Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Mol Psychiatry ; 27(8): 3272-3285, 2022 08.
Article in English | MEDLINE | ID: mdl-35505090

ABSTRACT

Despite tremendous effort, the molecular and cellular basis of cognitive deficits in schizophrenia remain poorly understood. Recent progress in elucidating the genetic architecture of schizophrenia has highlighted the association of multiple loci and rare variants that may impact susceptibility. One key example, given their potential etiopathogenic and therapeutic relevance, is a set of genes that encode proteins that regulate excitatory glutamatergic synapses in brain. A critical next step is to delineate specifically how such genetic variation impacts synaptic plasticity and to determine if and how the encoded proteins interact biochemically with one another to control cognitive function in a convergent manner. Towards this goal, here we study the roles of GPCR-kinase interacting protein 1 (GIT1), a synaptic scaffolding and signaling protein with damaging coding variants found in schizophrenia patients, as well as copy number variants found in patients with neurodevelopmental disorders. We generated conditional neural-selective GIT1 knockout mice and found that these mice have deficits in fear conditioning memory recall and spatial memory, as well as reduced cortical neuron dendritic spine density. Using global quantitative phospho-proteomics, we revealed that GIT1 deletion in brain perturbs specific networks of GIT1-interacting synaptic proteins. Importantly, several schizophrenia and neurodevelopmental disorder risk genes are present within these networks. We propose that GIT1 regulates the phosphorylation of a network of synaptic proteins and other critical regulators of neuroplasticity, and that perturbation of these networks may contribute specifically to cognitive deficits observed in schizophrenia and neurodevelopmental disorders.


Subject(s)
Cell Cycle Proteins , GTPase-Activating Proteins , Schizophrenia , Animals , Mice , Brain/metabolism , Cell Cycle Proteins/genetics , Cognition , GTPase-Activating Proteins/genetics , Mice, Knockout , Phosphorylation , Schizophrenia/genetics , Synapses/metabolism
2.
Nature ; 483(7388): 222-6, 2012 Feb 29.
Article in English | MEDLINE | ID: mdl-22388814

ABSTRACT

Cognitive decline is a debilitating feature of most neurodegenerative diseases of the central nervous system, including Alzheimer's disease. The causes leading to such impairment are only poorly understood and effective treatments are slow to emerge. Here we show that cognitive capacities in the neurodegenerating brain are constrained by an epigenetic blockade of gene transcription that is potentially reversible. This blockade is mediated by histone deacetylase 2, which is increased by Alzheimer's-disease-related neurotoxic insults in vitro, in two mouse models of neurodegeneration and in patients with Alzheimer's disease. Histone deacetylase 2 associates with and reduces the histone acetylation of genes important for learning and memory, which show a concomitant decrease in expression. Importantly, reversing the build-up of histone deacetylase 2 by short-hairpin-RNA-mediated knockdown unlocks the repression of these genes, reinstates structural and synaptic plasticity, and abolishes neurodegeneration-associated memory impairments. These findings advocate for the development of selective inhibitors of histone deacetylase 2 and suggest that cognitive capacities following neurodegeneration are not entirely lost, but merely impaired by this epigenetic blockade.


Subject(s)
Brain/physiopathology , Epigenesis, Genetic , Histone Deacetylase 2/genetics , Memory Disorders/genetics , Memory Disorders/physiopathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology , Acetylation/drug effects , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/toxicity , Animals , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Epigenesis, Genetic/drug effects , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Hippocampus/drug effects , Hippocampus/metabolism , Histone Deacetylase 2/deficiency , Histone Deacetylase 2/metabolism , Histones/metabolism , Humans , Hydrogen Peroxide/toxicity , Memory Disorders/complications , Mice , Neurodegenerative Diseases/complications , Neuronal Plasticity/drug effects , Neuronal Plasticity/genetics , Peptide Fragments/toxicity , Phosphorylation/drug effects , Promoter Regions, Genetic/drug effects , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , Receptors, Glucocorticoid/metabolism
3.
Bioorg Med Chem Lett ; 26(4): 1265-1271, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26804233

ABSTRACT

Targeting chromatin-mediated epigenetic regulation has emerged as a potential avenue for developing novel therapeutics for a wide range of central nervous system disorders, including cognitive disorders and depression. Histone deacetylase (HDAC) inhibitors have been pursued as cognitive enhancers that impact the regulation of gene expression and other mechanisms integral to neuroplasticity. Through systematic modification of the structure of crebinostat, a previously discovered cognitive enhancer that affects genes critical to memory and enhances synaptogenesis, combined with biochemical and neuronal cell-based screening, we identified a novel hydroxamate-based HDAC inhibitor, here named neurinostat, with increased potency compared to crebinostat in inducing neuronal histone acetylation. In addition, neurinostat was found to have a pharmacokinetic profile in mouse brain modestly improved over that of crebinostat. This discovery of neurinostat and demonstration of its effects on neuronal HDACs adds to the available pharmacological toolkit for dissecting the molecular and cellular mechanisms of neuroepigenetic regulation in health and disease.


Subject(s)
Biphenyl Compounds/chemistry , Brain/metabolism , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/metabolism , Hydrazines/chemistry , Acetylation , Animals , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/pharmacokinetics , Cells, Cultured , Half-Life , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacokinetics , Histone Deacetylases/chemistry , Histones/metabolism , Hydrazines/chemical synthesis , Hydrazines/pharmacokinetics , Inhibitory Concentration 50 , Mice , Neurons/cytology , Neurons/metabolism , Protein Binding , Structure-Activity Relationship
4.
Bioorg Med Chem ; 24(18): 4008-4015, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27377864

ABSTRACT

The structure-activity and structure-kinetic relationships of a series of novel and selective ortho-aminoanilide inhibitors of histone deacetylases (HDACs) 1 and 2 are described. Different kinetic and thermodynamic selectivity profiles were obtained by varying the moiety occupying an 11Å channel leading to the Zn(2+) catalytic pocket of HDACs 1 and 2, two paralogs with a high degree of structural similarity. The design of these novel inhibitors was informed by two ligand-bound crystal structures of truncated hHDAC2. BRD4884 and BRD7232 possess kinetic selectivity for HDAC1 versus HDAC2. We demonstrate that the binding kinetics of HDAC inhibitors can be tuned for individual isoforms in order to modulate target residence time while retaining functional activity and increased histone H4K12 and H3K9 acetylation in primary mouse neuronal cell culture assays. These chromatin modifiers, with tuned binding kinetic profiles, can be used to define the relation between target engagement requirements and the pharmacodynamic response of HDACs in different disease applications.


Subject(s)
Anilides/chemistry , Anilides/pharmacology , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Acetylation/drug effects , Amination , Animals , Cells, Cultured , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Histones/metabolism , Humans , Kinetics , Mice , Molecular Docking Simulation
5.
Dev Dyn ; 242(2): 108-21, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23184530

ABSTRACT

BACKGROUND: Histone deacetylases (HDACs) regulate multiple developmental processes and cellular functions. However, their roles in blood development have not been determined, and in Xenopus laevis a specific function for HDACs has yet to be identified. Here, we employed the class I selective HDAC inhibitor, valproic acid (VPA), to show that HDAC activity is required for primitive hematopoiesis. RESULTS: VPA treatment during gastrulation resulted in a complete absence of red blood cells (RBCs) in Xenopus tadpoles, but did not affect development of other mesodermal tissues, including myeloid and endothelial lineages. These effects of VPA were mimicked by Trichostatin A (TSA), a well-established pan-HDAC inhibitor, but not by valpromide, which is structurally similar to VPA but does not inhibit HDACs. VPA also caused a marked, dose-dependent loss of primitive erythroid progenitors in mouse yolk sac explants at clinically relevant concentrations. In addition, VPA treatment inhibited erythropoietic development downstream of bmp4 and gata1 in Xenopus ectodermal explants. CONCLUSIONS: These findings suggest an important role for class I HDACs in primitive hematopoiesis. Our work also demonstrates that specific developmental defects associated with exposure to VPA, a significant teratogen in humans, arise through inhibition of class I HDACs.


Subject(s)
Gastrula/drug effects , Hematopoiesis/physiology , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Xenopus laevis/embryology , Animals , DNA Primers/genetics , Erythroid Precursor Cells/drug effects , Hematopoiesis/drug effects , Hydroxamic Acids/pharmacology , Immunoblotting , In Situ Hybridization , Mice , Real-Time Polymerase Chain Reaction , Valproic Acid/pharmacology , Yolk Sac/cytology
6.
Nat Commun ; 15(1): 6125, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033178

ABSTRACT

Heterozygous loss-of-function mutations in the GRN gene are a major cause of hereditary frontotemporal dementia. The mechanisms linking frontotemporal dementia pathogenesis to progranulin deficiency are not well understood, and there is currently no treatment. Our strategy to prevent the onset and progression of frontotemporal dementia in patients with GRN mutations is to utilize small molecule positive regulators of GRN expression to boost progranulin levels from the remaining functional GRN allele, thus restoring progranulin levels back to normal within the brain. This work describes a series of blood-brain-barrier-penetrant small molecules which significantly increase progranulin protein levels in human cellular models, correct progranulin protein deficiency in Grn+/- mouse brains, and reverse lysosomal proteome aberrations, a phenotypic hallmark of frontotemporal dementia, more efficiently than the previously described small molecule suberoylanilide hydroxamic acid. These molecules will allow further elucidation of the cellular functions of progranulin and its role in frontotemporal dementia and will also serve as lead structures for further drug development.


Subject(s)
Frontotemporal Dementia , Haploinsufficiency , Lysosomes , Progranulins , Proteome , Progranulins/metabolism , Progranulins/genetics , Animals , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/drug therapy , Proteome/metabolism , Mice , Lysosomes/metabolism , Lysosomes/drug effects , Brain/metabolism , Brain/drug effects , Vorinostat/pharmacology
7.
Sci Rep ; 14(1): 9064, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643236

ABSTRACT

Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.


Subject(s)
Frontotemporal Dementia , Humans , Progranulins/metabolism , Frontotemporal Dementia/drug therapy , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Mutation , Epigenesis, Genetic , Bromodomain Containing Proteins , Cell Cycle Proteins/metabolism
8.
Sci Rep ; 11(1): 17029, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34426604

ABSTRACT

Mutations in MAPT (microtubule-associated protein tau) cause frontotemporal dementia (FTD). MAPT mutations are associated with abnormal tau phosphorylation levels and accumulation of misfolded tau protein that can propagate between neurons ultimately leading to cell death (tauopathy). Recently, a p.A152T tau variant was identified as a risk factor for FTD, Alzheimer's disease, and synucleinopathies. Here we used induced pluripotent stem cells (iPSC) from a patient carrying this p.A152T variant to create a robust, functional cellular assay system for probing pathophysiological tau accumulation and phosphorylation. Using stably transduced iPSC-derived neural progenitor cells engineered to enable inducible expression of the pro-neural transcription factor Neurogenin 2 (Ngn2), we generated disease-relevant, cortical-like glutamatergic neurons in a scalable, high-throughput screening compatible format. Utilizing automated confocal microscopy, and an advanced image-processing pipeline optimized for analysis of morphologically complex human neuronal cultures, we report quantitative, subcellular localization-specific effects of multiple kinase inhibitors on tau, including ones under clinical investigation not previously reported to affect tau phosphorylation. These results demonstrate the potential for using patient iPSC-derived ex vivo models of tauopathy as genetically accurate, disease-relevant systems to probe tau biochemistry and support the discovery of novel therapeutics for tauopathies.


Subject(s)
Glutamates/metabolism , Image Processing, Computer-Assisted , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Neurons/pathology , Proteomics , Tauopathies/pathology , tau Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biomarkers/metabolism , Cell Line , Humans , Induced Pluripotent Stem Cells/drug effects , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Phosphorylation/drug effects , Protein Kinases/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
9.
J Am Chem Soc ; 132(47): 16962-76, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21067169

ABSTRACT

An aldol-based build/couple/pair (B/C/P) strategy was applied to generate a collection of stereochemically and skeletally diverse small molecules. In the build phase, a series of asymmetric syn- and anti-aldol reactions were performed to produce four stereoisomers of a Boc-protected γ-amino acid. In addition, both stereoisomers of O-PMB-protected alaninol were generated to provide a chiral amine coupling partner. In the couple step, eight stereoisomeric amides were synthesized by coupling the chiral acid and amine building blocks. The amides were subsequently reduced to generate the corresponding secondary amines. In the pair phase, three different reactions were employed to enable intramolecular ring-forming processes: nucleophilic aromatic substitution (S(N)Ar), Huisgen [3+2] cycloaddition, and ring-closing metathesis (RCM). Despite some stereochemical dependencies, the ring-forming reactions were optimized to proceed with good to excellent yields, providing a variety of skeletons ranging in size from 8- to 14-membered rings. Scaffolds resulting from the RCM pairing reaction were diversified on the solid phase to yield a 14 400-membered library of macrolactams. Screening of this library led to the discovery of a novel class of histone deacetylase inhibitors, which display mixed enzyme inhibition, and led to increased levels of acetylation in a primary mouse neuron culture. The development of stereo-structure/activity relationships was made possible by screening all 16 stereoisomers of the macrolactams produced through the aldol-based B/C/P strategy.


Subject(s)
Aldehydes/chemistry , Drug Discovery/methods , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacology , Animals , Biological Products/chemical synthesis , Biological Products/chemistry , Biological Products/pharmacology , Drug Evaluation, Preclinical , Histone Deacetylase Inhibitors/chemistry , Macrocyclic Compounds/chemistry , Mice , Models, Molecular , Molecular Conformation , Stereoisomerism , Substrate Specificity
10.
Elife ; 92020 09 29.
Article in English | MEDLINE | ID: mdl-32990597

ABSTRACT

Somatic expansion of the Huntington's disease (HD) CAG repeat drives the rate of a pathogenic process ultimately resulting in neuronal cell death. Although mechanisms of toxicity are poorly delineated, transcriptional dysregulation is a likely contributor. To identify modifiers that act at the level of CAG expansion and/or downstream pathogenic processes, we tested the impact of genetic knockout, in HttQ111 mice, of Hdac2 or Hdac3 in medium-spiny striatal neurons that exhibit extensive CAG expansion and exquisite disease vulnerability. Both knockouts moderately attenuated CAG expansion, with Hdac2 knockout decreasing nuclear huntingtin pathology. Hdac2 knockout resulted in a substantial transcriptional response that included modification of transcriptional dysregulation elicited by the HttQ111 allele, likely via mechanisms unrelated to instability suppression. Our results identify novel modifiers of different aspects of HD pathogenesis in medium-spiny neurons and highlight a complex relationship between the expanded Htt allele and Hdac2 with implications for targeting transcriptional dysregulation in HD.


Subject(s)
Corpus Striatum/physiopathology , Histone Deacetylase 2/genetics , Histone Deacetylases/genetics , Huntington Disease/genetics , Neurons/physiology , Animals , Cell Nucleus , Disease Models, Animal , Histone Deacetylase 2/metabolism , Histone Deacetylases/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/enzymology , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL