Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters

Publication year range
1.
J Hepatol ; 73(1): 140-148, 2020 07.
Article in English | MEDLINE | ID: mdl-32302728

ABSTRACT

BACKGROUND & AIMS: Obesity and type 2 diabetes increase hepatocellular carcinoma (HCC) incidence in humans and accelerate diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. We investigated whether exercise reduces HCC development in obese/diabetic Alms1 mutant (foz/foz) mice and studied protective mechanisms. METHODS: We measured HCC development in DEN-injected male foz/foz and wild-type (WT) littermates housed with or without an exercise wheel from week 4 until 12 or 24 weeks, and in foz/foz mice pair-fed to WT littermates. We also studied HCC development in DEN-injected Jnk1-/-.foz/foz mice generated by cross breeding, as well as their genetic controls. Dysplastic hepatocytes were identified by glutathione-S-transferase pi form (GST-pi) immunohistochemistry, liver nodules were counted, and HCC was analysed by histopathology. RESULTS: Exercising foz/foz mice maintained similar weight as WT mice up to 10 weeks, but then gained weight and were obese by 24 weeks; a similar body weight profile was obtained by pair-feeding foz/foz mice to WT. At 12 weeks, livers of exercising foz/foz mice exhibited fewer GST-pi positive hepatocytes than sedentary counterparts; by 24 weeks, fewer exercising foz/foz mice developed HCC (15% vs. 64%, p <0.05). Conversely, pair-feeding foz/foz mice failed to reduce HCC incidence. In these insulin-resistant foz/foz mice, exercise failed to activate hepatic AMPK or Akt/mTORC1. Instead, it improved insulin sensitivity, ameliorated steatosis and liver injury, activated p53 to increase p27 expression, and prevented JNK activation. This was associated with suppression of hepatocellular proliferation. DEN-injected Jnk1-/-.foz/foz mice failed to develop liver tumours or HCC at 24 weeks. CONCLUSIONS: Direct effects of exercise dampen proliferation of dysplastic hepatocytes to reduce 3-month dysplastic foci and 6-month incidence of DEN-induced HCC in obese, insulin-resistant mice. The effects of exercise that potentially slow hepatocarcinogenesis include p53-mediated induction of p27 and prevention of JNK activation. LAY SUMMARY: Fatty liver disease commonly occurs alongside obesity and diabetes, contributing to rapidly increasing rates of liver cancer throughout the world. Herein, we show that exercise reduces the incidence and progression of hepatocellular carcinoma in mouse models. The effect of exercise on cancer risk was shown to be independent of changes in weight. Exercise could be a protective mechanism against liver cancer in at-risk individuals.


Subject(s)
Carcinogenesis , Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Liver Neoplasms , Motor Activity/physiology , Obesity , Animals , Body Weight/physiology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Immunohistochemistry , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , MAP Kinase Signaling System/physiology , Mice , Mice, Obese , Mitogen-Activated Protein Kinases/metabolism , Obesity/metabolism , Obesity/physiopathology , Physical Conditioning, Animal , Proliferating Cell Nuclear Antigen/metabolism , Protective Factors , Risk Factors , Tumor Suppressor Protein p53/metabolism
2.
Lab Invest ; 99(1): 4-16, 2019 01.
Article in English | MEDLINE | ID: mdl-30258096

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is the form of nonalcoholic fatty liver disease that can evolve into cirrhosis. Lifestyle modifications achieving 10% weight loss reverse NASH, but there are no effective approved drug treatments. We previously identified defective adaptive thermogenesis as a factor contributing to metabolic syndrome and hepatic steatosis. We have now tested whether increasing nonshivering thermogenesis can improve preexisting NASH in mice. In high-fat diet-fed foz/foz mice with established NASH, treatment with ß3AR agonist restored brown adipose tissue (BAT) function, decreased body weight, improved glucose tolerance, and reduced hepatic lipid content compared to untreated counterparts, but had no impact on liver inflammation or on nonalcoholic fatty liver disease activity score (NAS). Similarly, ß3AR agonist did not alter liver pathology in other steatohepatitis models, including MCD diet-fed diabetic obese db/db mice. Caloric restriction alone alleviated the hepatic inflammatory signature in foz/foz mice. Addition of a ß3AR agonist to mice subjected to caloric restriction enhanced weight loss and glucose tolerance, and improved liver steatosis, hepatocellular injury, and further reduced liver inflammation. These changes contributed to a significantly lower NAS score such as no (0/9) animals in this group fulfilled the criteria for NASH pathology compared to eight out of ten mice under caloric restriction alone. In conclusion, ß3AR agonist counteracts features of the metabolic syndrome and alleviates steatosis, but does not reverse NASH. However, when coupled with weight loss therapy, BAT stimulation provides additional therapeutic advantages and reverses NASH.


Subject(s)
Acetanilides/therapeutic use , Adipose Tissue, Brown/drug effects , Adrenergic beta-3 Receptor Agonists/therapeutic use , Dioxoles/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Thiazoles/therapeutic use , Acetanilides/pharmacology , Adrenergic beta-3 Receptor Agonists/pharmacology , Animals , Caloric Restriction , Diet, High-Fat/adverse effects , Dioxoles/pharmacology , Drug Evaluation, Preclinical , Liver/drug effects , Metabolic Syndrome/drug therapy , Mice , Non-alcoholic Fatty Liver Disease/diet therapy , Non-alcoholic Fatty Liver Disease/etiology , Thiazoles/pharmacology
3.
J Gastroenterol Hepatol ; 33(7): 1312-1320, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29424123

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is strongly associated with overnutrition, insulin resistance, and predisposition to type 2 diabetes. To critically analyze the translational significance of currently used animal models of NASH, we reviewed articles published during the last 3 years that studied NASH pathogenesis using mouse models. Among 146 articles, 34 (23%) used models in which overnutrition was reported, and 36 (25%) demonstrated insulin resistance, with or without glucose intolerance. Half the articles contained no information on whether mice exhibited overnutrition or insulin resistance. While 75 papers (52%) reported > 2-fold increase of serum/plasma alanine aminotransferase (ALT) compared with controls, ALT levels were near normal or not reported in 48%. Liver pathology was assessed by a pathologist with an interest in liver pathology in 53% of articles published in gastroenterology/hepatology journals, versus 43-44% in other journals. While there appears to be a trend to use models that are potentially relevant to the pathogenesis of human NASH, journals currently publish data on mouse models in which overnutrition and insulin resistance do not occur, without ALT increase or appropriate analysis of NASH pathology. We recommend that investigators, reviewers, and journal editors carefully consider the validity of NASH models in current use and that moves are made to reach a consensus on what the minimal criteria should be.


Subject(s)
Disease Models, Animal , Non-alcoholic Fatty Liver Disease , Alanine Transaminase/blood , Animals , Diabetes Mellitus, Type 2/etiology , Disease Susceptibility/etiology , Humans , Insulin Resistance , Liver/pathology , Mice , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Overnutrition/complications
4.
Exp Cell Res ; 356(1): 48-56, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28408319

ABSTRACT

Dysplastic hepatocytes (DH) represent altered hepatocytes with potential for malignant transformation. To date, most research on pathways to hepatocarcinogenesis has focused on use of "hepatoma" cell lines derived from hepatocellular carcinoma (HCC). We describe a novel technique for deriving/culturing DH and demonstrate their utility for functional studies in vitro, compared to primary hepatocytes (PH) and HCC. PH and DH were prepared by portal vein collagenase perfusion from C57BL/6J mice. DH were subsequently subjected to FACS. HCC from diethylnitrosamine (DEN)-injected mice were mechanically isolated. Cell cycle analyses were performed by flow cytometry and PCNA immunohistochemistry. To establish utility of DH, we studied pathways of p53 turnover, apoptosis and cell proliferation using pfithrin-α (PFT) and nutlin-3. Like PH, DH were minimally proliferative compared to HCC. Only 30±0.03% of DH were in G2/M phase versus 51±0.01% of HCC; this difference corroborated with PCNA-immunostaining of dysplastic nodules from DEN-injected mice. In DH and HCC, nutlin-3 suppressed p53 mRNA, induced p53 and mdm2 activation but paradoxically resulted in increased anti-apoptotic and proliferative activity. Primary murine DH display distinctive biological characteristics compared with PH and HCC. As an intermediate cell type to HCC, they offer a new pathobiologically relevant primary cell culture system with which to interrogate the molecular changes in hepatocarcinogenesis.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/pathology , Hepatocytes/pathology , Liver Neoplasms, Experimental/pathology , Liver/pathology , Animals , Apoptosis/genetics , Cell Cycle/physiology , Cell Proliferation/genetics , Cells, Cultured , Diethylnitrosamine , Enzyme Activation , Imidazoles/pharmacology , Liver/cytology , Male , Mice , Mice, Inbred C57BL , Piperazines/pharmacology , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
Adv Exp Med Biol ; 1061: 19-44, 2018.
Article in English | MEDLINE | ID: mdl-29956204

ABSTRACT

Overnutrition, usually with obesity and genetic predisposition, lead to insulin resistance, which is an invariable accompaniment of nonalcoholic fatty liver disease (NAFLD). The associated metabolic abnormalities, pre- or established diabetes, hypertension and atherogenic dyslipidemia (clustered as metabolic syndrome) tend to be worse for nonalcoholic steatohepatitis (NASH), revealing it as part of a continuum of metabolic pathogenesis. The origins of hepatocellular injury and lobular inflammation which distinguish NASH from simple steatosis have intrigued investigators, but it is now widely accepted that NASH results from liver lipotoxicity. The key issue is not the quantity of liver fat but the type(s) of lipid molecules that accumulate, and how they are "packaged" to avoid subcellular injury. Possible lipotoxic mediators include free (unesterified) cholesterol, saturated free fatty acids, diacylglycerols, lysophosphatidyl-choline, sphingolipids and ceramide. Lipid droplets are intracellular storage organelles for non-structural lipid whose regulation is influenced by genetic polymorphisms, such as PNPLA3. Cells unable to sequester chemically reactive lipid molecules undergo mitochondrial injury, endoplasmic reticulum (ER) stress and autophagy, all processes of interest for NASH pathogenesis. Lipotoxicity kills hepatocytes by apoptosis, a highly regulated, non-inflammatory form of cell death, but also by necrosis, necroptosis and pyroptosis; the latter involve mitochondrial injury, oxidative stress, activation of c-Jun N-terminal kinase (JNK) and release of danger-associated molecular patterns (DAMPs). DAMPs stimulate innate immunity by binding pattern recognition receptors, such as Toll-like receptor 4 (TLR4) and the NOD-like receptor protein 3 (NLRP3) inflammasome, which release a cascade of pro-inflammatory chemokines and cytokines. Thus, lipotoxic hepatocellular injury attracts inflammatory cells, particularly activated macrophages which surround ballooned hepatocytes as crown-like structures. In both experimental and human NASH, livers contain cholesterol crystals which are a second signal for NLRP3 activation; this causes interleukin (IL)-1ß and IL18 secretion to attract and activate macrophages and neutrophils. Injured hepatocytes also liberate plasma membrane-derived extracellular vesicles; these have been shown to circulate in NASH and to be pro-inflammatory. The way metabolic dysfunction leads to lipotoxicity, innate immune responses and the resultant pattern of cellular inflammation in the liver are likely also relevant to hepatic fibrogenesis and hepatocarcinogenesis. Pinpointing the key molecules involved pharmacologically should eventually lead to effective pharmacotherapy against NASH.


Subject(s)
Lipid Metabolism , Liver , Non-alcoholic Fatty Liver Disease , Overnutrition , Animals , Humans , Inflammation/metabolism , Inflammation/pathology , Liver/metabolism , Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Overnutrition/metabolism , Overnutrition/pathology
6.
J Lipid Res ; 58(6): 1067-1079, 2017 06.
Article in English | MEDLINE | ID: mdl-28404639

ABSTRACT

We recently reported that cholesterol crystals form in hepatocyte lipid droplets (LDs) in human and experimental nonalcoholic steatohepatitis. Herein, we assigned WT C57BL/6J mice to a high-fat (15%) diet for 6 months, supplemented with 0%, 0.25%, 0.5%, 0.75%, or 1% dietary cholesterol. Increasing dietary cholesterol led to cholesterol loading of the liver, but not of adipose tissue, resulting in fibrosing steatohepatitis at a dietary cholesterol concentration of ≥0.5%, whereas mice on lower-cholesterol diets developed only simple steatosis. Hepatic cholesterol crystals and crown-like structures also developed at a dietary cholesterol concentration ≥0.5%. Crown-like structures consisted of activated Kupffer cells (KCs) staining positive for NLRP3 and activated caspase 1, which surrounded and processed cholesterol crystal-containing remnant LDs of dead hepatocytes. The KCs processed LDs at the center of crown-like structures in the extracellular space by lysosomal enzymes, ultimately transforming into lipid-laden foam cells. When HepG2 cells were exposed to LDL cholesterol, they developed cholesterol crystals in LD membranes, which caused activation of THP1 cells (macrophages) grown in coculture; upregulation of TNF-alpha, NLRP3, and interleukin 1beta (IL1ß) mRNA; and secretion of IL-1beta. In conclusion, cholesterol crystals form on the LD membrane of hepatocytes and cause activation and cholesterol loading of KCs that surround and process these LDs by lysosomal enzymes.


Subject(s)
Cholesterol/chemistry , Hepatocytes/chemistry , Lipid Droplets/chemistry , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Animals , Cholesterol, Dietary/pharmacology , Crystallization , Diet, High-Fat/adverse effects , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Hep G2 Cells , Humans , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Male , Mice , Mice, Inbred C57BL , THP-1 Cells
7.
J Hepatol ; 66(5): 1037-1046, 2017 05.
Article in English | MEDLINE | ID: mdl-28167322

ABSTRACT

BACKGROUND & AIMS: NOD-like receptor protein 3 (NLRP3) inflammasome activation occurs in Non-alcoholic fatty liver disease (NAFLD). We used the first small molecule NLRP3 inhibitor, MCC950, to test whether inflammasome blockade alters inflammatory recruitment and liver fibrosis in two murine models of steatohepatitis. METHODS: We fed foz/foz and wild-type mice an atherogenic diet for 16weeks, gavaged MCC950 or vehicle until 24weeks, then determined NAFLD phenotype. In mice fed an methionine/choline deficient (MCD) diet, we gavaged MCC950 or vehicle for 6weeks and determined the effects on liver fibrosis. RESULTS: In vehicle-treated foz/foz mice, hepatic expression of NLRP3, pro-IL-1ß, active caspase-1 and IL-1ß increased at 24weeks, in association with cholesterol crystal formation and NASH pathology; plasma IL-1ß, IL-6, MCP-1, ALT/AST all increased. MCC950 treatment normalized hepatic caspase 1 and IL-1ß expression, plasma IL-1ß, MCP-1 and IL-6, lowered ALT/AST, and reduced the severity of liver inflammation including designation as NASH pathology, and liver fibrosis. In vitro, cholesterol crystals activated Kupffer cells and macrophages to release IL-1ß; MCC950 abolished this, and the associated neutrophil migration. MCD diet-fed mice developed fibrotic steatohepatitis; MCC950 suppressed the increase in hepatic caspase 1 and IL-1ß, lowered numbers of macrophages and neutrophils in the liver, and improved liver fibrosis. CONCLUSION: MCC950, an NLRP3 selective inhibitor, improved NAFLD pathology and fibrosis in obese diabetic mice. This is potentially attributable to the blockade of cholesterol crystal-mediated NLRP3 activation in myeloid cells. MCC950 reduced liver fibrosis in MCD-fed mice. Targeting NLRP3 is a logical direction in pharmacotherapy of NASH. LAY SUMMARY: Fatty liver disease caused by being overweight with diabetes and a high risk of heart attack, termed non-alcoholic steatohepatitis (NASH), is the most common serious liver disease with no current treatment. There could be several causes of inflammation in NASH, but activation of a protein scaffold within cells termed the inflammasome (NLRP3) has been suggested to play a role. Here we show that cholesterol crystals could be one pathway to activate the inflammasome in NASH. We used a drug called MCC950, which has already been shown to block NLRP3 activation, in an attempt to reduce liver injury in NASH. This drug partly reversed liver inflammation, particularly in obese diabetic mice that most closely resembles the human context of NASH. In addition, such dampening of liver inflammation in NASH achieved with MCC950 partly reversed liver scarring, the process that links NASH to the development of cirrhosis.


Subject(s)
Hepatitis/prevention & control , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Liver Cirrhosis, Experimental/prevention & control , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Non-alcoholic Fatty Liver Disease/drug therapy , Sulfones/therapeutic use , Animals , Disease Models, Animal , Female , Furans , Indenes , Interleukin-1beta/blood , Mice , NF-kappa B/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Non-alcoholic Fatty Liver Disease/complications , Reactive Oxygen Species/metabolism , Sulfonamides
8.
Clin Sci (Lond) ; 131(4): 285-296, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27803297

ABSTRACT

Fatty liver diseases are complications of the metabolic syndrome associated with obesity, insulin resistance and low grade inflammation. Our aim was to uncover mechanisms contributing to hepatic complications in this setting. We used foz/foz mice prone to obesity, insulin resistance and progressive fibrosing non-alcoholic steatohepatitis (NASH). Foz/foz mice are hyperphagic but wild-type (WT)-matched calorie intake failed to protect against obesity, adipose inflammation and glucose intolerance. Obese foz/foz mice had similar physical activity level but reduced energy expenditure. Thermogenic adaptation to high-fat diet (HFD) or to cold exposure was severely impaired in foz/foz mice compared with HFD-fed WT littermates due to lower sympathetic tone in their brown adipose tissue (BAT). Intermittent cold exposure (ICE) restored BAT function and thereby improved glucose tolerance, decreased fat mass and liver steatosis. We conclude that failure of BAT adaptation drives the metabolic complications of obesity in foz/foz mice, including development of liver steatosis. Induction of endogenous BAT function had a significant therapeutic impact on obesity, glucose tolerance and liver complications and is a potential new avenue for therapy of non-alcoholic fatty liver disease (NAFLD).


Subject(s)
Metabolic Syndrome/physiopathology , Non-alcoholic Fatty Liver Disease/physiopathology , Obesity/physiopathology , Thermogenesis/physiology , Adipose Tissue, Brown/physiopathology , Animals , Caloric Restriction , Cold Temperature , Disease Models, Animal , Energy Intake , Energy Metabolism/physiology , Glucose Intolerance/physiopathology , Male , Metabolic Syndrome/etiology , Mice, Obese , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications , Oxygen Consumption/physiology , Physical Conditioning, Animal/physiology
9.
Clin Sci (Lond) ; 131(16): 2145-2159, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28687713

ABSTRACT

Background and aims: TLR9 deletion protects against steatohepatitis due to choline-amino acid depletion and high-fat diet. We measured TLR9 in human non-alcoholic steatohepatitis (NASH) livers, and tested whether TLR9 mediates inflammatory recruitment in three murine models of non-alcoholic fatty liver disease (NAFLD). Methods: We assayed TLR mRNA in liver biopsies from bariatric surgery patients. Wild-type (Wt), appetite-dysregulated Alms1 mutant (foz/foz), Tlr9-/-, and Tlr9-/-foz/foz C57BL6/J mice and bone marrow (BM) chimeras were fed 0.2% cholesterol, high-fat, high sucrose (atherogenic[Ath]) diet or chow, and NAFLD activity score (NAS)/NASH pathology, macrophage/neutrophil infiltration, cytokines/chemokines, and cell death markers measured in livers. Results: Hepatic TLR9 and TLR4 mRNA were increased in human NASH but not simple steatosis, and in Ath-fed foz/foz mice with metabolic syndrome-related NASH. Ath-fed Tlr9-/- mice showed simple steatosis and less Th1 cytokines than Wt. Tlr9-/-foz/foz mice were obese and diabetic, but necroinflammatory changes were less severe than Tlr9+/+.foz/foz mice. TLR9-expressing myeloid cells were critical for Th1 cytokine production in BM chimeras. BM macrophages from Tlr9-/- mice showed M2 polarization, were resistant to M1 activation by necrotic hepatocytes/other pro-inflammatory triggers, and provoked less neutrophil chemotaxis than Wt Livers from Ath-fed Tlr9-/- mice appeared to exhibit more markers of necroptosis [receptor interacting protein kinase (RIP)-1, RIP-3, and mixed lineage kinase domain-like protein (MLKL)] than Wt, and ∼25% showed portal foci of mononuclear cells unrelated to NASH pathology. CONCLUSION: Our novel clinical data and studies in overnutrition models, including those with diabetes and metabolic syndrome, clarify TLR9 as a pro-inflammatory trigger in NASH. This response is mediated via M1-macrophages and neutrophil chemotaxis.


Subject(s)
Inflammation Mediators/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Toll-Like Receptor 9/biosynthesis , Up-Regulation/physiology , Adiponectin/deficiency , Adult , Animals , Bariatric Surgery , Biopsy , Cells, Cultured , Cytokines/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Gene Deletion , Hepatocytes/metabolism , Hepatomegaly/prevention & control , Humans , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Metabolic Syndrome/metabolism , Metabolism, Inborn Errors/prevention & control , Mice, Knockout , Neutrophils/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity/prevention & control , RNA, Messenger/genetics , Toll-Like Receptor 9/deficiency , Toll-Like Receptor 9/genetics
11.
J Gastroenterol Hepatol ; 31(6): 1210-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26574916

ABSTRACT

BACKGROUND AND AIM: While gender differences in hepatocellular carcinoma (HCC) are profound, the mechanism is unclear. Using castration and hormone replacement strategies, we tested whether these gender differences are attributable to testosterone or estradiol/progesterone effects on cell cycle regulators and p53. METHODS: We studied dysplastic liver and HCCs in intact and castrated diethylnitrosamine-injected C57BL/6J male and female mice, with or without hormonal replacement. Effects of sex steroids on proliferation and survival of primary hepatocytes and primary HCC cells were also characterized. RESULTS: Diethylnitrosamine-injected female mice displayed fewer dysplastic foci and slower onset of HCC than male mice, with smaller/more differentiated tumors and fewer metastases. Castration of diethylnitrosamine-injected male mice reduced cyclin E kinase and augmented hepatocyte apoptosis compared with intact male mice; estradiol/progesterone enhanced these effects. In intact female mice, cyclin E kinase activity was less than in males; testosterone administered to ovariectomized female mice upregulated cyclin E, increased cyclin E kinase, and accelerated hepatocarcinogenesis. In vitro, testosterone increased expression of cell cycle regulators (cyclin D1, cyclin E, and cyclin-dependent kinase 2) and reduced p53 and p21, which enhanced hepatocyte viability. In contrast, estradiol both suppressed hepatocyte cell cycle markers, upregulated p53 and reduced viability of hepatocytes and HCC cells. CONCLUSIONS: Testosterone is the positive regulator of hepatocyte cell cycle via cyclin E, while estradiol plays a negative role by effects of p53 and p21. Together, both sex hormones determine the male predominance of gender differences in hepatocarcinogenesis.


Subject(s)
Carcinoma, Hepatocellular/enzymology , Cell Transformation, Neoplastic/chemically induced , Cyclin E/metabolism , Cyclin-Dependent Kinase 2/metabolism , Hormone Replacement Therapy/adverse effects , Liver Neoplasms, Experimental/enzymology , Testosterone/pharmacology , Testosterone/toxicity , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Castration , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Diethylnitrosamine , Estradiol/toxicity , Estrogen Replacement Therapy/adverse effects , Female , Hepatocytes/drug effects , Hepatocytes/enzymology , Hepatocytes/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/pathology , Male , Mice, Inbred C57BL , Primary Cell Culture , Sex Factors , Time Factors , Tumor Suppressor Protein p53/metabolism
12.
J Lipid Res ; 56(2): 277-85, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25520429

ABSTRACT

Cholesterol crystals form within hepatocyte lipid droplets in human and experimental nonalcoholic steatohepatitis (NASH) and are the focus of crown-like structures (CLSs) of activated Kupffer cells (KCs). Obese, diabetic Alms1 mutant (foz/foz) mice were a fed high-fat (23%) diet containing 0.2% cholesterol for 16 weeks and then assigned to four intervention groups for 8 weeks: a) vehicle control, b) ezetimibe (5 mg/kg/day), c) atorvastatin (20 mg/kg/day), or d) ezetimibe and atorvastatin. Livers of vehicle-treated mice developed fibrosing NASH with abundant cholesterol crystallization within lipid droplets calculated to extend over 3.3% (SD, 2.2%) of liver surface area. Hepatocyte lipid droplets with prominent cholesterol crystallization were surrounded by TNFα-positive (activated) KCs forming CLSs (≥ 3 per high-power field). KCs that formed CLSs stained positive for NLRP3, implicating activation of the NLRP3 inflammasome in response to cholesterol crystals. In contrast, foz/foz mice treated with ezetimibe and atorvastatin showed near-complete resolution of cholesterol crystals [0.01% (SD, 0.02%) of surface area] and CLSs (0 per high-power field), with amelioration of fibrotic NASH. Ezetimibe or atorvastatin alone had intermediate effects on cholesterol crystallization, CLSs, and NASH. These findings are consistent with a causative link between exposure of hepatocytes and KCs to cholesterol crystals and with the development of NASH possibly mediated by NLRP3 activation.


Subject(s)
Anticholesteremic Agents/therapeutic use , Cholesterol/metabolism , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Animals , Anticholesteremic Agents/pharmacology , Atorvastatin , Azetidines/pharmacology , Azetidines/therapeutic use , Ezetimibe , Female , Heptanoic Acids/pharmacology , Heptanoic Acids/therapeutic use , Inflammasomes/drug effects , Inflammasomes/metabolism , Liver/drug effects , Liver/metabolism , Mice , Mice, Mutant Strains , Non-alcoholic Fatty Liver Disease/drug therapy , Pyrroles/pharmacology , Pyrroles/therapeutic use
13.
Liver Int ; 35(9): 2174-86, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25786512

ABSTRACT

BACKGROUND & AIMS: Steatosis accentuates the severity of hepatic ischaemia-reperfusion injury (IRI); 'statins' (HMG-CoA reductase inhibitors) protect the heart and brain against post-ischaemic injury. We tested whether short-term administration of atorvastatin protects fatty livers in obese mice against IRI. METHODS: Mice with dietary or genetic simple steatosis (SS) or non-alcoholic steatohepatitis (NASH) were subjected to 60 min partial hepatic ischaemia/24 h reperfusion. Atorvastatin was injected intravenously (5 mg/kg) 1 h before IRI. Liver injury, Toll-like receptor-4 (TLR4), cytokines/chemokines, iNOS/eNOS expression, eNOS activity and thromboxane B2 (TXB2) production were determined. RESULTS: Ischaemia-reperfusion injury was exaggerated by two- to five-fold in SS and NASH compared with lean liver. Atorvastatin pretreatment conferred 70-90% hepatic protection in all animals. Atorvastatin increased post-ischaemic eNOS mRNA/protein and strikingly enhanced eNOS activity (by phospho-eNOS). It also attenuated microparticle (MP) production, NF-κB activation, significantly dampened post-ischaemic thromboxane B2 production, induction of TNF-α, IL-6, MIP-1a, MCP-1, GM-CSF and vascular cell adhesion molecule-1 (VCAM), with a resultant reduction on macrophage and polymorphonuclear neutrophil recruitment. Up-regulation of HMGB1 and TLR4 after IRI was marked in fatty livers; 1 h pretreatment with atorvastatin reduced HMGB1 and TLR4 expression in all livers. CONCLUSIONS: Acute (1 h) atorvastatin administration is highly hepatoprotective against IRI in NASH, fatty and lean livers. Key mechanisms include suppression of inflammation by prevention of NF-κB activation, microvascular protection via eNOS activation and suppression of TXB2 and MP release. Short-term intravenous statin treatment is a readily available and effective preventive agent against hepatic IRI, irrespective of obesity and fatty liver disease, and merits clinical trials in at-risk patients.


Subject(s)
Atorvastatin/administration & dosage , Chemokines/blood , Cytokines/blood , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Non-alcoholic Fatty Liver Disease/drug therapy , Reperfusion Injury/drug therapy , Animals , HMGB1 Protein , Liver/pathology , Male , Mice , Mice, Obese , NF-kappa B/metabolism , Nitric Oxide Synthase Type III/metabolism , Thromboxane B2/metabolism , Toll-Like Receptor 4/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
14.
J Hepatol ; 61(6): 1376-84, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25064435

ABSTRACT

BACKGROUND & AIMS: Free cholesterol (FC) accumulates in non-alcoholic steatohepatitis (NASH) but not in simple steatosis. We sought to establish how FC causes hepatocyte injury. METHODS: In NASH-affected livers from diabetic mice, subcellular FC distribution (filipin fluorescence) was established by subcellular marker co-localization. We loaded murine hepatocytes with FC by incubation with low-density lipoprotein (LDL) and studied the effects of FC on JNK1 activation, mitochondrial injury and cell death and on the amplifying roles of the high-mobility-group-box 1 (HMGB1) protein and the Toll-like receptor 4 (TLR4). RESULTS: In NASH, FC localized to hepatocyte plasma membrane, mitochondria and ER. This was reproduced in FC-loaded hepatocytes. At 40 µM LDL, hepatocyte FC increased to cause LDH leakage, apoptosis and necrosis associated with JNK1 activation (c-Jun phosphorylation), mitochondrial membrane pore transition, cytochrome c release, oxidative stress (GSSG:GSH ratio) and ATP depletion. Mitochondrial swelling and crystae disarray were evident by electron microscopy. Jnk1(-/-) and Tlr4(-/-) hepatocytes were refractory to FC lipotoxicity; JNK inhibitors (1-2 µM CC-401, CC-930) blocked apoptosis and necrosis. Cyclosporine A and caspase-3 inhibitors protected FC-loaded hepatocytes, confirming mitochondrial cell death pathways; in contrast, 4-phenylbutyric acid, which improves ER folding capacity did not protect FC-loaded hepatocytes. HMGB1 was released into the culture medium of FC-loaded wild type (WT) but not Jnk1(-/-) or Tlr4(-/-) hepatocytes, while anti-HMGB1 anti-serum prevented JNK activation and FC lipotoxicity in WT hepatocytes. CONCLUSIONS: These novel findings show that mitochondrial FC deposition causes hepatocyte apoptosis and necrosis by activating JNK1; inhibition of which could be a novel therapeutic approach in NASH. Further, there is a tight link between JNK1-dependent HMGB1 secretion from lipotoxic hepatocytes and a paracrine cytolytic effect on neighbouring cholesterol-loaded hepatocytes operating via TLR4.


Subject(s)
Cholesterol/metabolism , HMGB1 Protein/metabolism , Hepatocytes/metabolism , Mitochondria, Liver/metabolism , Mitogen-Activated Protein Kinase 8/metabolism , Toll-Like Receptor 4/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis/physiology , Cells, Cultured , Cytochromes c/metabolism , Disease Models, Animal , Female , Hepatocytes/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Mitogen-Activated Protein Kinase 8/deficiency , Mitogen-Activated Protein Kinase 8/genetics , Mitogen-Activated Protein Kinase 9/deficiency , Mitogen-Activated Protein Kinase 9/genetics , Mitogen-Activated Protein Kinase 9/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/physiopathology , Oxidative Stress/physiology , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/genetics
15.
Hepatology ; 57(1): 81-92, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22508243

ABSTRACT

UNLABELLED: The majority of patients with nonalcoholic fatty liver disease (NAFLD) have "simple steatosis," which is defined by hepatic steatosis in the absence of substantial inflammation or fibrosis and is considered to be benign. However, 10%-30% of patients with NAFLD progress to fibrosing nonalcoholic steatohepatitis (NASH), which is characterized by varying degrees of hepatic inflammation and fibrosis, in addition to hepatic steatosis, and can lead to cirrhosis. The cause(s) of progression to fibrosing steatohepatitis are unclear. We aimed to test the relative contributions of dietary fat and dietary cholesterol and their interaction on the development of NASH. We assigned C57BL/6J mice to four diets for 30 weeks: control (4% fat and 0% cholesterol); high cholesterol (HC; 4% fat and 1% cholesterol); high fat (HF; 15% fat and 0% cholesterol); and high fat, high cholesterol (HFHC; 15% fat and 1% cholesterol). The HF and HC diets led to increased hepatic fat deposition with little inflammation and no fibrosis (i.e., simple hepatic steatosis). However, the HFHC diet led to significantly more profound hepatic steatosis, substantial inflammation, and perisinusoidal fibrosis (i.e., steatohepatitis), associated with adipose tissue inflammation and a reduction in plasma adiponectin levels. In addition, the HFHC diet led to other features of human NASH, including hypercholesterolemia and obesity. Hepatic and metabolic effects induced by dietary fat and cholesterol together were more than twice as great as the sum of the separate effects of each dietary component alone, demonstrating significant positive interaction. CONCLUSION: Dietary fat and dietary cholesterol interact synergistically to induce the metabolic and hepatic features of NASH, whereas neither factor alone is sufficient to cause NASH in mice.


Subject(s)
Cholesterol, Dietary/adverse effects , Diet, High-Fat/adverse effects , Disease Models, Animal , Fatty Liver/etiology , Adiponectin/blood , Adipose Tissue/immunology , Animals , Bile Acids and Salts/biosynthesis , Fatty Acids/metabolism , Fatty Liver/pathology , Lipid Metabolism , Lipids/blood , Lipoproteins, VLDL/biosynthesis , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , RNA, Messenger/metabolism , Weight Gain
16.
Clin Sci (Lond) ; 127(7): 507-18, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24766485

ABSTRACT

Non-alcoholic fatty liver (steatosis) and steatohepatitis [non-alcoholic steatohepatitis (NASH)] are hepatic complications of the metabolic syndrome. Endoplasmic reticulum (ER) stress is proposed as a crucial disease mechanism in obese and insulin-resistant animals (such as ob/ob mice) with simple steatosis, but its role in NASH remains controversial. We therefore evaluated the role of ER stress as a disease mechanism in foz/foz mice, which develop both the metabolic and histological features that mimic human NASH. We explored ER stress markers in the liver of foz/foz mice in response to a high-fat diet (HFD) at several time points. We then evaluated the effect of treatment with an ER stress inducer tunicamycin, or conversely with the ER protectant tauroursodeoxycholic acid (TUDCA), on the metabolic and hepatic features. foz/foz mice are obese, glucose intolerant and develop NASH characterized by steatosis, inflammation, ballooned hepatocytes and apoptosis from 6 weeks of HFD feeding. This was not associated with activation of the upstream unfolded protein response [phospho-eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme 1α (IRE1α) activity and spliced X-box-binding protein 1 (Xbp1)]. Activation of c-Jun N-terminal kinase (JNK) and up-regulation of activating transcription factor-4 (Atf4) and CCAAT/enhancer-binding protein-homologous protein (Chop) transcripts were however compatible with a 'pathological' response to ER stress. We tested this by using intervention experiments. Induction of chronic ER stress failed to worsen obesity, glucose intolerance and NASH pathology in HFD-fed foz/foz mice. In addition, the ER protectant TUDCA, although reducing steatosis, failed to improve glucose intolerance, hepatic inflammation and apoptosis in HFD-fed foz/foz mice. These results show that signals driving hepatic inflammation, apoptosis and insulin resistance are independent of ER stress in obese diabetic mice with steatohepatitis.


Subject(s)
Diet, High-Fat , Endoplasmic Reticulum Stress , Fatty Liver/metabolism , Insulin Resistance , Animals , Blood Glucose , Cell Cycle Proteins , DNA-Binding Proteins/genetics , Fatty Liver/pathology , Female , Male , Mice , Mice, Inbred NOD , Mice, Obese , Non-alcoholic Fatty Liver Disease , Phenotype
17.
Liver Int ; 34(7): 1084-93, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24107103

ABSTRACT

BACKGROUND & AIMS: Obese Alms1 mutant (foz/foz) NOD.B10 mice develop diabetes and fibrotic NASH when fed high-fat(HF) diet. To establish whether diabetes or obesity is more closely associated with NASH fibrosis, we compared diabetic foz/foz C57BL6/J with non-diabetic foz/foz BALB/c mice. We also determined hepatic cytokines, growth factors and related profibrotic pathways. METHODS: Male and female foz/foz BALB/c and C57BL6/J mice were fed HF or chow for 24 weeks before determining metabolic indices, liver injury, cytokines, growth factors, pathology/fibrosis and matrix deposition pathways. RESULTS: All foz/foz mice were obese. Hepatomegaly, hyperinsulinemia, hyperglycaemia and hypoadiponectinaemia occurred only in foz/foz C57BL6/J mice, whereas foz/foz BALB/c formed more adipose. Serum ALT, steatosis, ballooning, liver inflammation and NAFLD activity score were worse in C57BL6/J mice. In HF-fed mice, fibrosis was severe in foz/foz C57BL6/J, appreciable in WT C57BL6/J, but absent in foz/foz BALB/c mice. Hepatic mRNA expression of TNF-α, IL-12, IL-4, IL-10 was increased (but not IFN-γ, IL-1ß, IL-17A), and IL-4:IFN-γ ratio (indicating Th-2 predominance) was higher in HF-fed foz/foz C57BL6/J than BALB/c mice. In livers of HF-fed foz/foz C57BL6/J mice, TGF-ß was unaltered but PDGFα and CTGF were increased in association with enhanced α-SMA, CD147and MMP activity. CONCLUSIONS: In mice with equivalent genetic/dietary obesity, NASH development is linked to strain differences in hyperinsulinaemia and hyperglycaemia inversely related to lipid partitioning between adipose and liver. Diabetes-mediated CTGF-regulation of MMPs as well as cytokines/growth factors (Th-2 cytokine predominant, PDGFα, not TGF-ß) mobilized in the resultant hepatic necroinflammatory change may contribute to strain differences in NASH fibrosis.


Subject(s)
DNA-Binding Proteins/genetics , Diabetes Mellitus, Type 2/etiology , Diet, High-Fat/adverse effects , Liver Cirrhosis/etiology , Non-alcoholic Fatty Liver Disease/etiology , Analysis of Variance , Animals , Cell Cycle Proteins , Cytokines/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Fluorescent Antibody Technique , Intercellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Male , Matrix Metalloproteinases/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Non-alcoholic Fatty Liver Disease/pathology , Species Specificity
18.
J Gastroenterol Hepatol ; 29(3): 435-41, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24199670

ABSTRACT

Coffee is one of the most popular beverages in the world. Several studies consistently show that coffee drinkers with chronic liver disease have a reduced risk of cirrhosis and a lower incidence of hepatocellular carcinoma regardless of primary etiology. With the increasing prevalence of non-alcoholic fatty liver disease (NAFLD) worldwide, there is renewed interest in the effect of coffee intake on NAFLD severity and positive clinical outcomes. This review gives an overview of growing epidemiological and clinical evidence which indicate that coffee consumption reduces severity of NAFLD. These studies vary in methodology, and potential confounding factors have not always been completely excluded. However, it does appear that coffee, and particular components other than caffeine, reduce NAFLD prevalence and inflammation of non-alcoholic steatohepatitis. Several possible mechanisms underlying coffee's hepatoprotective effects in NAFLD include antioxidative, anti-inflammatory, and antifibrotic effects, while a chemopreventive effect against hepatocarcinogenesis seems likely. The so-far limited data supporting such effects will be discussed, and the need for further study is highlighted.


Subject(s)
Coffee , Fatty Liver/prevention & control , Anti-Inflammatory Agents , Antioxidants , Carcinoma, Hepatocellular/prevention & control , Chemoprevention , Humans , Liver Cirrhosis/prevention & control , Liver Neoplasms/prevention & control , Non-alcoholic Fatty Liver Disease , Prevalence , Prognosis , Severity of Illness Index
20.
Open Forum Infect Dis ; 11(4): ofae155, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651137

ABSTRACT

Background: Hepatitis C virus (HCV) infection can now be cured with well-tolerated direct-acting antiviral (DAA) therapy. However, a potential barrier to HCV elimination is the emergence of resistance-associated substitutions (RASs) that reduce the efficacy of antiviral drugs, but real-world studies assessing the clinical impact of RASs are limited. Here, an analysis of the impact of RASs on retreatment outcomes for different salvage regimens in patients nationally who failed first-line DAA therapy is reported. Methods: We collected data from 363 Australian patients who failed first-line DAA therapy, including: age, sex, fibrosis stage, HCV genotype, NS3/NS5A/NS5B RASs, details of failed first-line regimen, subsequent salvage regimens, and treatment outcome. Results: Of 240 patients who were initially retreated as per protocol, 210 (87.5%) achieved sustained virologic response (SVR) and 30 (12.5%) relapsed or did not respond. The SVR rate for salvage regimens that included sofosbuvir/velpatasvir/voxilaprevir was 94.3% (n = 140), sofosbuvir/velpatasvir 75.0% (n = 52), elbasvir/grazoprevir 81.6% (n = 38), and glecaprevir/pibrentasvir 84.6% (n = 13). NS5A RASs were present in 71.0% (n = 210) of patients who achieved SVR and in 66.7% (n = 30) of patients who subsequently relapsed. NS3 RASs were detected in 20 patients (20%) in the SVR group and 1 patient in the relapse group. NS5B RASs were observed in only 3 patients. Cirrhosis was a predictor of relapse after retreatment, as was previous treatment with sofosbuvir/velpatasvir. Conclusions: In our cohort, the SVR rate for sofosbuvir/velpatasvir/voxilaprevir was higher than with other salvage regimens. The presence of NS5A, NS5B, or NS3 RASs did not appear to negatively influence retreatment outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL