Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38959890

ABSTRACT

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

2.
Cell ; 177(3): 597-607.e9, 2019 04 18.
Article in English | MEDLINE | ID: mdl-31002796

ABSTRACT

The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor whose disruption causes obesity. We functionally characterized 61 MC4R variants identified in 0.5 million people from UK Biobank and examined their associations with body mass index (BMI) and obesity-related cardiometabolic diseases. We found that the maximal efficacy of ß-arrestin recruitment to MC4R, rather than canonical Gαs-mediated cyclic adenosine-monophosphate production, explained 88% of the variance in the association of MC4R variants with BMI. While most MC4R variants caused loss of function, a subset caused gain of function; these variants were associated with significantly lower BMI and lower odds of obesity, type 2 diabetes, and coronary artery disease. Protective associations were driven by MC4R variants exhibiting signaling bias toward ß-arrestin recruitment and increased mitogen-activated protein kinase pathway activation. Harnessing ß-arrestin-biased MC4R signaling may represent an effective strategy for weight loss and the treatment of obesity-related cardiometabolic diseases.


Subject(s)
Gain of Function Mutation/genetics , Obesity/pathology , Receptor, Melanocortin, Type 4/genetics , Signal Transduction , Adult , Aged , Body Mass Index , Coronary Artery Disease/complications , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , Cyclic AMP/metabolism , Databases, Factual , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , GTP-Binding Protein alpha Subunits, Gs/metabolism , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Obesity/complications , Obesity/metabolism , Polymorphism, Single Nucleotide , Receptor, Melanocortin, Type 4/chemistry , Receptor, Melanocortin, Type 4/metabolism , beta-Arrestins/metabolism
3.
Cell ; 176(4): 729-742.e18, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30661757

ABSTRACT

Hypothalamic melanocortin neurons play a pivotal role in weight regulation. Here, we examined the contribution of Semaphorin 3 (SEMA3) signaling to the development of these circuits. In genetic studies, we found 40 rare variants in SEMA3A-G and their receptors (PLXNA1-4; NRP1-2) in 573 severely obese individuals; variants disrupted secretion and/or signaling through multiple molecular mechanisms. Rare variants in this set of genes were significantly enriched in 982 severely obese cases compared to 4,449 controls. In a zebrafish mutagenesis screen, deletion of 7 genes in this pathway led to increased somatic growth and/or adiposity demonstrating that disruption of Semaphorin 3 signaling perturbs energy homeostasis. In mice, deletion of the Neuropilin-2 receptor in Pro-opiomelanocortin neurons disrupted their projections from the arcuate to the paraventricular nucleus, reduced energy expenditure, and caused weight gain. Cumulatively, these studies demonstrate that SEMA3-mediated signaling drives the development of hypothalamic melanocortin circuits involved in energy homeostasis.


Subject(s)
Energy Metabolism/genetics , Melanocortins/metabolism , Semaphorins/genetics , Adolescent , Adult , Animals , Body Weight , Cell Line , Child , Child, Preschool , Disease Models, Animal , Eating , Female , Genetic Variation/genetics , Homeostasis , Humans , Hypothalamus/metabolism , Leptin/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Obesity/genetics , Obesity/metabolism , Receptors, Cell Surface/metabolism , Semaphorins/metabolism , Young Adult , Zebrafish
4.
Cell ; 170(1): 12-14, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28666114

ABSTRACT

Genetic studies can identify novel therapeutic targets for common complex diseases. In this issue of Cell, Rusu et al. demonstrate that a cluster of genetic variants associated with an increased risk of type 2 diabetes affect the function of a monocarboxylate transporter involved in nutrient flux and hepatic lipid metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Liver , Humans , Lipid Metabolism , Lipids
6.
Cell ; 161(1): 119-132, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25815990

ABSTRACT

The global rise in the prevalence of obesity and associated co-morbidities such as type 2 diabetes, cardiovascular disease, and cancer represents a major public health concern. The biological response to increased consumption of palatable foods or a reduction in energy expenditure is highly variable between individuals. A more detailed mechanistic understanding of the molecular, physiological, and behavioral pathways involved in the development of obesity in susceptible individuals is critical for identifying effective mechanism-based preventative and therapeutic interventions.


Subject(s)
Feeding Behavior , Obesity/metabolism , Animals , Diet , Energy Metabolism , Humans , Hypothalamus/physiology , Obesity/complications , Obesity/genetics , Obesity/therapy
7.
Cell ; 159(6): 1404-16, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25480301

ABSTRACT

Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species.


Subject(s)
Hypertension/metabolism , Leptin/metabolism , Obesity/metabolism , Animals , Leptin/genetics , Mice, Inbred C57BL , Mutation , Neurons/metabolism , Obesity/pathology , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Signal Transduction
8.
Cell ; 155(4): 765-77, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24209692

ABSTRACT

Kinase suppressor of Ras 2 (KSR2) is an intracellular scaffolding protein involved in multiple signaling pathways. Targeted deletion of Ksr2 leads to obesity in mice, suggesting a role in energy homeostasis. We explored the role of KSR2 in humans by sequencing 2,101 individuals with severe early-onset obesity and 1,536 controls. We identified multiple rare variants in KSR2 that disrupt signaling through the Raf-MEKERK pathway and impair cellular fatty acid oxidation and glucose oxidation in transfected cells; effects that can be ameliorated by the commonly prescribed antidiabetic drug, metformin. Mutation carriers exhibit hyperphagia in childhood, low heart rate, reduced basal metabolic rate and severe insulin resistance. These data establish KSR2 as an important regulator of energy intake, energy expenditure, and substrate utilization in humans. Modulation of KSR2-mediated effects may represent a novel therapeutic strategy for obesity and type 2 diabetes.


Subject(s)
Insulin Resistance , Obesity/genetics , Protein Serine-Threonine Kinases/genetics , Age Factors , Age of Onset , Amino Acid Sequence , Animals , Child , Energy Metabolism , Fatty Acids/metabolism , Female , Glucose/metabolism , Humans , Hyperphagia/genetics , Hyperphagia/metabolism , MAP Kinase Signaling System , Male , Mice , Models, Molecular , Molecular Sequence Data , Obesity/epidemiology , Obesity/metabolism , Oxidation-Reduction , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Sequence Alignment
9.
N Engl J Med ; 388(24): 2253-2261, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37314706

ABSTRACT

Hormone absence or inactivity is common in congenital disease, but hormone antagonism remains controversial. Here, we characterize two novel homozygous leptin variants that yielded antagonistic proteins in two unrelated children with intense hyperphagia, severe obesity, and high circulating levels of leptin. Both variants bind to the leptin receptor but trigger marginal, if any, signaling. In the presence of nonvariant leptin, the variants act as competitive antagonists. Thus, treatment with recombinant leptin was initiated at high doses, which were gradually lowered. Both patients eventually attained near-normal weight. Antidrug antibodies developed in the patients, although they had no apparent effect on efficacy. No severe adverse events were observed. (Funded by the German Research Foundation and others.).


Subject(s)
Leptin , Obesity, Morbid , Child , Humans , Antibodies , Homozygote , Leptin/genetics , Obesity, Morbid/genetics , Signal Transduction
10.
J Biol Chem ; : 107562, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002670

ABSTRACT

The hormone leptin, primarily secreted by adipocytes, plays a crucial role in regulating whole-body energy homeostasis. Homozygous loss-of-function mutations in the leptin gene (LEP) cause hyperphagia and severe obesity, primarily through alterations in leptin's affinity for its receptor or changes in serum leptin concentrations. Although serum concentrations are influenced by various factors (e.g., gene expression, protein synthesis, stability in the serum), proper delivery of leptin from its site of synthesis in the endoplasmic reticulum via the secretory pathway to the extracellular serum is a critical step. However, the regulatory mechanisms and specific machinery involved in this trafficking route, particularly in the context of human LEP mutations, remain largely unexplored. We have employed the Retention Using Selective Hooks (RUSH) system to elucidate the secretory pathway of leptin. We have refined this system into a medium-throughput assay for examining the pathophysiology of a range of obesity-associated LEP variants. Our results reveal that leptin follows the default secretory pathway, with no additional regulatory steps identified prior to secretion. Through screening of leptin variants, we identified three mutations that lead to proteasomal degradation of leptin and one variant that significantly decreased leptin secretion, likely through aberrant disulfide bond formation. These observations have identified novel pathogenic effects of leptin variants, which can be informative for therapeutics and diagnostics. Finally, our novel quantitative screening platform can be adapted for other secreted proteins.

11.
J Neurosci ; 43(47): 8000-8017, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37845034

ABSTRACT

Although overconsumption of high-fat foods is a major driver of weight gain, the neural mechanisms that link the oral sensory properties of dietary fat to reward valuation and eating behavior remain unclear. Here we combine novel food-engineering approaches with functional neuroimaging to show that the human orbitofrontal cortex (OFC) translates oral sensations evoked by high-fat foods into subjective economic valuations that guide eating behavior. Male and female volunteers sampled and evaluated nutrient-controlled liquid foods that varied in fat and sugar ("milkshakes"). During oral food processing, OFC activity encoded a specific oral-sensory parameter that mediated the influence of the foods' fat content on reward value: the coefficient of sliding friction. Specifically, OFC responses to foods in the mouth reflected the smooth, oily texture (i.e., mouthfeel) produced by fatty liquids on oral surfaces. Distinct activity patterns in OFC encoded the economic values associated with particular foods, which reflected the subjective integration of sliding friction with other food properties (sugar, fat, viscosity). Critically, neural sensitivity of OFC to oral texture predicted individuals' fat preferences in a naturalistic eating test: individuals whose OFC was more sensitive to fat-related oral texture consumed more fat during ad libitum eating. Our findings suggest that reward systems of the human brain sense dietary fat from oral sliding friction, a mechanical food parameter that likely governs our daily eating experiences by mediating interactions between foods and oral surfaces. These findings identify a specific role for the human OFC in evaluating oral food textures to mediate preference for high-fat foods.SIGNIFICANCE STATEMENT Fat and sugar enhance the reward value of food by imparting a sweet taste and rich mouthfeel but also contribute to overeating and obesity. Here we used a novel food-engineering approach to realistically quantify the physical-mechanical properties of high-fat liquid foods on oral surfaces and used functional neuroimaging while volunteers sampled these foods and placed monetary bids to consume them. We found that a specific area of the brain's reward system, the orbitofrontal cortex, detects the smooth texture of fatty foods in the mouth and links these sensory inputs to economic valuations that guide eating behavior. These findings can inform the design of low-calorie fat-replacement foods that mimic the impact of dietary fat on oral surfaces and neural reward systems.


Subject(s)
Prefrontal Cortex , Taste , Humans , Male , Female , Taste/physiology , Prefrontal Cortex/diagnostic imaging , Feeding Behavior , Dietary Fats , Sugars , Reward
12.
N Engl J Med ; 385(17): 1581-1592, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34614324

ABSTRACT

BACKGROUND: GNAS encodes the Gαs (stimulatory G-protein alpha subunit) protein, which mediates G protein-coupled receptor (GPCR) signaling. GNAS mutations cause developmental delay, short stature, and skeletal abnormalities in a syndrome called Albright's hereditary osteodystrophy. Because of imprinting, mutations on the maternal allele also cause obesity and hormone resistance (pseudohypoparathyroidism). METHODS: We performed exome sequencing and targeted resequencing in 2548 children who presented with severe obesity, and we unexpectedly identified 22 GNAS mutation carriers. We investigated whether the effect of GNAS mutations on melanocortin 4 receptor (MC4R) signaling explains the obesity and whether the variable clinical spectrum in patients might be explained by the results of molecular assays. RESULTS: Almost all GNAS mutations impaired MC4R signaling. A total of 6 of 11 patients who were 12 to 18 years of age had reduced growth. In these patients, mutations disrupted growth hormone-releasing hormone receptor signaling, but growth was unaffected in carriers of mutations that did not affect this signaling pathway (mean standard-deviation score for height, -0.90 vs. 0.75, respectively; P = 0.02). Only 1 of 10 patients who reached final height before or during the study had short stature. GNAS mutations that impaired thyrotropin receptor signaling were associated with developmental delay and with higher thyrotropin levels (mean [±SD], 8.4±4.7 mIU per liter) than those in 340 severely obese children who did not have GNAS mutations (3.9±2.6 mIU per liter; P = 0.004). CONCLUSIONS: Because pathogenic mutations may manifest with obesity alone, screening of children with severe obesity for GNAS deficiency may allow early diagnosis, improving clinical outcomes, and melanocortin agonists may aid in weight loss. GNAS mutations that are identified by means of unbiased genetic testing differentially affect GPCR signaling pathways that contribute to clinical heterogeneity. Monogenic diseases are clinically more variable than their classic descriptions suggest. (Funded by Wellcome and others.).


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/genetics , Mutation , Pediatric Obesity/genetics , Receptor, Melanocortin, Type 4/metabolism , Adolescent , Body Height , Child , Chromogranins/genetics , Female , GTP-Binding Protein alpha Subunits, Gs/deficiency , Humans , Male , Mutation, Missense , Receptors, Thyrotropin/metabolism , Signal Transduction , Exome Sequencing
13.
PLoS Biol ; 19(11): e3001255, 2021 11.
Article in English | MEDLINE | ID: mdl-34748544

ABSTRACT

The discovery of human obesity-associated genes can reveal new mechanisms to target for weight loss therapy. Genetic studies of obese individuals and the analysis of rare genetic variants can identify novel obesity-associated genes. However, establishing a functional relationship between these candidate genes and adiposity remains a significant challenge. We uncovered a large number of rare homozygous gene variants by exome sequencing of severely obese children, including those from consanguineous families. By assessing the function of these genes in vivo in Drosophila, we identified 4 genes, not previously linked to human obesity, that regulate adiposity (itpr, dachsous, calpA, and sdk). Dachsous is a transmembrane protein upstream of the Hippo signalling pathway. We found that 3 further members of the Hippo pathway, fat, four-jointed, and hippo, also regulate adiposity and that they act in neurons, rather than in adipose tissue (fat body). Screening Hippo pathway genes in larger human cohorts revealed rare variants in TAOK2 associated with human obesity. Knockdown of Drosophila tao increased adiposity in vivo demonstrating the strength of our approach in predicting novel human obesity genes and signalling pathways and their site of action.


Subject(s)
Drosophila melanogaster/genetics , Genetic Association Studies , Genetic Testing , Obesity/genetics , Age of Onset , Animals , Case-Control Studies , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Homozygote , Humans , Male , Mutation/genetics , Pedigree , Signal Transduction/genetics
14.
PLoS Genet ; 16(9): e1008916, 2020 09.
Article in English | MEDLINE | ID: mdl-32877400

ABSTRACT

Some imprinted genes exhibit parental origin specific expression bias rather than being transcribed exclusively from one copy. The physiological relevance of this remains poorly understood. In an analysis of brain-specific allele-biased expression, we identified that Trappc9, a cellular trafficking factor, was expressed predominantly (~70%) from the maternally inherited allele. Loss-of-function mutations in human TRAPPC9 cause a rare neurodevelopmental syndrome characterized by microcephaly and obesity. By studying Trappc9 null mice we discovered that homozygous mutant mice showed a reduction in brain size, exploratory activity and social memory, as well as a marked increase in body weight. A role for Trappc9 in energy balance was further supported by increased ad libitum food intake in a child with TRAPPC9 deficiency. Strikingly, heterozygous mice lacking the maternal allele (70% reduced expression) had pathology similar to homozygous mutants, whereas mice lacking the paternal allele (30% reduction) were phenotypically normal. Taken together, we conclude that Trappc9 deficient mice recapitulate key pathological features of TRAPPC9 mutations in humans and identify a role for Trappc9 and its imprinting in controlling brain development and metabolism.


Subject(s)
Intercellular Signaling Peptides and Proteins/deficiency , Microcephaly/genetics , Obesity/genetics , Animals , Child , Female , Gene Expression Regulation , Gene Frequency , Genomic Imprinting , Heterozygote , Homozygote , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Male , Maternal Inheritance , Mice , Mice, Inbred C57BL , Mice, Knockout , Microcephaly/metabolism , Mutation , Obesity/metabolism , Phenotype
15.
Clin Endocrinol (Oxf) ; 96(2): 270-275, 2022 02.
Article in English | MEDLINE | ID: mdl-34694010

ABSTRACT

OBJECTIVE: People who are severely obese due to melanocortin-4 receptor (MC4R) deficiency experience hyperphagia and impaired fullness after a meal (satiety). Meal-induced satiety is influenced by hormones, such as peptide-YY (PYY), which are released by enteroendocrine cells upon nutrient delivery to the small intestine. DESIGN: We investigated whether gastric emptying and PYY levels are altered in MC4R deficiency. METHODS: Gastric emptying was measured with a gastric scintigraphy protocol using technetium-99m (99 Tcm )-Tin Colloid for 3.5 h in individuals with loss of function MC4R variants and a control group of similar age and weight. In a separate study, we measured plasma PYY levels before and at multiple time points after three standardised meals given to individuals with MC4R deficiency and controls. Fasting PYY (basal secretion) and postprandial PYY levels were measured and the area under the curve and inter-meal peak were calculated. RESULTS: We found that gastric emptying time was significantly delayed and percentage meal retention increased in individuals with MC4R deficiency compared to obese controls. In addition, fasting and mean PYY secretion throughout the day were decreased in MC4R deficiency, whereas postprandial PYY secretion was unaltered. CONCLUSION: Delayed gastric emptying and reduced basal PYY secretion may contribute to impaired satiety in people with obesity due to MC4R deficiency.


Subject(s)
Gastroparesis , Receptor, Melanocortin, Type 4 , Humans , Obesity , Peptide YY , Postprandial Period
16.
PLoS Genet ; 15(1): e1007603, 2019 01.
Article in English | MEDLINE | ID: mdl-30677029

ABSTRACT

The variation in weight within a shared environment is largely attributable to genetic factors. Whilst many genes/loci confer susceptibility to obesity, little is known about the genetic architecture of healthy thinness. Here, we characterise the heritability of thinness which we found was comparable to that of severe obesity (h2 = 28.07 vs 32.33% respectively), although with incomplete genetic overlap (r = -0.49, 95% CI [-0.17, -0.82], p = 0.003). In a genome-wide association analysis of thinness (n = 1,471) vs severe obesity (n = 1,456), we identified 10 loci previously associated with obesity, and demonstrate enrichment for established BMI-associated loci (pbinomial = 3.05x10-5). Simulation analyses showed that different association results between the extremes were likely in agreement with additive effects across the BMI distribution, suggesting different effects on thinness and obesity could be due to their different degrees of extremeness. In further analyses, we detected a novel obesity and BMI-associated locus at PKHD1 (rs2784243, obese vs. thin p = 5.99x10-6, obese vs. controls p = 2.13x10-6 pBMI = 2.3x10-13), associations at loci recently discovered with much larger sample sizes (e.g. FAM150B and PRDM6-CEP120), and novel variants driving associations at previously established signals (e.g. rs205262 at the SNRPC/C6orf106 locus and rs112446794 at the PRDM6-CEP120 locus). Our ability to replicate loci found with much larger sample sizes demonstrates the value of clinical extremes and suggest that characterisation of the genetics of thinness may provide a more nuanced understanding of the genetic architecture of body weight regulation and may inform the identification of potential anti-obesity targets.


Subject(s)
Muscle Proteins/genetics , Neoplasm Proteins/genetics , Obesity, Morbid/genetics , Receptors, Cell Surface/genetics , Thinness/genetics , Transcription Factors/genetics , Adult , Alleles , Body Mass Index , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Obesity, Morbid/physiopathology , Polymorphism, Single Nucleotide , Thinness/physiopathology
17.
PLoS Genet ; 14(10): e1007591, 2018 10.
Article in English | MEDLINE | ID: mdl-30325923

ABSTRACT

A primary goal of the recent investment in sequencing is to detect novel genetic associations in health and disease improving the development of treatments and playing a critical role in precision medicine. While this investment has resulted in an enormous total number of sequenced genomes, individual studies of complex traits and diseases are often smaller and underpowered to detect rare variant genetic associations. Existing genetic resources such as the Exome Aggregation Consortium (>60,000 exomes) and the Genome Aggregation Database (~140,000 sequenced samples) have the potential to be used as controls in these studies. Fully utilizing these and other existing sequencing resources may increase power and could be especially useful in studies where resources to sequence additional samples are limited. However, to date, these large, publicly available genetic resources remain underutilized, or even misused, in large part due to the lack of statistical methods that can appropriately use this summary level data. Here, we present a new method to incorporate external controls in case-control analysis called ProxECAT (Proxy External Controls Association Test). ProxECAT estimates enrichment of rare variants within a gene region using internally sequenced cases and external controls. We evaluated ProxECAT in simulations and empirical analyses of obesity cases using both low-depth of coverage (7x) whole-genome sequenced controls and ExAC as controls. We find that ProxECAT maintains the expected type I error rate with increased power as the number of external controls increases. With an accompanying R package, ProxECAT enables the use of publicly available allele frequencies as external controls in case-control analysis.


Subject(s)
Genetic Variation , Genome-Wide Association Study/methods , High-Throughput Nucleotide Sequencing/methods , Polymorphism, Single Nucleotide , Algorithms , Case-Control Studies , Computer Simulation , Gene Frequency , Genotype , Humans , Models, Genetic , Poisson Distribution
19.
FASEB J ; 32(4): 1830-1840, 2018 04.
Article in English | MEDLINE | ID: mdl-29180441

ABSTRACT

Psychiatric disorders are associated with aberrant brain development and/or aggressive behavior and are influenced by genetic factors; however, genes that affect brain aggression circuits remain elusive. Here, we show that neuronal Src-homology-2 (SH2)B adaptor protein-1 ( Sh2b1) is indispensable for both brain growth and protection against aggression. Global and brain-specific deletion of Sh2b1 decreased brain weight and increased aggressive behavior. Global and brain-specific Sh2b1 knockout (KO) mice exhibited fatal, intermale aggression. In a resident-intruder paradigm, latency to attack was markedly reduced, whereas the number and the duration of attacks was significantly increased in global and brain-specific Sh2b1 KO mice compared with wild-type littermates. Consistently, core aggression circuits were activated to a higher level in global and brain-specific Sh2b1 KO males, based on c-fos immunoreactivity in the amygdala and periaqueductal gray. Brain-specific restoration of Sh2b1 normalized brain size and reversed pathologic aggression and aberrant activation of core aggression circuits in Sh2b1 KO males. SH2B1 mutations in humans were linked to aberrant brain development and behavior. At the molecular level, Sh2b1 enhanced neurotrophin-stimulated neuronal differentiation and protected against oxidative stress-induced neuronal death. Our data suggest that neuronal Sh2b1 promotes brain development and the integrity of core aggression circuits, likely through enhancing neurotrophin signaling.-Jiang, L., Su, H., Keogh, J. M., Chen, Z., Henning, E., Wilkinson, P., Goodyer, I., Farooqi, I. S., Rui, L. Neural deletion of Sh2b1 results in brain growth retardation and reactive aggression.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Aggression , Brain/growth & development , Adult , Animals , Brain/metabolism , Brain/physiology , Child , Female , Gene Deletion , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mutation , PC12 Cells , Rats
20.
Brain ; 140(1): 171-183, 2017 01.
Article in English | MEDLINE | ID: mdl-27789521

ABSTRACT

SEE FINGER DOI101093/AWW312 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Abnormal eating behaviour and metabolic parameters including insulin resistance, dyslipidaemia and body mass index are increasingly recognized as important components of neurodegenerative disease and may contribute to survival. It has previously been established that behavioural variant frontotemporal dementia is associated with abnormal eating behaviour characterized by increased sweet preference. In this study, it was hypothesized that behavioural variant frontotemporal dementia might also be associated with altered energy expenditure. A cohort of 19 patients with behavioural variant frontotemporal dementia, 13 with Alzheimer's disease and 16 (age- and sex-matched) healthy control subjects were studied using Actiheart devices (CamNtech) to assess resting and stressed heart rate. Actiheart devices were fitted for 7 days to measure sleeping heart rate, activity levels, and resting, active and total energy expenditure. Using high resolution structural magnetic resonance imaging the neural correlates of increased resting heart rate were investigated including cortical thickness and region of interest analyses. In behavioural variant frontotemporal dementia, resting (P = 0.001), stressed (P = 0.037) and sleeping heart rate (P = 0.038) were increased compared to control subjects, and resting heart rate (P = 0.020) compared to Alzheimer disease patients. Behavioural variant frontotemporal dementia was associated with decreased activity levels compared to controls (P = 0.002) and increased resting energy expenditure (P = 0.045) and total energy expenditure (P = 0.035). Increased resting heart rate correlated with behavioural (Cambridge Behavioural Inventory) and cognitive measures (Addenbrooke's Cognitive Examination). Increased resting heart rate in behavioural variant frontotemporal dementia correlated with atrophy involving the mesial temporal cortex, insula, and amygdala, regions previously suggested to be involved exclusively in social and emotion processing in frontotemporal dementia. These neural correlates overlap the network involved in eating behaviour in frontotemporal dementia, suggesting a complex interaction between eating behaviour, autonomic function and energy homeostasis. As such the present study suggests that increased heart rate and autonomic changes are prevalent in behavioural variant frontotemporal dementia, and are associated with changes in energy expenditure. An understanding of these changes and neural correlates may have potential relevance to disease progression and prognosis.


Subject(s)
Alzheimer Disease , Autonomic Nervous System Diseases , Cerebral Cortex/diagnostic imaging , Energy Metabolism/physiology , Feeding Behavior/physiology , Frontotemporal Dementia , Heart Rate/physiology , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Atrophy/pathology , Autonomic Nervous System Diseases/diagnostic imaging , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/physiopathology , Female , Frontotemporal Dementia/complications , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/physiopathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL