity started prior to ground contact and remained high throughout stance. TA EMG activity, which is normally seen around ground contact during heel strike walking, was absent. Although stretch of the Achilles tendon-muscle complex was observed after ground contact, this was not associated with lengthening of the ankle plantar flexor muscle fascicles. Sol EMG around ground contact was not affected by ischaemic blockade of large-diameter sensory afferents, or the sudden removal of ground support shortly after toe contact. Soleus motor-evoked potentials elicited by TMS were facilitated immediately after ground contact, whereas Sol H-reflexes were not. These findings indicate that at the crucial time of ankle stabilization following ground contact, toe walking is governed by centrally mediated motor drive rather than sensory driven reflex mechanisms. These findings have implications for our understanding of the control of human gait during voluntary toe walking.


Subject(s)
Achilles Tendon/physiology , Ankle Joint/physiology , Gait , H-Reflex , Muscle Contraction , Toes/physiology , Walking , Adult , Biomechanical Phenomena , Evoked Potentials, Motor , Female , Humans , Ischemia/physiopathology , Male , Middle Aged , Muscle, Skeletal/physiology , Peripheral Nerves/physiology , Transcranial Magnetic Stimulation
14.
J Neurophysiol ; 119(5): 1608-1628, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29357448

ABSTRACT

Much of the motor impairment associated with Parkinson's disease is thought to arise from pathological activity in the networks formed by the basal ganglia (BG) and motor cortex. To evaluate several hypotheses proposed to explain the emergence of pathological oscillations in parkinsonism, we investigated changes to the directed connectivity in BG networks following dopamine depletion. We recorded local field potentials (LFPs) in the cortex and basal ganglia of rats rendered parkinsonian by injection of 6-hydroxydopamine (6-OHDA) and in dopamine-intact controls. We performed systematic analyses of the networks using a novel tool for estimation of directed interactions (nonparametric directionality, NPD). We used a "conditioned" version of the NPD analysis that reveals the dependence of the correlation between two signals on a third reference signal. We find evidence of the dopamine dependency of both low-beta (14-20 Hz) and high-beta/low-gamma (20-40 Hz) directed network interactions. Notably, 6-OHDA lesions were associated with enhancement of the cortical "hyperdirect" connection to the subthalamic nucleus (STN) and its feedback to the cortex and striatum. We find that pathological beta synchronization resulting from 6-OHDA lesioning is widely distributed across the network and cannot be located to any individual structure. Furthermore, we provide evidence that high-beta/gamma oscillations propagate through the striatum in a pathway that is independent of STN. Rhythms at high beta/gamma show susceptibility to conditioning that indicates a hierarchical organization compared with those at low beta. These results further inform our understanding of the substrates for pathological rhythms in salient brain networks in parkinsonism. NEW & NOTEWORTHY We present a novel analysis of electrophysiological recordings in the cortico-basal ganglia network with the aim of evaluating several hypotheses concerning the origins of abnormal brain rhythms associated with Parkinson's disease. We present evidence for changes in the directed connections within the network following chronic dopamine depletion in rodents. These findings speak to the plausibility of a "short-circuiting" of the network that gives rise to the conditions from which pathological synchronization may arise.


Subject(s)
Basal Ganglia/physiopathology , Beta Rhythm/physiology , Cerebral Cortex/physiopathology , Electroencephalography Phase Synchronization/physiology , Electroencephalography/methods , Gamma Rhythm/physiology , Nerve Net/physiopathology , Parkinsonian Disorders/physiopathology , Subthalamic Nucleus/physiopathology , Animals , Disease Models, Animal , Male , Oxidopamine/pharmacology , Parkinsonian Disorders/chemically induced , Rats , Rats, Sprague-Dawley
15.
Ann Neurol ; 81(3): 333-343, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28019651

ABSTRACT

Central nervous system infratentorial superficial siderosis (iSS) is increasingly detected by blood-sensitive magnetic resonance imaging (MRI) sequences. Despite this, there are no standardized diagnostic criteria, and the clinical-radiological spectrum, causes, and optimum investigation strategy are not established. We reviewed clinical and radiological details of patients with iSS assessed at a specialist neurological center during 2004-2016 using predefined standardized radiological criteria. All imaging findings were rated blinded to clinical details. We identified 65 patients with iSS, whom we classified into 2 groups: type 1 (classical) and type 2 (secondary) iSS. Type 1 (classical) iSS included 48 patients without any potentially causal radiologically confirmed single spontaneous or traumatic intracranial hemorrhage, of whom 39 (83%) had hearing loss, ataxia, or myelopathy; type 2 (secondary) iSS included 17 patients with a potentially causal radiologically confirmed spontaneous or traumatic intracranial hemorrhage, of whom none had hearing loss, ataxia, or myelopathy. Of the patients with type 1 (classical) iSS, 40 (83%) had a potentially causal cranial or spinal dural abnormality, 5 (11%) had an alternative cause, and 3 (6%) had no cause identified. Intra-arterial digital subtraction angiography did not identify any underlying causal lesions for type 1 iSS. Type 1 (classical) iSS, defined using simple radiological criteria, is associated with a characteristic neurological syndrome. Rational investigation, including spinal MRI, nearly always reveals a potential cause, most often a dural abnormality. Catheter angiography appears to be unhelpful, suggesting that classical iSS is not associated with macrovascular arterial pathology. Recognition of type 1 (classical) iSS should allow timely diagnosis and early consideration of treatment. Ann Neurol 2017;81:333-343.


Subject(s)
Brain Diseases/diagnostic imaging , Brain Stem/diagnostic imaging , Hemosiderosis/diagnostic imaging , Registries , Spinal Cord Diseases/diagnostic imaging , Adult , Aged , Angiography, Digital Subtraction , Brain Diseases/complications , Brain Diseases/etiology , Female , Hemosiderosis/classification , Hemosiderosis/etiology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Myelography , Retrospective Studies , Spinal Cord Diseases/complications , Spinal Cord Diseases/etiology , Tomography, X-Ray Computed
16.
J Physiol ; 595(8): 2699-2713, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28004392

ABSTRACT

KEY POINTS: The early postnatal development of functional corticospinal connections in human infants is not fully clarified. Corticospinal drive to upper and lower limb muscle shows developmental changes with an increased functional coupling in infants between 9 and 25 weeks in the beta frequency band. The changes in functional coupling coincide with the developmental period where fidgety movements are present in healthy infants. Data support a possible sensitive period where functional connections between corticospinal tract fibres and spinal motoneurones undergo activity-dependent reorganization. ABSTRACT: The early postnatal development of functional corticospinal connections in human infants is not fully clarified. We used EEG and EMG to investigate the development of corticomuscular and intramuscular coherence as indicators of functional corticospinal connectivity in healthy infants aged 1-66 weeks. EEG was recorded over leg and hand area of motor cortex. EMG recordings were made from right ankle dorsiflexor and right wrist extensor muscles. Quantification of the amount of corticomuscular coherence in the 20-40 Hz frequency band showed a significantly larger coherence for infants aged 9-25 weeks compared to younger and older infants. Coherence between paired EMG recordings from tibialis anterior muscle in the 20-40 Hz frequency band was also significantly larger for the 9-25 week age group. A low-amplitude, broad-duration (40-50 ms) central peak of EMG-EMG synchronization was observed for infants younger than 9 weeks, whereas a short-lasting (10-20 ms) central peak was observed for EMG-EMG synchronization in older infants. This peak was largest for infants aged 9-25 weeks. These data suggest that the corticospinal drive to lower and upper limb muscles shows significant developmental changes with an increase in functional coupling in infants aged 9-25 weeks, a period which coincides partly with the developmental period of normal fidgety movements. We propose that these neurophysiological findings may reflect the existence of a sensitive period where the functional connections between corticospinal tract fibres and spinal motoneurones undergo activity-dependent reorganization. This may be relevant for the timing of early therapy interventions in infants with pre- and perinatal brain injury.


Subject(s)
Electromyography/methods , Motor Cortex/growth & development , Muscle Contraction/physiology , Muscle, Skeletal/growth & development , Pyramidal Tracts/growth & development , Age Factors , Female , Humans , Infant , Male , Motor Cortex/physiology , Muscle, Skeletal/physiology , Pyramidal Tracts/physiology
18.
Neuroophthalmology ; 41(1): 41-47, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28228838

ABSTRACT

Neurological complications are the most commonly encountered extra-pulmonary manifestation of infection with Mycoplasma pneumoniae (M. pneumoniae). Here the authors report the case of a 39-year-old woman who was admitted with acute-onset bilateral visual loss coinciding with ascending numbness. Clinical examination, neurological imaging, and nerve conduction studies revealed a syndrome of bilateral optic neuritis and Guillain-Barré syndrome (GBS). Serological testing confirmed recent exposure to M. pneumoniae. The patient did not experience any clinical benefit with pulsed intravenous methylprednisolone but demonstrated marked clinical and radiological improvement following 5 days of plasma exchange. This report will explore the diagnostic and therapeutic approach to patients with neuro-ophthalmological and neurological complications of M. pneumoniae infection in addition to discussing previously encountered cases.

20.
Brain ; 138(Pt 3): 589-603, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25623137

ABSTRACT

Foot drop and toe walking are frequent concerns in children with cerebral palsy. The main underlying cause of these problems is early damage and lack of maturation of the corticospinal tract. In the present study we investigated whether 4 weeks of daily treadmill training with an incline may facilitate corticospinal transmission and improve the control of the ankle joint in children with cerebral palsy. Sixteen children with cerebral palsy (Gross Motor Classification System I:6, II:6, III:4) aged 5-14 years old, were recruited for the study. Evaluation of gait ability and intramuscular coherence was made twice before and twice after training with an interval of 1 month. Gait kinematics were recorded by 3D video analysis during treadmill walking with a velocity chosen by the child at the first evaluation. Foot pressure was measured by force sensitive foot soles during treadmill and over ground walking. EMG-EMG coherence was calculated from two separate electrode recordings placed over the tibialis anterior muscle. Training involved 30 min of walking daily on a treadmill with an incline for 30 days. Gait training was accompanied by significant increases in gait speed, incline on the treadmill, the maximal voluntary dorsiflexion torque, the number and amplitude of toe lifts late in the swing phase during gait and the weight exerted on the heel during the early stance phase of the gait cycle. EMG-EMG coherence in the beta and gamma frequency bands recorded from tibialis anterior muscle increased significantly when compared to coherence before training. The largest changes in coherence with training were observed for children <10 years of age. Importantly, in contrast to training-induced EMG increases, the increase in coherence was maintained at the follow-up measurement 1 month after training. Changes in the strength of coherence in the beta and gamma band were positively correlated with improvements in the subjects' ability to lift the toes in the swing phase. These data show that daily intensive gait training increases beta and gamma oscillatory drive to ankle dorsiflexor motor neurons and that it improves toe lift and heel strike in children with cerebral palsy. We propose that intensive gait training may produce plastic changes in the corticospinal tract, which are responsible for improvements in gait function.


Subject(s)
Ankle/innervation , Cerebral Palsy/rehabilitation , Exercise Therapy/methods , Gait/physiology , Reflex/physiology , Adolescent , Age Factors , Biomechanical Phenomena , Child , Child, Preschool , Electromyography , Evoked Potentials, Motor , Exercise Test , Female , Humans , Male , Neurologic Examination , Pressure , Signal Processing, Computer-Assisted , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL