Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Blood ; 144(15): 1617-1632, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38958467

ABSTRACT

ABSTRACT: Myelodysplastic syndromes (MDS) are clonal hematologic disorders characterized by morphologic abnormalities of myeloid cells and peripheral cytopenias. Although genetic abnormalities underlie the pathogenesis of these disorders and their heterogeneity, current classifications of MDS rely predominantly on morphology. We performed genomic profiling of 3233 patients with MDS or related disorders to delineate molecular subtypes and define their clinical implications. Gene mutations, copy-number alterations, and copy-neutral loss of heterozygosity were derived from targeted sequencing of a 152-gene panel, with abnormalities identified in 91%, 43%, and 11% of patients, respectively. We characterized 16 molecular groups, encompassing 86% of patients, using information from 21 genes, 6 cytogenetic events, and loss of heterozygosity at the TP53 and TET2 loci. Two residual groups defined by negative findings (molecularly not otherwise specified, absence of recurrent drivers) comprised 14% of patients. The groups varied in size from 0.5% to 14% of patients and were associated with distinct clinical phenotypes and outcomes. The median bone marrow (BM) blast percentage across groups ranged from 1.5% to 10%, andĀ the median overall survival ranged from 0.9 to 8.2 years. We validated 5 well-characterized entities, added further evidence to support 3 previously reported subsets, and described 8 novel groups. The prognostic influence of BM blasts depended on the genetic subtypes. Within genetic subgroups, therapy-related MDS and myelodysplastic/myeloproliferative neoplasms had comparable clinical and outcome profiles to primary MDS. In conclusion, genetically-derived subgroups of MDS are clinically relevant and might inform future classification schemas and translational therapeutic research.


Subject(s)
Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/classification , Myelodysplastic Syndromes/pathology , Male , Female , Aged , Middle Aged , Aged, 80 and over , Mutation , Adult , Prognosis , Loss of Heterozygosity , DNA Copy Number Variations
2.
Blood ; 139(19): 2931-2941, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35007321

ABSTRACT

The goal of therapy for patients with essential thrombocythemia (ET) and polycythemia vera (PV) is to reduce thrombotic events by normalizing blood counts. Hydroxyurea (HU) and interferon-α (IFN-α) are the most frequently used cytoreductive options for patients with ET and PV at high risk for vascular complications. Myeloproliferative Disorders Research Consortium 112 was an investigator-initiated, phase 3 trial comparing HU to pegylated IFN-α (PEG) in treatment-naĆÆve, high-risk patients with ET/PV. The primary endpoint was complete response (CR) rate at 12 months. A total of 168 patients were treated for a median of 81.0 weeks. CR for HU was 37% and 35% for PEG (P = .80) at 12 months. At 24 to 36 months, CR was 20% to 17% for HU and 29% to 33% for PEG. PEG led to a greater reduction in JAK2V617F at 24 months, but histopathologic responses were more frequent with HU. Thrombotic events and disease progression were infrequent in both arms, whereas grade 3/4 adverse events were more frequent with PEG (46% vs 28%). At 12 months of treatment, there was no significant difference in CR rates between HU and PEG. This study indicates that PEG and HU are both effective treatments for PV and ET. With longer treatment, PEG was more effective in normalizing blood counts and reducing driver mutation burden, whereas HU produced more histopathologic responses. Despite these differences, both agents did not differ in limiting thrombotic events and disease progression in high-risk patients with ET/PV. This trial was registered at www.clinicaltrials.gov as #NCT01259856.


Subject(s)
Polycythemia Vera , Thrombocythemia, Essential , Thrombosis , Disease Progression , Humans , Hydroxyurea/adverse effects , Interferon-alpha/adverse effects , Polycythemia Vera/drug therapy , Polycythemia Vera/genetics , Thrombocythemia, Essential/drug therapy , Thrombocythemia, Essential/genetics , Thrombosis/chemically induced , Thrombosis/prevention & control
3.
Nature ; 559(7712): 125-129, 2018 07.
Article in English | MEDLINE | ID: mdl-29950729

ABSTRACT

Somatic mutations in theĀ isocitrate dehydrogenase 2 geneĀ (IDH2) contribute to the pathogenesis of acute myeloid leukaemia (AML) through the production of the oncometabolite 2-hydroxyglutarate (2HG)1-8. Enasidenib (AG-221) is an allosteric inhibitor that binds to the IDH2 dimer interface and blocks the production of 2HG by IDH2 mutants9,10. In a phase I/II clinical trial, enasidenib inhibited the production of 2HG and induced clinical responses in relapsed or refractory IDH2-mutant AML11. Here we describe two patients with IDH2-mutant AML who had a clinical response to enasidenib followed by clinical resistance, disease progression, and a recurrent increase in circulating levels of 2HG. We show that therapeutic resistance is associated with the emergence of second-site IDH2 mutations in trans, such that theĀ resistance mutations occurred in the IDH2 allele without the neomorphic R140Q mutation. The in trans mutations occurred at glutamine 316 (Q316E) and isoleucine 319 (I319M), which are at the interface where enasidenib binds to the IDH2 dimer. The expression of either of these mutant disease alleles alone did not induce the production of 2HG; however, the expression of the Q316E or I319M mutation together with the R140Q mutation in trans allowed 2HG production that was resistant to inhibition by enasidenib. Biochemical studies predicted that resistance to allosteric IDH inhibitors could also occur via IDH dimer-interface mutations in cis, which was confirmed in a patient with acquired resistance to the IDH1 inhibitor ivosidenib (AG-120). Our observations uncover a mechanism of acquired resistance to a targeted therapy and underscore the importance of 2HG production in the pathogenesis of IDH-mutant malignancies.


Subject(s)
Aminopyridines/pharmacology , Drug Resistance, Neoplasm/genetics , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Mutant Proteins/genetics , Mutation , Protein Multimerization/genetics , Triazines/pharmacology , Alleles , Allosteric Site/drug effects , Allosteric Site/genetics , Aminopyridines/chemistry , Aminopyridines/therapeutic use , Animals , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Disease Progression , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Glutamine/genetics , Glutarates/blood , Glutarates/metabolism , HEK293 Cells , Humans , Isoleucine/genetics , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/drug therapy , Mice , Mice, Inbred C57BL , Models, Molecular , Mutant Proteins/antagonists & inhibitors , Triazines/chemistry , Triazines/therapeutic use
4.
Am J Hematol ; 98(1): 79-89, 2023 01.
Article in English | MEDLINE | ID: mdl-36251406

ABSTRACT

Measurable residual disease (MRD) is a powerful prognostic factor in acute myeloid leukemia (AML). However, pre-treatment molecular predictors of immunophenotypic MRD clearance remain unclear. We analyzed a dataset of 211 patients with pre-treatment next-generation sequencing who received induction chemotherapy and had MRD assessed by serial immunophenotypic monitoring after induction, subsequent therapy, and allogeneic stem cell transplant (allo-SCT). Induction chemotherapy led to MRD- remission, MRD+ remission, and persistent disease in 35%, 27%, and 38% of patients, respectively. With subsequent therapy, 34% of patients with MRD+ and 26% of patients with persistent disease converted to MRD-. Mutations in CEBPA, NRAS, KRAS, and NPM1 predicted high rates of MRD- remission, while mutations in TP53, SF3B1, ASXL1, and RUNX1 and karyotypic abnormalities including inv (3), monosomy 5 or 7 predicted low rates of MRD- remission. Patients with fewer individual clones were more likely to achieve MRD- remission. Among 132 patients who underwent allo-SCT, outcomes were favorable whether patients achieved early MRD- after induction or later MRD- after subsequent therapy prior to allo-SCT. As MRD conversion with chemotherapy prior to allo-SCT is rarely achieved in patients with specific baseline mutational patterns and high clone numbers, upfront inclusion of these patients into clinical trials should be considered.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Prognosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Stem Cell Transplantation , Remission Induction , Transplantation, Homologous , Neoplasm, Residual/genetics
5.
Br J Haematol ; 192(6): 1054-1063, 2021 03.
Article in English | MEDLINE | ID: mdl-33618432

ABSTRACT

Clonal haematopoiesis (CH) in patients with acute myeloid leukaemia (AML) may persist beyond attaining complete remission. From a consecutive cohort of 67 patients with nucleophosmin 1-mutated (NPM1mut ) AML, we identified 50 who achieved NPM1mut clearance and had parallel multicolour flow cytometry (MFC) and next generation sequencing (NGS). In total, 13 (26%) cleared all mutations, 37 (74%) had persistent CH frequently involving DNA methyltransferase 3α (DNMT3A,70%), tet methylcytosine dioxygenase 2 (TET2, 27%), isocitrate dehydrogenase 2 (IDH2, 19%) and IDH1 (11%). A small number (<1%) of aberrant CD34+ myeloblasts, but immunophenotypically different from original AML blasts [herein referred to as a pre-leukaemic (PL) phenotype], was detected in 17 (49%) patients with CH, but not in any patients with complete clearance of all mutations (PĀ =Ā 0Ā·0037). A PL phenotype was associated with higher mutation burden (PĀ =Ā 0Ā·005). Persistent IDH2 and serine and arginine-rich splicing factor 2 (SRSF2) mutations were exclusively observed in PL+ CH+ cases (PĀ =Ā 0Ā·016). Persistent dysplasia was seen exclusively in cases with a PL+ phenotype (29% vs. none; PĀ =Ā 0Ā·04). The PL+ phenotype did not correlate with age, intensity of induction therapy or relapse-free survival. Post-remission CH in the setting of NPM1mut clearance is common and may result in immunophenotypic changes in myeloid progenitors. It is important to not misinterpret these cells as AML measurable residual disease (MRD).


Subject(s)
Bone Marrow , Clonal Hematopoiesis , Leukemia, Myeloid, Acute , Mutation , Myeloid Progenitor Cells , Neoplasm Proteins , Nuclear Proteins , Adult , Aged , Aged, 80 and over , Bone Marrow/metabolism , Bone Marrow/pathology , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Myeloid Progenitor Cells/metabolism , Myeloid Progenitor Cells/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Remission Induction
6.
Blood ; 134(6): 525-533, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31167802

ABSTRACT

A limited number of drugs are available to treat patients with polycythemia vera (PV) and essential thrombocythemia (ET). We attempted to identify alternative agents that may target abnormalities within malignant hematopoietic stem (HSCs) and progenitor cells (HPCs). Previously, MDM2 protein levels were shown to be upregulated in PV/ET CD34+ cells, and exposure to a nutlin, an MDM2 antagonist, induced activation of the TP53 pathway and selective depletion of PV HPCs/HSCs. This anticlonal activity was mediated by upregulation of p53 and potentiated by the addition of interferon-α2a (IFN-α2a). Therefore, we performed an investigator-initiated phase 1 trial of the oral MDM2 antagonist idasanutlin (RG7388; Roche) in patients with high-risk PV/ET for whom at least 1 prior therapy had failed. Patients not attaining at least a partial response by European LeukemiaNet criteria after 6 cycles were then allowed to receive combination therapy with low-dose pegylated IFN-α2a. Thirteen patients with JAK2 V617F+ PV/ET were enrolled, and 12 (PV, n = 11; ET, n = 1) were treated with idasanutlin at 100 and 150 mg daily, respectively, for 5 consecutive days of a 28-day cycle. Idasanutlin was well tolerated; no dose-limiting toxicity was observed, but low-grade gastrointestinal toxicity was common. Overall response rate after 6 cycles was 58% (7 of 12) with idasanutlin monotherapy and 50% (2 of 4) with combination therapy. Median duration of response was 16.8 months (range, 3.5-26.7). Hematologic, symptomatic, pathologic, and molecular responses were observed. These data indicate that idasanutlin is a promising novel agent for PV; it is currently being evaluated in a global phase 2 trial. This trial was registered at www.clinicaltrials.gov as #NCT02407080.


Subject(s)
Antineoplastic Agents/administration & dosage , Polycythemia Vera/drug therapy , Pyrrolidines/administration & dosage , para-Aminobenzoates/administration & dosage , Administration, Oral , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Biomarkers , Female , Humans , Male , Middle Aged , Molecular Targeted Therapy , Mutation , Polycythemia Vera/diagnosis , Polycythemia Vera/etiology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidines/adverse effects , Treatment Outcome , para-Aminobenzoates/adverse effects
7.
Blood ; 134(18): 1498-1509, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31515250

ABSTRACT

Prior studies have reported high response rates with recombinant interferon-α (rIFN-α) therapy in patients with essential thrombocythemia (ET) and polycythemia vera (PV). To further define the role of rIFN-α, we investigated the outcomes of pegylated-rIFN-α2a (PEG) therapy in ET and PV patients previously treated with hydroxyurea (HU). The Myeloproliferative Disorders Research Consortium (MPD-RC)-111 study was an investigator-initiated, international, multicenter, phase 2 trial evaluating the ability of PEG therapy to induce complete (CR) and partial (PR) hematologic responses in patients with high-risk ET or PV who were either refractory or intolerant to HU. The study included 65 patients with ET and 50 patients with PV. The overall response rates (ORRs; CR/PR) at 12 months were 69.2% (43.1% and 26.2%) in ET patients and 60% (22% and 38%) in PV patients. CR rates were higher in CALR-mutated ET patients (56.5% vs 28.0%; P = .01), compared with those in subjects lacking a CALR mutation. The median absolute reduction in JAK2V617F variant allele fraction was -6% (range, -84% to 47%) in patients achieving a CR vs +4% (range, -18% to 56%) in patients with PR or nonresponse (NR). Therapy was associated with a significant rate of adverse events (AEs); most were manageable, and PEG discontinuation related to AEs occurred in only 13.9% of subjects. We conclude that PEG is an effective therapy for patients with ET or PV who were previously refractory and/or intolerant of HU. This trial was registered at www.clinicaltrials.gov as #NCT01259856.


Subject(s)
Antineoplastic Agents/therapeutic use , Interferon-alpha/therapeutic use , Polycythemia Vera/drug therapy , Polyethylene Glycols/therapeutic use , Thrombocythemia, Essential/drug therapy , Adult , Aged , Aged, 80 and over , Drug Resistance, Neoplasm/drug effects , Female , Humans , Hydroxyurea , Male , Middle Aged , Recombinant Proteins/therapeutic use , Treatment Outcome
8.
Biol Blood Marrow Transplant ; 25(2): 256-264, 2019 02.
Article in English | MEDLINE | ID: mdl-30205231

ABSTRACT

We evaluated the feasibility of ruxolitinib therapy followed by a reduced-intensity conditioning (RIC) regimen for patients with myelofibrosis (MF) undergoing transplantation in a 2-stage Simon phase II trial. The aims were to decrease the incidence of graft failure (GF) and nonrelapse mortality (NRM) compared with data from the previous Myeloproliferative Disorders Research Consortium 101 Study. The plan was to enroll 11 patients each in related donor (RD) and unrelated donor (URD) arms, with trial termination if ≥3 failures (GF or death by day +100 post-transplant) occurred in the RD arm or ≥6 failures occurred in the URD. A total of 21 patients were enrolled, including 7 in the RD arm and 14 in the URD arm. The RD arm did not meet the predetermined criteria for proceeding to stage II. Although the URD arm met the criteria for stage II, the study was terminated owing to poor accrual and a significant number of failures. In all 19 transplant recipients, ruxolitinib was tapered successfully without significant side effects, and 9 patients (47%) had a significant decrease in symptom burden. The cumulative incidences of GF, NRM, acute graft-versus-host disease (GVHD), and chronic GVHD at 24 months were 16%, 28%, 64%, and 76%, respectively. On an intention-to-treat basis, the 2-year overall survival was 61% for the RD arm and 70% for the URD arm. Ruxolitinib can be integrated as pretransplantation treatment for patients with MF, and a tapering strategy before transplantation is safe, allowing patients to commence conditioning therapy with a reduced symptom burden. However, GF and NRM remain significant.


Subject(s)
Graft vs Host Disease/mortality , Hematopoietic Stem Cell Transplantation , Primary Myelofibrosis/mortality , Primary Myelofibrosis/therapy , Pyrazoles/administration & dosage , Transplantation Conditioning , Unrelated Donors , Acute Disease , Adult , Aged , Chronic Disease , Disease-Free Survival , Female , Graft vs Host Disease/etiology , Humans , Incidence , Male , Middle Aged , Myeloproliferative Disorders , Nitriles , Pyrimidines , Survival Rate , Transplantation, Homologous
9.
Blood ; 130(6): 732-741, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28588019

ABSTRACT

Recurrent mutations at R140 and R172 in isocitrate dehydrogenase 2 (IDH2) occur in many cancers, including Ć¢ĀˆĀ¼12% of acute myeloid leukemia (AML). In preclinical models these mutations cause accumulation of the oncogenic metabolite R-2-hydroxyglutarate (2-HG) and induce hematopoietic differentiation block. Single-agent enasidenib (AG-221/CC-90007), a selective mutant IDH2 (mIDH2) inhibitor, produced an overall response rate of 40.3% in relapsed/refractory AML (rrAML) patients with mIDH2 in a phase 1 trial. However, its mechanism of action and biomarkers associated with response remain unclear. Here, we measured 2-HG, mIDH2 allele burden, and co-occurring somatic mutations in sequential patient samples from the clinical trial and correlated these with clinical response. Furthermore, we used flow cytometry to assess inhibition of mIDH2 on hematopoietic differentiation. We observed potent 2-HG suppression in both R140 and R172 mIDH2 AML subtypes, with different kinetics, which preceded clinical response. Suppression of 2-HG alone did not predict response, because most nonresponding patients also exhibited 2-HG suppression. Complete remission (CR) with persistence of mIDH2 and normalization of hematopoietic stem and progenitor compartments with emergence of functional mIDH2 neutrophils were observed. In a subset of CR patients, mIDH2 allele burden was reduced and remained undetectable with response. Co-occurring mutations in NRAS and other MAPK pathway effectors were enriched in nonresponding patients, consistent with RAS signaling contributing to primary therapeutic resistance. Together, these data support differentiation as the main mechanism of enasidenib efficacy in relapsed/refractory AML patients and provide insight into resistance mechanisms to inform future mechanism-based combination treatment studies.


Subject(s)
Aminopyridines/therapeutic use , Antineoplastic Agents/therapeutic use , Glutarates/metabolism , Hematopoiesis/drug effects , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/drug therapy , Mutation , Triazines/therapeutic use , Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Female , Gene Frequency , Glutarates/antagonists & inhibitors , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/pathology , Triazines/pharmacology
10.
Blood ; 122(7): 1256-65, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23699601

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer composed of at least 2 molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease. Here we provide a whole-genome-sequencing-based perspective of DLBCL mutational complexity by characterizing 40 de novo DLBCL cases and 13 DLBCL cell lines and combining these data with DNA copy number analysis and RNA-seq from an extended cohort of 96 cases. Our analysis identified widespread genomic rearrangements including evidence for chromothripsis as well as the presence of known and novel fusion transcripts. We uncovered new gene targets of recurrent somatic point mutations and genes that are targeted by focal somatic deletions in this disease. We highlight the recurrence of germinal center B-cell-restricted mutations affecting genes that encode the S1P receptor and 2 small GTPases (GNA13 and GNAI2) that together converge on regulation of B-cell homing. We further analyzed our data to approximate the relative temporal order in which some recurrent mutations were acquired and demonstrate that ongoing acquisition of mutations and intratumoral clonal heterogeneity are common features of DLBCL. This study further improves our understanding of the processes and pathways involved in lymphomagenesis, and some of the pathways mutated here may indicate new avenues for therapeutic intervention.


Subject(s)
Biomarkers, Tumor/chemistry , Biomarkers, Tumor/genetics , DNA Copy Number Variations/genetics , Genome, Human , Lymphoma, Large B-Cell, Diffuse/genetics , Mutation/genetics , GTP-Binding Protein alpha Subunits, G12-G13/chemistry , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
11.
Clin Cancer Res ; 29(18): 3622-3632, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37439808

ABSTRACT

PURPOSE: Myelofibrosis (MF) is a clonal myeloproliferative neoplasm characterized by systemic symptoms, cytopenias, organomegaly, and bone marrow fibrosis. JAK2 inhibitors afford symptom and spleen burden reduction but do not alter the disease course and frequently lead to thrombocytopenia. TGFƟ, a pleiotropic cytokine elaborated by the MF clone, negatively regulates normal hematopoiesis, downregulates antitumor immunity, and promotes bone marrow fibrosis. Our group previously showed that AVID200, a potent and selective TGFƟ 1/3 trap, reduced TGFƟ1-induced proliferation of human mesenchymal stromal cells, phosphorylation of SMAD2, and collagen expression. Moreover, treatment of MF mononuclear cells with AVID200 led to increased numbers of progenitor cells (PC) with wild-type JAK2 rather than JAK2V617F. PATIENTS AND METHODS: We conducted an investigator-initiated, multicenter, phase Ib trial of AVID200 monotherapy in 21 patients with advanced MF. RESULTS: No dose-limiting toxicity was identified at the three dose levels tested, and grade 3/4 anemia and thrombocytopenia occurred in 28.6% and 19.0% of treated patients, respectively. After six cycles of therapy, two patients attained a clinical benefit by IWG-MRT criteria. Spleen and symptom benefits were observed across treatment cycles. Unlike other MF-directed therapies, increases in platelet counts were noted in 81% of treated patients with three patients achieving normalization. Treatment with AVID200 resulted in potent suppression of plasma TGFƟ1 levels and pSMAD2 in MF cells. CONCLUSIONS: AVID200 is a well-tolerated, rational, therapeutic agent for the treatment of patients with MF and should be evaluated further in patients with thrombocytopenic MF in combination with agents that target aberrant MF intracellular signaling pathways.


Subject(s)
Myeloproliferative Disorders , Primary Myelofibrosis , Thrombocytopenia , Humans , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/metabolism , Janus Kinase 2/metabolism , Cytokines/therapeutic use , Immunologic Factors/therapeutic use , Thrombocytopenia/chemically induced
12.
Blood Adv ; 7(17): 5000-5013, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37142255

ABSTRACT

Accurate classification and risk stratification are critical for clinical decision making in patients with acute myeloid leukemia (AML). In the newly proposed World Health Organization and International Consensus classifications of hematolymphoid neoplasms, the presence of myelodysplasia-related (MR) gene mutations is included as 1 of the diagnostic criteria for AML, AML-MR, based largely on the assumption that these mutations are specific for AML with an antecedent myelodysplastic syndrome. ICC also prioritizes MR gene mutations over ontogeny (as defined in the clinical history). Furthermore, European LeukemiaNet (ELN) 2022 stratifies these MR gene mutations into the adverse-risk group. By thoroughly annotating a cohort of 344 newly diagnosed patients with AML treated at the Memorial Sloan Kettering Cancer Center, we show that ontogeny assignments based on the database registry lack accuracy. MR gene mutations are frequently observed in de novo AML. Among the MR gene mutations, only EZH2 and SF3B1 were associated with an inferior outcome in the univariate analysis. In a multivariate analysis, AML ontogeny had independent prognostic values even after adjusting for age, treatment, allo-transplant and genomic classes or ELN risks. Ontogeny also helped stratify the outcome of AML with MR gene mutations. Finally, de novo AML with MR gene mutations did not show an adverse outcome. In summary, our study emphasizes the importance of accurate ontogeny designation in clinical studies, demonstrates the independent prognostic value of AML ontogeny, and questions the current classification and risk stratification of AML with MR gene mutations.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Mutation , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Prognosis , Risk Factors
13.
Leuk Res ; 117: 106857, 2022 06.
Article in English | MEDLINE | ID: mdl-35598475

ABSTRACT

Data concerning the treatment approach and clinical outcomes in younger patients with myelodysplastic syndromes (MDS) are lacking. Furthermore, published results from genomic profiling in the young adult MDS population are few. We identified patients aged 20-50 at diagnosis evaluated for de novo MDS at our institution over a 32-year period. Clinical information and results from sequencing panels were extracted for analysis. 68 eligible patients were found, including 32% with multilineage dysplasia and 29% with excess blasts-2 WHO subtypes. Revised International Prognostic Scoring System for MDS (IPSS-R) categorization had 47% high/very high-risk, and this classification held prognostic significance. The median overall survival was 59 months, and most patients (75%) underwent allogeneic hematopoietic cell transplantation (alloHCT). Thirty-four patients had mutational profiling; the most commonly mutated gene was TP53 and most commonly altered gene category was epigenetic regulators. Younger patients with de novo MDS represented a unique subset with high-risk disease features (adverse cytogenetics, higher R-IPSS) frequently observed along with alterations in TP53 and genes related to epigenetic and transcription pathways.


Subject(s)
Hematopoietic Stem Cell Transplantation , Myelodysplastic Syndromes , Adult , Hematopoietic Stem Cell Transplantation/methods , Humans , Middle Aged , Mutation , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , Prognosis , Risk Factors , Young Adult
14.
JCI Insight ; 7(8)2022 04 22.
Article in English | MEDLINE | ID: mdl-35259128

ABSTRACT

Chronic myeloproliferative neoplasms (MPN) frequently evolve to a blast phase (BP) that is almost uniformly resistant to induction chemotherapy or hypomethylating agents. We explored the functional properties, genomic architecture, and cell of origin of MPN-BP initiating cells (IC) using a serial NSG mouse xenograft transplantation model. Transplantation of peripheral blood mononuclear cells (MNC) from 7 of 18 patients resulted in a high degree of leukemic cell chimerism and recreated clinical characteristics of human MPN-BP. The function of MPN-BP ICs was not dependent on the presence of JAK2V617F, a driver mutation associated with the initial underlying MPN. By contrast, multiple MPN-BP IC subclones coexisted within MPN-BP MNCs characterized by different myeloid malignancy gene mutations and cytogenetic abnormalities. MPN-BP ICs in 4 patients exhibited extensive proliferative and self-renewal capacity, as demonstrated by their ability to recapitulate human MPN-BP in serial recipients. These MPN-BP IC subclones underwent extensive continuous clonal competition within individual xenografts and across multiple generations, and their subclonal dynamics were consistent with functional evolution of MPN-BP IC. Finally, we show that MPN-BP ICs originate from not only phenotypically identified hematopoietic stem cells, but also lymphoid-myeloid progenitor cells, which were each characterized by differences in MPN-BP initiating activity and self-renewal capacity.


Subject(s)
Blast Crisis , Myeloproliferative Disorders , Animals , Hematopoietic Stem Cells/pathology , Humans , Leukocytes, Mononuclear/pathology , Mice , Mutation , Myeloproliferative Disorders/genetics
15.
Clin Cancer Res ; 28(8): 1614-1627, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35078859

ABSTRACT

PURPOSE: Therapy-related myelodysplastic syndrome and acute leukemias (t-MDS/AL) are a major cause of nonrelapse mortality among pediatric cancer survivors. Although the presence of clonal hematopoiesis (CH) in adult patients at cancer diagnosis has been implicated in t-MDS/AL, there is limited published literature describing t-MDS/AL development in children. EXPERIMENTAL DESIGN: We performed molecular characterization of 199 serial bone marrow samples from 52 patients treated for high-risk neuroblastoma, including 17 with t-MDS/AL (transformation), 14 with transient cytogenetic abnormalities (transient), and 21 without t-MDS/AL or cytogenetic alterations (neuroblastoma-treated control). We also evaluated for CH in a cohort of 657 pediatric patients with solid tumor. RESULTS: We detected at least one disease-defining alteration in all cases at t-MDS/AL diagnosis, most commonly TP53 mutations and KMT2A rearrangements, including involving two novel partner genes (PRDM10 and DDX6). Backtracking studies identified at least one t-MDS/AL-associated mutation in 13 of 17 patients at a median of 15 months before t-MDS/AL diagnosis (range, 1.3-32.4). In comparison, acquired mutations were infrequent in the transient and control groups (4/14 and 1/21, respectively). The relative risk for development of t-MDS/AL in the presence of an oncogenic mutation was 8.8 for transformation patients compared with transient. Unlike CH in adult oncology patients, TP53 mutations were only detectable after initiation of cancer therapy. Last, only 1% of pediatric patients with solid tumor evaluated had CH involving myeloid genes. CONCLUSIONS: These findings demonstrate the clinical relevance of identifying molecular abnormalities in predicting development of t-MDS/AL and should guide the formation of intervention protocols to prevent this complication in high-risk pediatric patients.


Subject(s)
Cancer Survivors , Leukemia, Myeloid, Acute , Neuroblastoma , Adult , Bone Marrow/pathology , Child , Clone Cells , Humans , Leukemia, Myeloid, Acute/genetics , Neuroblastoma/pathology
16.
Cancer Discov ; 11(6): 1398-1410, 2021 06.
Article in English | MEDLINE | ID: mdl-33579786

ABSTRACT

The myeloproliferative neoplasms (MPN) frequently progress to blast phase disease, an aggressive form of acute myeloid leukemia. To identify genes that suppress disease progression, we performed a focused CRISPR/Cas9 screen and discovered that depletion of LKB1/Stk11 led to enhanced in vitro self-renewal of murine MPN cells. Deletion of Stk11 in a mouse MPN model caused rapid lethality with enhanced fibrosis, osteosclerosis, and an accumulation of immature cells in the bone marrow, as well as enhanced engraftment of primary human MPN cells in vivo. LKB1 loss was associated with increased mitochondrial reactive oxygen species and stabilization of HIF1α, and downregulation of LKB1 and increased levels of HIF1α were observed in human blast phase MPN specimens. Of note, we observed strong concordance of pathways that were enriched in murine MPN cells with LKB1 loss with those enriched in blast phase MPN patient specimens, supporting the conclusion that STK11 is a tumor suppressor in the MPNs. SIGNIFICANCE: Progression of the myeloproliferative neoplasms to acute myeloid leukemia occurs in a substantial number of cases, but the genetic basis has been unclear. We discovered that loss of LKB1/STK11 leads to stabilization of HIF1a and promotes disease progression. This observation provides a potential therapeutic avenue for targeting progression.This article is highlighted in the In This Issue feature, p. 1307.


Subject(s)
AMP-Activated Protein Kinases/genetics , Genes, Tumor Suppressor , Leukemia, Myeloid, Acute/genetics , Animals , Disease Models, Animal , Disease Progression , Mice , Mice, Inbred C57BL , Mutation , Myeloproliferative Disorders/genetics
17.
J Natl Cancer Inst ; 112(1): 107-110, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31504684

ABSTRACT

Chemotherapy and radiation therapy are the foundations of adjuvant therapy for early-stage breast cancer. As a complication of cytotoxic regimens, breast cancer patients are at risk for therapy-related myeloid neoplasms (t-MNs). These t-MNs are commonly refractory to antileukemic therapies and result in poor patient outcomes. We previously demonstrated that somatic mutations in leukemia-related genes are present in the tumor-infiltrating leukocytes (TILeuks) of a subset of early breast cancers. Here, we performed genomic analysis of microdissected breast cancer tumor cells and TILeuks from seven breast cancer patients who subsequently developed leukemia. In four patients, mutations present in the leukemia were detected in breast cancer TILeuks. This finding suggests that TILeuks in the primary breast cancer may harbor the ancestor of the future leukemogenic clone. Additional research is warranted to ascertain whether infiltrating mutant TILeuks could constitute a biomarker for the development of t-MN and to determine the functional consequences of mutant TILeuks.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/diagnosis , Clonal Evolution , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/etiology , Hematopoiesis , Leukocytes/pathology , Neoplasms, Second Primary/diagnosis , Neoplasms, Second Primary/etiology , Clonal Evolution/genetics , Female , Hematopoiesis/genetics , Humans
18.
Blood Adv ; 4(22): 5735-5744, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33216890

ABSTRACT

Activation of the P53 pathway through inhibition of MDM2 using nutlins has shown clinical promise in the treatment of solid tumors and hematologic malignancies. There is concern, however, that nutlin therapy might stimulate the emergence or expansion of TP53-mutated subclones. We recently published the results of a phase 1 trial of idasanutlin in patients with polycythemia vera (PV) that revealed tolerability and clinical activity. Here, we present data indicating that idasanutlin therapy is associated with expansion of TP53 mutant subclones. End-of-study sequencing of patients found that 5 patients in this trial harbored 12 TP53 mutations; however, only 1 patient had been previously identified as having a TP53 mutation at baseline. To identify the origin of these mutations, further analysis of raw sequencing data of baseline samples was performed and revealed that a subset of these mutations was present at baseline and expanded during treatment with idasanutlin. Follow-up samples were obtained from 4 of 5 patients in this cohort, and we observed that after cessation of idasanutlin, the variant allele frequency (VAF) of 8 of 9 TP53 mutations decreased. Furthermore, disease progression to myelofibrosis or myeloproliferative neoplasm blast phase was not observed in any of these patients after 19- to 32-month observation. These data suggest that idasanutlin treatment may promote transient TP53 mutant clonal expansion. A larger study geared toward high-resolution detection of low VAF mutations is required to explore whether patients acquire de novo TP53 mutations after idasanutlin therapy.


Subject(s)
Polycythemia Vera , Clone Cells/metabolism , Humans , Polycythemia Vera/drug therapy , Polycythemia Vera/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidines , Tumor Suppressor Protein p53/genetics , para-Aminobenzoates
19.
Blood Adv ; 4(20): 5246-5256, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33104796

ABSTRACT

Myeloproliferative neoplasms (MPN) that have evolved into accelerated or blast phase disease (MPN-AP/BP) have poor outcomes with limited treatment options and therefore represent an urgent unmet need. We have previously demonstrated in a multicenter, phase 1 trial conducted through the Myeloproliferative Neoplasms Research Consortium that the combination of ruxolitinib and decitabine is safe and tolerable and is associated with a favorable overall survival (OS). In this phase 2 trial, 25 patients with MPN-AP/BP were treated at the recommended phase 2 dose of ruxolitinib 25 mg twice daily for the induction cycle followed by 10 mg twice daily for subsequent cycles in combination with decitabine 20 mg/m2 for 5 consecutive days in a 28-day cycle. Nineteen patients died during the study follow-up. The median OS for all patients on study was 9.5 months (95% confidence interval, 4.3-12.0). Overall response rate (complete remission + incomplete platelet recovery + partial remission) was 11/25 (44%) and response was not associated with improved survival. We conclude that the combination of decitabine and ruxolitinib was well tolerated, demonstrated favorable OS, and represents a therapeutic option for this high-risk patient population. This trial was registered at www.clinicaltrials.gov as #NCT02076191.


Subject(s)
Blast Crisis , Pyrazoles , Blast Crisis/drug therapy , Decitabine/therapeutic use , Humans , Nitriles , Pyrazoles/therapeutic use , Pyrimidines , Treatment Outcome
20.
Nat Genet ; 52(11): 1219-1226, 2020 11.
Article in English | MEDLINE | ID: mdl-33106634

ABSTRACT

Acquired mutations are pervasive across normal tissues. However, understanding of the processes that drive transformation of certain clones to cancer is limited. Here we study this phenomenon in the context of clonal hematopoiesis (CH) and the development of therapy-related myeloid neoplasms (tMNs). We find that mutations are selected differentially based on exposures. Mutations in ASXL1 are enriched in current or former smokers, whereas cancer therapy with radiation, platinum and topoisomerase II inhibitors preferentially selects for mutations in DNA damage response genes (TP53, PPM1D, CHEK2). Sequential sampling provides definitive evidence that DNA damage response clones outcompete other clones when exposed to certain therapies. Among cases in which CH was previously detected, the CH mutation was present at tMN diagnosis. We identify the molecular characteristics of CH that increase risk of tMN. The increasing implementation of clinical sequencing at diagnosis provides an opportunity to identify patients at risk of tMN for prevention strategies.


Subject(s)
Clonal Hematopoiesis/genetics , Neoplasms, Second Primary/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/radiation effects , Child , Child, Preschool , Clonal Evolution , Clonal Hematopoiesis/drug effects , Cohort Studies , Female , Genetic Fitness , Humans , Infant , Infant, Newborn , Leukemia, Myeloid/genetics , Male , Middle Aged , Models, Biological , Mutation , Neoplasms/drug therapy , Neoplasms/radiotherapy , Selection, Genetic , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL