Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542063

ABSTRACT

Numerous studies highlight the therapeutic potential of G protein-coupled receptor (GPCR) heterodimers, emphasizing their significance in various pathological contexts. Despite extensive basic research and promising outcomes in animal models, the translation of GPCR heterodimer-targeting drugs into clinical use remains limited. The complexities of in vivo conditions, particularly within thecomplex central nervous system, pose challenges in fully replicating physiological environments, hindering clinical success. This review discusses examples of the most studied heterodimers, their involvement in nervous system pathology, and the available data on their potential ligands. In addition, this review highlights the intricate interplay between lipids and GPCRs as a potential key factor in understanding the complexity of cell signaling. The multifaceted role of lipids in modulating the dynamics of GPCR dimerization is explored, shedding light on the elaborate molecular mechanisms governing these interactions.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Animals , Dimerization , Receptors, G-Protein-Coupled/metabolism , Cell Membrane/metabolism , Lipids
2.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36983013

ABSTRACT

Wistar-Kyoto rats (WKY), compared to Wistar rats, are a well-validated animal model for drug-resistant depression. Thanks to this, they can provide information on the potential mechanisms of treatment-resistant depression. Since deep brain stimulation in the prefrontal cortex has been shown to produce rapid antidepressant effects in WKY rats, we focused our study on the prefrontal cortex. Using quantitative autoradiography, we observed a decrease in the binding of [3H] methylspiperone to the dopamine D2 receptor, specifically in that brain region-but not in the striatum, nor the nucleus accumbens-in WKY rats. Further, we focused our studies on the expression level of several components associated with canonical (G proteins), as well as non-canonical, D2-receptor-associated intracellular pathways (e.g., ßarrestin2, glycogen synthase kinase 3 beta-Gsk-3ß, and ß-catenin). As a result, we observed an increase in the expression of mRNA encoding the regulator of G protein signaling 2-RGS2 protein, which is responsible, among other things, for internalizing the D2 dopamine receptor. The increase in RGS2 expression may therefore account for the decreased binding of the radioligand to the D2 receptor. In addition, WKY rats are characterized by the altered signaling of genes associated with the dopamine D2 receptor and the ßarrestin2/AKT/Gsk-3ß/ß-catenin pathway, which may account for certain behavioral traits of this strain and for the treatment-resistant phenotype.


Subject(s)
Receptors, Dopamine D2 , beta Catenin , Rats , Animals , Rats, Inbred WKY , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Prefrontal Cortex/metabolism , Rats, Wistar
3.
Int J Mol Sci ; 22(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502349

ABSTRACT

Three strains of mice with various susceptibilities to restraint stress (RS), i.e., mice with a knocked out norepinephrine transporter gene (NET-KO), SWR/J and C57BL/6J (WT) mice were shown to serve as a good model to study the molecular mechanisms underlying different stress-coping strategies. We identified 14 miRNAs that were altered by RS in the PFC of these mice in a genotype-dependent manner, where the most interesting was let-7e. Further in silico analysis of its potential targets allowed us to identify five mRNAs (Bcl2l11, Foxo1, Pik3r1, Gab1 and Map2k4), and their level alterations were experimentally confirmed. A next-generation sequencing (NGS) approach, which was employed to find transcripts differentially expressed in the PFC of NET-KO and WT mice, showed that, among others, two additional mRNAs were regulated by mmu-let-7e, i.e., mRNAs that encode Kmt2d and Inf2. Since an increase in Bcl2l11 and Pik3r1 mRNAs upon RS in the PFC of WT mice resulted from the decrease in mmu-let-7e and mmu-miR-484 regulations, we postulated that MAPK, FoxO and PI3K-Akt signaling pathways were associated with stress resilience, although via different, genotype-dependent regulation of various mRNAs by let-7e and miR-484. However, a higher level of Kmt2d mRNA (regulated by let-7e) that was found with NGS analysis in the PFC of NET-KO mice indicated that histone methylation was also important for stress resilience.


Subject(s)
MicroRNAs/genetics , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins c-ets/physiology , Resilience, Psychological , Animals , Female , Genotype , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Restraint, Physical , Signal Transduction
4.
Int J Mol Sci ; 22(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34830086

ABSTRACT

BACKGROUND: Cognitive disorders associated with schizophrenia are closely linked to prefrontal cortex (PFC) dysfunction. Administration of the non-competitive NMDA receptor antagonist ketamine (KET) induces cognitive impairment in animals, producing effects similar to those observed in schizophrenic patients. In a previous study, we showed that KET (20 mg/kg) induces cognitive deficits in mice and that administration of clozapine (CLZ) reverses this effect. To identify biochemical mechanisms related to CLZ actions in the context of KET-induced impairment, we performed a biochemical analysis using the same experimental paradigm-acute and sub-chronic administration of these drugs (0.3 and 1 mg/kg). METHODS: Since the effect of CLZ mainly depends on G-protein-related receptors, we used the Signaling PathwayFinder Kit to identify 84 genes involved in GPCR-related signal transduction and then verified the genes that were statistically significantly different on a larger group of mice using RT-PCR and Western blot analyses after the administration of acute and sub-chronic drugs. RESULTS: Of the 84 genes involved in GPCR-related signal transduction, the expression of six, ßarrestin1, ßarrestin2, galanin receptor 2 (GalR2), dopamine receptor 2 (DRD2), metabotropic glutamate receptor 1 (mGluR1), and metabotropic glutamate receptor 5 (mGluR5), was significantly altered. Since these genes affect the levels of other signaling proteins, e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), G protein-coupled receptor kinase 2 (Grk2), and G protein-gated inwardly rectifying potassium 3 (Girk3), we determined their levels in PFC using Western blot. Most of the observed changes occurred after acute treatment with 0.3 mg/kg CLZ. We showed that acute treatment with CLZ at a lower dose significantly increased ßarrestin1 and ERK1/2. KET treatment induced the upregulation of ßarrestin1. Joint administration of these drugs had no effect on the ßarrestin1 level. CONCLUSION: The screening kit we used to study the expression of GPCR-related signal transduction allowed us to select several important genes affected by CLZ. However, the obtained data do not explain the mechanism of action of CLZ that is responsible for reversing KET-induced cognitive impairment.


Subject(s)
Clozapine/pharmacology , Gene Expression Profiling , Gene Expression Regulation/drug effects , Ketamine/adverse effects , Receptors, G-Protein-Coupled , Animals , Biomarkers/metabolism , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Ketamine/pharmacology , Male , Mice , Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics
5.
Int J Mol Sci ; 21(24)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322800

ABSTRACT

In the present study, we aim to identify the effect of restrain stress (RS) on the expression of miRNAs in mouse serum. We used three genotypes of animals (mice with knock-out of the gene-encoding norepinephrine transporter, NET-KO; C57BL/6J, and SWR/J) which had previously been shown to display different sensitivity to RS, and focused on miRNAs which were altered by RS in the serum of all three genotypes. An analysis of miRNAs expression allowed for the identification of a set of 25 differentially expressed miRNAs; 10 were down-regulated compared to an appropriate control group of animals, while 15 were up-regulated. The application of DIANA-miRPath v. 3.0 allowed for the identification of selected pathways (KEGG) and Gene Ontology (GO) categories that were significantly controlled by these miRNAs, while miRWalk v. 3.0-the platform that used the machine learning based algorithm, TaRPmiR-was used to find their targets. The results indicate that 25 miRNAs, identified as altered upon RS in three genotypes of mice, are responsible for regulation of mRNA-encoding proteins that are key for the main hypotheses of depression; therefore, they may help to understand the link between stress and depression at the molecular level.


Subject(s)
Depression/metabolism , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , MicroRNAs/blood , Stress, Physiological/genetics , Algorithms , Animals , Depression/genetics , Down-Regulation , Gene Expression Profiling , Gene Ontology , Machine Learning , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Norepinephrine Plasma Membrane Transport Proteins/genetics , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Restraint, Physical/physiology , Signal Transduction/genetics , Up-Regulation
6.
Behav Pharmacol ; 29(6): 537-542, 2018 09.
Article in English | MEDLINE | ID: mdl-29537988

ABSTRACT

We have previously reported the effects of intracranial injections of dopamine D1, D2 and D3 ligands in animals subjected to the Novel Object Recognition (NOR) test following exposure to chronic mild stress (CMS) and chronic treatment with risperidone (RSP). Here, we present some molecular biological data from the same animals. It was predicted that brain-derived neurotrophic factor (BDNF) signalling in the prefrontal cortex (PFC) would reflect behavioural performance, implying an increase following acute administration of a D2 agonist or a D3 antagonist, blockade of this effect by CMS and its restoration by chronic RSP. In separate cohorts, animals were injected within the PFC or the hippocampus (HPC) with either the D1 agonist SKF-81297, the D2 agonist quinpirole or the D3 antagonist SB-277,011, following exposure to control conditions or CMS and chronic treatment with saline or RSP. Intracranial injections followed an exposure trial in the NOR test, with a retention trial 24 h later. Immediately afterwards, the animals were killed and expression of BDNF and TRKß protein, and their respective mRNAs, was measured in PFC and HPC samples. CMS decreased the expression of TRKß in both PFC and HPC. Several effects associated with intracranial injection were noted, but they were inconsistent and unrelated to CMS exposure. The effects of CMS on TRKß are consistent with a decrease in BDNF signalling, albeit that expression of BDNF itself did not change significantly. There was no evidence for an involvement of the BDNF-TRKß system in responses to RSP or dopamine ligands in animals exposed to CMS. However, there was a 24 h delay between the intracranial injection and tissue harvesting, meaning that brief early drug effects could have been missed.


Subject(s)
Antipsychotic Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Receptors, Dopamine/metabolism , Risperidone/therapeutic use , Signal Transduction/drug effects , Stress, Psychological/drug therapy , Animals , Benzazepines/pharmacology , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Dopamine Agents/pharmacology , Electroencephalography , Male , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Quinpirole/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Wistar
7.
Psychopharmacology (Berl) ; 241(1): 33-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37682294

ABSTRACT

INTRODUCTION: Alcohol use disorder (AUD) is one of the most common psychiatric disorders and a leading cause of mortality worldwide. While the pathophysiology underlying AUD is relatively well known, the cognitive mechanisms of an individual's susceptibility to the development of alcohol dependence remain poorly understood. In this study, we investigated the theoretical claim that sensitivity to positive feedback (PF), as a stable and enduring behavioural trait, can predict individual susceptibility to the acquisition and maintenance of alcohol-seeking behaviour in rats. METHODS: Trait sensitivity to PF was assessed using a series of probabilistic reversal learning tests. The escalation of alcohol intake in rats was achieved by applying a mix of intermittent free access and instrumental paradigms of alcohol drinking. The next steps included testing the influence of sensitivity to PF on the acquisition of compulsive alcohol-seeking behaviour in the seeking-taking punishment task, measuring motivation to seek alcohol, and comparing the speed of extinction and reinstatement of alcohol-seeking after a period of abstinence between rats expressing trait insensitivity and sensitivity to PF. Finally, trait differences in the level of stress hormones and in the expression of genes and proteins in several brain regions of interest were measured to identify potential physiological and neuromolecular mechanisms of the observed interactions. RESULTS: We showed that trait sensitivity to PF in rats determines the level of motivation to seek alcohol following the experience of its negative consequences. They also revealed significant differences between animals classified as insensitive and sensitive to PF in their propensity to reinstate alcohol-seeking behaviours after a period of forced abstinence. The abovementioned effects were accompanied by differences in blood levels of stress hormones and differences in the cortical and subcortical expression of genes and proteins related to dopaminergic, serotonergic, and GABAergic neurotransmission. CONCLUSION: Trait sensitivity to PF can determine the trajectory of alcohol addiction in rats. This effect is, at least partially, mediated via distributed physiological and molecular changes within cortical and subcortical regions of the brain.


Subject(s)
Alcohol Drinking , Alcoholism , Humans , Rats , Male , Animals , Feedback , Alcohol Drinking/psychology , Alcoholism/metabolism , Ethanol , Compulsive Behavior/psychology , Hormones , Causality , Self Administration
8.
Pharmacol Rep ; 76(1): 207-215, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172401

ABSTRACT

BACKGROUND: The results of our previous studies demonstrated that low sensitivity to negative feedback (NF) is associated with increased vulnerability to the development of compulsive alcohol-seeking in rats. In the present study, we investigated the molecular underpinnings of this relationship. METHODS: Using TaqMan Gene Expression Array Cards, we analyzed the expression of the genes related to NF sensitivity and alcohol metabolism in three cortical regions (medial prefrontal cortex [mPFC], anterior cingulate cortex [ACC], orbitofrontal cortex [OFC]) and two subcortical regions (nucleus accumbens [Nacc], amygdala [Amy]). Gene expression differences were confirmed at the protein level with Western blot. RESULTS: Sensitivity to NF was characterized by differences in Gad2, Drd2, and Slc6a4 expression in the ACC, Maoa in the mPFC, and Gria1, Htr3a, and Maoa in the OFC. Chronic alcohol consumption was associated with differences in the expression of Comt and Maoa in the ACC, Comt, Adh1, and Htr2b in the mPFC, Adh1, and Slc6a4 in the Nacc, Gad2, and Htr1a in the OFC, and Drd2 in the Amy. Interactions between the sensitivity to NF and alcohol consumption were observed in the expression of Gabra1, Gabbr2, Grin2a, Grin2b, and Grm3 in the ACC, and Grin2a in the OFC. The observed differences were confirmed at the protein level for MAO-A in the mPFC, and ADH1 in the mPFC and Nacc. CONCLUSIONS: Our findings contribute to a better understanding of the molecular mechanisms underlying the relationship between trait sensitivity to NF and compulsive alcohol consumption.


Subject(s)
Alcohol Drinking , Prefrontal Cortex , Rats , Animals , Feedback , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics , Amygdala , Ethanol
9.
Article in English | MEDLINE | ID: mdl-38963553

ABSTRACT

RATIONALE: Our study aimed to unravel the unknown mechanisms behind the exceptional efficacy of Psilocybin (PSI) in treating treatment-resistant depression (TRD). Focusing on Wistar-Kyoto (WKY) rats with a TRD phenotype and Wistar (WIS) rats as a normative comparison, we investigated behavioral and neuroplasticity-related responses to PSI, striving to shed light on the distinctive features of its antidepressant effects. OBJECTIVES: We set out to assess the behavioral impact of acute and prolonged PSI administration on WKY and WIS rats, employing Novel Object Recognition (NORT), Social Interaction (SI), and Forced Swimming Test (FST). Our secondary objectives involved exploring strain-specific alterations in neuroplasticity-related parameters, including brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton-associated protein (Arc). METHODS: Conducting post-acute and extended assessments after a single PSI administration, we applied behavioral tests and biochemical analyses to measure serum BDNF levels and neuroplasticity-related parameters in the prefrontal cortex. Statistical analyses were deployed to discern significant differences between the rat strains and assess the impact of PSI on behavioral and biochemical outcomes. RESULTS: Our findings uncovered significant behavioral disparities between WKY and WIS rats, indicating passive behavior and social withdrawal in the former. PSI demonstrated pronounced pro-social and antidepressant effects in both strains, each with its distinctive temporal trajectory. Notably, we identified strain-specific variations in BDNF-related signaling and observed the modulation of Arc expression in WKY rats. CONCLUSIONS: Our study delineated mood-related behavioral nuances between WKY and WIS rat strains, underscoring the antidepressant and pro-social properties of PSI in both groups. The distinct temporal patterns of observed changes and the identified strain-specific neuroplasticity alterations provide valuable insights into the TRD phenotype and the mechanisms underpinning the efficacy of PSI.

10.
Pharmacol Rep ; 75(6): 1326-1340, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37882914

ABSTRACT

Treatment-resistant depression (TRD) is a subgroup of major depressive disorder in which the use of classical antidepressant treatments fails to achieve satisfactory treatment results. Although there are various definitions and grading models for TRD, common criteria for assessing TRD have still not been established. However, a common feature of any TRD model is the lack of response to at least two attempts at antidepressant pharmacotherapy. The causes of TRD are not known; nevertheless, it is estimated that even 60% of TRD patients are so-called pseudo-TRD patients, in which multiple biological factors, e.g., gender, age, and hormonal disturbances are concomitant with depression and involved in antidepressant drug resistance. Whereas the phenomenon of TRD is a complex disorder difficult to diagnose and successfully treat, the search for new treatment strategies is a significant challenge of modern pharmacology. It seems that despite the complexity of the TRD phenomenon, some useful animal models of TRD meet the construct, the face, and the predictive validity criteria. Based on the literature and our own experiences, we will discuss the utility of animals exposed to the stress paradigm (chronic mild stress, CMS), and the Wistar Kyoto rat strain representing an endogenous model of TRD. In this review, we will focus on reviewing research on existing and novel therapies for TRD, including ketamine, deep brain stimulation (DBS), and psychedelic drugs in the context of preclinical studies in representative animal models of TRD.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Rats , Animals , Humans , Depression , Depressive Disorder, Major/drug therapy , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Depressive Disorder, Treatment-Resistant/drug therapy , Rats, Inbred WKY
11.
Mol Neurobiol ; 60(2): 643-654, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36344870

ABSTRACT

The mechanisms of treatment-resistant depression (TRD) are not clear and are difficult to study. An animal model resembling human TRD is the Wistar Kyoto rat strain. In the present study, we focused on selecting miRNAs that differentiate rats of the WKY strain from Wistar Han (WIS) rats in two divisions of the habenula, the lateral and medial (LHb and MHb, respectively). Based on our preliminary study and literature survey, we identified 32 miRNAs that could be potentially regulated in the habenula. Six miRNAs significantly differentiated WKY rats from WIS rats within the MHb, and three significantly differentiated WKY from WIS rats within the LHb. Then, we selected relevant transcripts regulated by those miRNAs, and their expression in the habenular nuclei was investigated. For mRNAs that differentiated WKY rats from WIS rats in the MHb (Cdkn1c, Htr7, Kcnj9, and Slc12a5), their lower expression correlated with a higher level of relevant miRNAs. In the LHb, eight mRNAs significantly differentiated WKY from WIS rats (upregulated Htr4, Drd2, Kcnj5, and Sstr4 and downregulated Htr2a, Htr7, Elk4, and Slc12a5). These data indicate that several important miRNAs are expressed in the habenula, which differentiates WKY rats from WIS rats and in turn correlates with alterations in the expression of target transcripts. Of particular note are two genes whose expression is altered in WKY rats in both LHb and MHb: Slc12a5 and Htr7. Regulation of KCC2 via the 5-HT7 receptor may be a potential target for the treatment of TRD.


Subject(s)
Habenula , MicroRNAs , Animals , Rats , Depression , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Habenula/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype , Rats, Inbred WKY
12.
Article in English | MEDLINE | ID: mdl-36833950

ABSTRACT

The most important and widely studied role of prolactin (PRL) is its modulation of stress responses during pregnancy and lactation. PRL acts as a neuropeptide to support physiological reproductive responses. The effects of PRL on the nervous system contribute to a wide range of changes in the female brain during pregnancy and the inhibition of the hypothalamic-pituitary axis. All these changes contribute to the behavioral and physiological adaptations of a young mother to enable reproductive success. PRL-driven brain adaptations are also crucial for regulating maternal emotionality and well-being. Hyperprolactinemia (elevated PRL levels) is a natural and beneficial phenomenon during pregnancy and lactation. However, in other situations, it is often associated with serious endocrine disorders, such as ovulation suppression, which results in a lack of offspring. This introductory example shows how complex this hormone is. In this review, we focus on the different roles of PRL in the body and emphasize the results obtained from animal models of neuropsychiatric disorders.


Subject(s)
Hyperprolactinemia , Prolactin , Pregnancy , Animals , Female , Prolactin/physiology , Lactation/physiology
13.
Biomolecules ; 12(6)2022 05 26.
Article in English | MEDLINE | ID: mdl-35740874

ABSTRACT

Targeted therapy uses multiple ways of ensuring that the drug will be delivered to the desired site. One of these ways is an encapsulation of the drug and functionalization of the surface. Among the many molecules that can perform such a task, the present work focused on the antibodies of single-chain variable fragments (scFvs format). We studied scFv, which specifically recognizes the dopamine D2 and serotonin 5-HT1A receptor heteromers. The scFvD2-5-HT1A protein was analyzed biochemically and biologically, and the obtained results indicated that the antibody is properly folded and non-toxic and can be described as low-immunogenic. It is not only able to bind to the D2-5-HT1A receptor heteromer, but it also influences the cAMP signaling pathway and-when surfaced on nanogold particles-it can cross the blood-brain barrier in in vitro models. When administered to mice, it decreased locomotor activity, matching the effect induced by clozapine. Thus, we are strongly convinced that scFvD2-5-HT1A, which was a subject of the present investigation, is a promising targeting ligand with the potential for the functionalization of nanocarriers targeting selected areas of the brain.


Subject(s)
Antipsychotic Agents , Drug Carriers , Receptor, Serotonin, 5-HT1A , Receptors, Dopamine D2 , Single-Chain Antibodies , Animals , Antipsychotic Agents/pharmacology , Brain/metabolism , Dopamine/metabolism , Ligands , Mice , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Dopamine D2/metabolism
14.
Brain Res ; 1789: 147948, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35597327

ABSTRACT

Given the important role of brain-derived neurotrophic factor (BDNF)-mediated Trkß signalling in the mechanism of action of antidepressants (ADs), we examined ligand-receptor interactions in the rat cingulate cortex using a proximity ligation assay (PLA) in response to acute and repeated administration of imipramine (IMI), followed by various drug-free periods. Both the acute and chronic administration of IMI increased the BDNF-Trkß interaction observed 3 h after drug administration. Withdrawal of IMI for 72 h or 7 days did not alter BDNF-Trkß interaction. A significant reduction in this interaction after chronic IMI administration followed by 21 drug-free days was observed, but it returned to the control value when a new dose of IMI was given after this time. The level of mRNA encoding BDNF or Trkß did not change in the experimental groups of animals, so one can conclude that alterations in the BDNF-Trkß interaction depend not on acute vs. repeated treatment with IMI but on the presence of the drug in the body. This effect correlates well with the strong pro-cognitive effect of acute IMI, assessed by the novel object recognition (NOR) test.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognition , Imipramine , Receptor, trkB , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cognition/drug effects , Imipramine/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Receptor, trkB/genetics , Receptor, trkB/metabolism
15.
Behav Brain Res ; 409: 113338, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33940049

ABSTRACT

The α7 nicotinic acetylcholine receptor (α7 nAChR) is a potential target for the treatment of cognitive decline in patients with schizophrenia, Alzheimer's disease, and attention-deficit/hyperactivity disorder. Here we examined the promnesic activity of the α7 nAChR agonist (A582941), the type I (CCMI), and the type II (PNU120596) positive allosteric modulators (PAMs) in rats following single and repeated (once daily for seven days) treatment. To determine the neuronal mechanisms underlying the procognitive activity of the tested compounds, levels of the extracellular signal-regulated kinases (Erk1/2) and the activity-regulated cytoskeleton-associated protein (Arc) mRNAs were assessed in the frontal cortical and hippocampal brain regions. Using the novel object recognition test, we demonstrate that the lower doses of A582941 (0.1 mg/kg), CCMI (1 mg/kg), and PNU120596 (0.3 mg/kg) improved recognition memory after repeated but not single administration, suggesting a cumulative effect of repeated dosing. In contrast, the higher doses of A582941 (0.3 mg/kg), CCMI (3 mg/kg) and PNU120596 (1 mg/kg) demonstrated promnesic efficacy following both single and repeated administration. Subsequent in situ hybridization revealed that repeated treatment with A582941 and CCMI, but not PNU120596 enhanced mRNA expression of the Erk1/2 and Arc in the frontal cortex and hippocampus. Present data suggest that both the α7 nAChR agonist and PAMs exhibit procognitive effects after single and repeated administration. The increased level of the Erk1/2 and Arc genes is likely to be at least partially involved in this effect.


Subject(s)
Behavior, Animal/drug effects , Cytoskeletal Proteins/drug effects , Extracellular Signal-Regulated MAP Kinases/drug effects , Hippocampus/drug effects , Nerve Tissue Proteins/drug effects , Nicotinic Agonists/pharmacology , Nootropic Agents/pharmacology , Prefrontal Cortex/drug effects , Recognition, Psychology/drug effects , alpha7 Nicotinic Acetylcholine Receptor/drug effects , Animals , Male , Nicotinic Agonists/administration & dosage , Nootropic Agents/administration & dosage , RNA, Messenger/drug effects , Rats , Rats, Sprague-Dawley
16.
Cells ; 10(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209787

ABSTRACT

Long-lasting stress factors, both biological and psychological, are commonly accepted as the main cause of depressive disorders. Several animal models, using various stressful stimuli, have been used to find biochemical and molecular alterations that could help us understand the etiopathogenesis of depression. However, recent sophisticated studies indicate that the most frequently used animal models of stress only capture a portion of the molecular features associated with complex human disorders. On the other hand, some of these models generate groups of animals resilient to stress. Studies of the mechanisms of stress resilience bring us closer to understanding the process of adapting to aversive stimuli and the differences between stress-susceptible vs. resilient phenotypes. Especially interesting in this context is the chronic mild stress (CMS) experimental paradigm, most often using rats. Studies using this animal model have revealed that biochemical (e.g., the dopamine D2 receptor) and molecular (e.g., microRNA) alterations are dynamic (i.e., depend on stress duration, 2 vs. 7 weeks) and much more pronounced in stress-resilient than stress-susceptible groups of animals. We strongly suggest that studies aimed at understanding the molecular and biochemical mechanisms of depression must consider these dynamics. A good candidate to serve as a biomarker in such studies might be serum microRNA, since it can be obtained relatively easily from living individuals at various time points.


Subject(s)
Adaptation, Psychological , Stress, Psychological/physiopathology , Animals , Biomarkers/metabolism , Depression/psychology , Disease Models, Animal , MicroRNAs/genetics , MicroRNAs/metabolism , Stress, Psychological/genetics
17.
Prog Mol Biol Transl Sci ; 169: 279-296, 2020.
Article in English | MEDLINE | ID: mdl-31952689

ABSTRACT

Human dopamine D2 receptor (D2R) gene has polymorphic variants, three of them alter its amino acid sequence: Val96Ala, Pro310Ser and Ser311Cys. Their functional role never became the object of extensive studies, even though there are some evidence that they correlate with schizophrenia. The present work reviews data indicating that these mutations play a role in dimer formation with dopamine D1 receptor (D1R), with the strongest effect observed for Ser311Cys variant. Similarly, the affinity for antipsychotic drugs of this genetic variant depends on whether it is expressed together with D1R or not. Better understanding of altered ability of genetic variants of D2R to form dimers with D1R, as well as of altered affinity for antipsychotic drugs, depending on the absence or presence of the second dopamine receptor is of great importance-since these two receptors are not always co-expressed in the same cell. It may well be that targeting new compounds toward the D1R-D2R dimers, which the most probably form under conditions of excessive dopamine release, will result in antipsychotic drugs devoid of serious side effects.


Subject(s)
Antipsychotic Agents/pharmacology , Genetic Variation , Mutation , Receptors, Dopamine/genetics , Alleles , Binding, Competitive , HEK293 Cells , Humans , Ligands , Mutation, Missense , Polymorphism, Single Nucleotide , Protein Multimerization , Receptors, Dopamine/chemistry , Schizophrenia/drug therapy , Schizophrenia/genetics
18.
Cells ; 9(4)2020 04 09.
Article in English | MEDLINE | ID: mdl-32283635

ABSTRACT

In the present study, we used three strains of mice with various susceptibility to stress: mice with knock-out of the gene encoding norepinephrine transporter (NET-KO), which are well characterized as displaying a stress-resistant phenotype, as well as two strains of mice displaying two different stress-coping strategies, i.e., C57BL/6J (WT in the present study) and SWR/J. The procedure of restraint stress (RS, 4 h) was applied, and the following behavioral experiments (the forced swim test and sucrose preference test) indicated that NET-KO and SWR/J mice were less sensitive to RS than WT mice. Then, we aimed to find the miRNAs which changed in similar ways in the serum of NET-KO and SWR/J mice subjected to RS, being at the same time different from the miRNAs found in the serum of WT mice. Using Custom TaqMan Array MicroRNA Cards, with primers for majority of miRNAs expressed in the serum (based on a preliminary experiment using the TaqMan Array Rodent MicroRNA A + B Cards Set v3.0, Thermo Fisher Scientific, Waltham, MA, USA) allowed the identification of 21 such miRNAs. Our further analysis focused on miR-1 and miR-155 and their targets-these two miRNAs are involved in the regulation of BDNF expression and can be regarded as biomarkers of stress-resilience.


Subject(s)
MicroRNAs/blood , Norepinephrine Plasma Membrane Transport Proteins/blood , Stress, Physiological/physiology , Animals , Biomarkers/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
19.
Neuroscience ; 423: 66-75, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31705885

ABSTRACT

Stress, a major precipitant of depression, and antidepressants have major impact on synaptic integrity and plasticity in brain areas, such as hippocampus (HPC) and prefrontal cortex (PFC). We have recently shown that, unlike Wistar rats, rats of the Wistar-Kyoto (WKY) strain fail to respond to chronic antidepressant treatment after exposure to chronic mild stress (CMS) procedure. However, deep brain stimulation (DBS) of PFC was effective in both strains. We aimed to identify genes that were affected by CMS, to determine whether their expression was normalized by DBS, and to establish whether common changes could be identified in antidepressant responsive (Wistar) and antidepressant-resistant (WKY) strains. Male Wistar and WKY rats were exposed chronically to CMS then treated acutely with DBS. A battery of behavioural tests was used to monitor recovery, followed by TaqMan screening of a panel of genes known to be involved in stress and antidepressant action. WKY showed over-expression of five genes in dorsal HPC and under-expression of seven genes in ventral HPC. Expression of three genes, Egr1, Htr7 and Mmp9 was decreased by CMS and normalized by DBS in the ventral HPC of Wistar rats. Some other changes in gene expression were identified in dorsal HPC and PFC, particularly in Wistars, that were not normalized by DBS. No effects were identified that were common to both Wistars and WKY. The difference between Wistars and WKY in the balance of overall gene expression in HPC may be relevant to the resistance of WKY rats to antidepressant drug treatment.


Subject(s)
Depression/genetics , Stress, Psychological/genetics , Animals , Antidepressive Agents/pharmacology , Behavior Rating Scale , Deep Brain Stimulation , Disease Models, Animal , Genomics , Hippocampus/metabolism , Male , Prefrontal Cortex/metabolism , Rats , Rats, Inbred WKY , Rats, Wistar
20.
Pharmacol Rep ; 71(6): 994-1000, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31546158

ABSTRACT

BACKGROUND: There is a strong support for the role of serotonin (5-HT) neurotransmission in depression and in the mechanism of action of antidepressants. Among 5-HT receptors, 5-HT2A receptor subtype seems to be an important target implicated in the above disorder. METHODS: The aim of the study was to investigate the effects of antidepressants, such as imipramine (15 mg/kg), escitalopram (10 mg/kg) and tianeptine (10 mg/kg) as well as drugs with antidepressant activity, including N-acetylcysteine (100 mg/kg) and URB597 (a fatty acid amide hydrolase inhibitor, 0.3 mg/kg) on the 5-HT2A receptor labeling pattern in selected rat brain regions. Following acute or chronic (14 days) drug administration, rat brains were analyzed by using autoradiography with the 5-HT2A receptor antagonist [3H]ketanserin. RESULTS: Single dose or chronic administration of imipramine decreased the radioligand binding in the claustrum and cortical subregions. The [3H]ketanserin binding either increased or decreased in cortical areas after acute N-acetylcysteine and URB597 administration, respectively. A similar shift towards reduction of the [3H]ketanserin binding was detected in the nucleus accumbens shell following either acute treatment with imipramine, escitalopram, N-acetylcysteine and URB597 or repeated administration of imipramine, tianeptine and URB597. CONCLUSIONS: In conclusion, the present result indicate different sensitivity of brain 5-HT2A receptors to antidepressant drugs depending on schedule of drug administration and rat brain regions. The decrease of accumbal shell 5-HT2A receptor labeling by antidepressant drugs exhibiting different primary mechanism of action seems to be a common targeting mechanism associated with the outcome of depression treatment.


Subject(s)
Antidepressive Agents/pharmacology , Nucleus Accumbens/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Acetylcysteine/pharmacology , Animals , Autoradiography , Benzamides/pharmacology , Brain/metabolism , Carbamates/pharmacology , Citalopram/pharmacology , Imipramine/pharmacology , Ketanserin , Male , Rats , Rats, Wistar , Thiazepines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL