Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Cancer ; 143(10): 2584-2591, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30006930

ABSTRACT

Frequently, the number of circulating tumor cells (CTC) isolated in 7.5 mL of blood is too small to reliably determine tumor heterogeneity and to be representative as a "liquid biopsy". In the EU FP7 program CTCTrap, we aimed to validate and optimize the recently introduced Diagnostic LeukApheresis (DLA) to screen liters of blood. Here we present the results obtained from 34 metastatic cancer patients subjected to DLA in the participating institutions. About 7.5 mL blood processed with CellSearch® was used as "gold standard" reference. DLAs were obtained from 22 metastatic prostate and 12 metastatic breast cancer patients at four different institutions without any noticeable side effects. DLA samples were prepared and processed with different analysis techniques. Processing DLA using CellSearch resulted in a 0-32 fold increase in CTC yield compared to processing 7.5 mL blood. Filtration of DLA through 5 µm pores microsieves was accompanied by large CTC losses. Leukocyte depletion of 18 mL followed by CellSearch yielded an increase of the number of CTC but a relative decrease in yield (37%) versus CellSearch DLA. In four out of seven patients with 0 CTC detected in 7.5 mL of blood, CTC were detected in DLA (range 1-4 CTC). The CTC obtained through DLA enables molecular characterization of the tumor. CTC enrichment technologies however still need to be improved to isolate all the CTC present in the DLA.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/pathology , Female , Humans , Leukapheresis/methods , Liquid Biopsy/methods , Male
2.
Adv Exp Med Biol ; 994: 169-179, 2017.
Article in English | MEDLINE | ID: mdl-28560674

ABSTRACT

Circulating tumor cells (CTCs) hold promise as biomarkers to aid in patient treatment stratification and disease monitoring. Because the number of cells is a critical parameter for exploiting CTCs for predictive biomarker's detection, we developed a FISH (fluorescent in situ hybridization) method for CTCs enriched on filters (filter-adapted FISH [FA-FISH]) that was optimized for high cell recovery. To increase the feasibility and reliability of the analyses, we combined fluorescent staining and FA-FISH and developed a semi-automated microscopy method for optimal FISH signal identification in filtration-enriched CTCs . Here we present these methods and their use for the detection and characterization of ALK-, ROS1-, RET-rearrangement in CTCs from non-small-cell lung cancer and ERG-rearrangements in CTCs from prostate cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gene Rearrangement , Lung Neoplasms , Neoplastic Cells, Circulating/metabolism , Prostatic Neoplasms , Protein-Tyrosine Kinases , Proto-Oncogene Proteins c-ret , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Female , Humans , In Situ Hybridization, Fluorescence/instrumentation , In Situ Hybridization, Fluorescence/methods , Lung Neoplasms/blood , Lung Neoplasms/genetics , Male , Prostatic Neoplasms/blood , Prostatic Neoplasms/genetics , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism
3.
BMC Cancer ; 16: 477, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27417942

ABSTRACT

BACKGROUND: Circulating tumor cell (CTC)-filtration methods capture high numbers of CTCs in non-small-cell lung cancer (NSCLC) and metastatic prostate cancer (mPCa) patients, and hold promise as a non-invasive technique for treatment selection and disease monitoring. However filters have drawbacks that make the automation of microscopy challenging. We report the semi-automated microscopy method we developed to analyze filtration-enriched CTCs from NSCLC and mPCa patients. METHODS: Spiked cell lines in normal blood and CTCs were enriched by ISET (isolation by size of epithelial tumor cells). Fluorescent staining was carried out using epithelial (pan-cytokeratins, EpCAM), mesenchymal (vimentin, N-cadherin), leukocyte (CD45) markers and DAPI. Cytomorphological staining was carried out with Mayer-Hemalun or Diff-Quik. ALK-, ROS1-, ERG-rearrangement were detected by filter-adapted-FISH (FA-FISH). Microscopy was carried out using an Ariol scanner. RESULTS: Two combined assays were developed. The first assay sequentially combined four-color fluorescent staining, scanning, automated selection of CD45(-) cells, cytomorphological staining, then scanning and analysis of CD45(-) cell phenotypical and cytomorphological characteristics. CD45(-) cell selection was based on DAPI and CD45 intensity, and a nuclear area >55 µm(2). The second assay sequentially combined fluorescent staining, automated selection of CD45(-) cells, FISH scanning on CD45(-) cells, then analysis of CD45(-) cell FISH signals. Specific scanning parameters were developed to deal with the uneven surface of filters and CTC characteristics. Thirty z-stacks spaced 0.6 µm apart were defined as the optimal setting, scanning 82 %, 91 %, and 95 % of CTCs in ALK-, ROS1-, and ERG-rearranged patients respectively. A multi-exposure protocol consisting of three separate exposure times for green and red fluorochromes was optimized to analyze the intensity, size and thickness of FISH signals. CONCLUSIONS: The semi-automated microscopy method reported here increases the feasibility and reliability of filtration-enriched CTC assays and can help progress towards their validation and translation to the clinic.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Anaplastic Lymphoma Kinase , Automation, Laboratory , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Separation , Cell Shape , Humans , In Situ Hybridization, Fluorescence , Lung Neoplasms/genetics , Microscopy, Fluorescence , Receptor Protein-Tyrosine Kinases/genetics
4.
JCI Insight ; 7(11)2022 06 08.
Article in English | MEDLINE | ID: mdl-35511434

ABSTRACT

DNA damage and genomic instability contribute to non-small cell lung cancer (NSCLC) etiology and progression. However, their therapeutic exploitation is disappointing. CTC-derived explants (CDX) offer systems for mechanistic investigation of CTC metastatic potency and may provide rationale for biology-driven therapeutics. Four CDX models and 3 CDX-derived cell lines were established from NSCLC CTCs and recapitulated patient tumor histology and response to platinum-based chemotherapy. CDX (GR-CDXL1, GR-CDXL2, GR-CDXL3, GR-CDXL4) demonstrated considerable mutational landscape similarity with patient tumor biopsy and/or single CTCs. Truncal alterations in key DNA damage response (DDR) and genome integrity-related genes were prevalent across models and assessed as therapeutic targets in vitro, in ovo, and in vivo. GR-CDXL1 presented homologous recombination deficiency linked to biallelic BRCA2 mutation and FANCA deletion, unrepaired DNA lesions after mitosis, and olaparib sensitivity, despite resistance to chemotherapy. SLFN11 overexpression in GR-CDXL4 led to olaparib sensitivity and was in coherence with neuroendocrine marker expression in patient tumor biopsy, suggesting a predictive value of SLFN11 in NSCLC histological transformation into small cell lung cancer (SCLC). Centrosome clustering promoted targetable chromosomal instability in GR-CDXL3 cells. These CDX unravel DDR and genome integrity-related defects as a central mechanism underpinning metastatic potency of CTCs and provide rationale for their therapeutic targeting in metastatic NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoplastic Cells, Circulating , Small Cell Lung Carcinoma , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Nuclear Proteins , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology
5.
Nat Commun ; 11(1): 1884, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32313004

ABSTRACT

Transformation of castration-resistant prostate cancer (CRPC) into an aggressive neuroendocrine disease (CRPC-NE) represents a major clinical challenge and experimental models are lacking. A CTC-derived eXplant (CDX) and a CDX-derived cell line are established using circulating tumor cells (CTCs) obtained by diagnostic leukapheresis from a CRPC patient resistant to enzalutamide. The CDX and the derived-cell line conserve 16% of primary tumor (PT) and 56% of CTC mutations, as well as 83% of PT copy-number aberrations including clonal TMPRSS2-ERG fusion and NKX3.1 loss. Both harbor an androgen receptor-null neuroendocrine phenotype, TP53, PTEN and RB1 loss. While PTEN and RB1 loss are acquired in CTCs, evolutionary analysis suggest that a PT subclone harboring TP53 loss is the driver of the metastatic event leading to the CDX. This CDX model provides insights on the sequential acquisition of key drivers of neuroendocrine transdifferentiation and offers a unique tool for effective drug screening in CRPC-NE management.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/metabolism , Cell Transdifferentiation/genetics , Neoplastic Cells, Circulating/metabolism , Prostate/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Animals , Benzamides , Cell Line, Tumor , Disease Models, Animal , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Humans , Male , Mice , Mice, Inbred NOD , Neoplastic Cells, Circulating/drug effects , Nitriles , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Phylogeny , Prostate/pathology , Receptors, Androgen/genetics , Sequence Alignment , Serine Endopeptidases/metabolism , Transcription Factors/metabolism , Transcriptome , Tumor Suppressor Protein p53/genetics
6.
Eur Urol Oncol ; 3(4): 498-508, 2020 08.
Article in English | MEDLINE | ID: mdl-31412010

ABSTRACT

BACKGROUND: Genomic analysis of circulating tumor cells (CTCs) could provide a unique and accessible representation of tumor diversity but remains hindered by technical challenges associated with CTC rarity and heterogeneity. OBJECTIVE: To evaluate CTCs as surrogate samples for genomic analyses in metastatic castration-resistant prostate cancer (mCRPC). DESIGN, SETTING, AND PARTICIPANTS: Three isolation strategies (filter laser-capture microdissection, self-seeding microwell chips, and fluorescence-activated cell sorting) were developed to capture CTCs with various epithelial and mesenchymal phenotypes and isolate them at the single-cell level. Whole-genome amplification (WGA) and WGA quality control were performed on 179 CTC samples, matched metastasis biopsies, and negative controls from 11 patients. All patients but one were pretreated with enzalutamide or abiraterone. Whole-exome sequencing (WES) of 34 CTC samples, metastasis biopsies, and negative controls were performed for seven patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: WES of CTCs was rigorously qualified in terms of percentage coverage at 10× depth, allelic dropout, and uncovered regions. Shared somatic mutations between CTCs and matched metastasis biopsies were identified. A customized approach based on determination of mutation rates for CTC samples was developed for identification of CTC-exclusive mutations. RESULTS AND LIMITATIONS: Shared mutations were mostly detected in epithelial CTCs and were recurrent. For two patients for whom a deeper analysis was performed, a few CTCs were sufficient to represent half to one-third of the mutations in the matched metastasis biopsy. CTC-exclusive mutations were identified in both epithelial and nonepithelial CTCs and affected cytoskeleton, invasion, DNA repair, and cancer-driver genes. Some 41% of CTC-exclusive mutations had a predicted deleterious impact on protein function. Phylogenic relationships between CTCs with distinct phenotypes were evidenced. CONCLUSIONS: CTCs can provide unique insight into metastasis mutational diversity and reveal undiagnosed genomic aberrations in matched metastasis biopsies. PATIENT SUMMARY: Our results demonstrate the clinical potential of circulating tumor cells to provide insight into metastatic events that could be critical to target using precision medicine.


Subject(s)
DNA Mutational Analysis , Exome Sequencing , Mutation , Neoplastic Cells, Circulating , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , Humans , Male , Middle Aged
7.
Cells ; 8(10)2019 09 25.
Article in English | MEDLINE | ID: mdl-31557946

ABSTRACT

Metastasis is the main cause of cancer-related death owing to the blood-borne dissemination of circulating tumor cells (CTCs) early in the process. A rare fraction of CTCs harboring a stem cell profile and tumor initiation capacities is thought to possess the clonogenic potential to seed new lesions. The highest plasticity has been generally attributed to CTCs with a partial epithelial-to-mesenchymal transition (EMT) phenotype, demonstrating a large heterogeneity among these cells. Therefore, detection and functional characterization of these subclones may offer insight into mechanisms underlying CTC tumorigenicity and inform on the complex biology behind metastatic spread. Although an in-depth mechanistic investigation is limited by the extremely low CTC count in circulation, significant progress has been made over the past few years to establish relevant systems from patient CTCs. CTC-derived xenograft (CDX) models and CTC-derived ex vivo cultures have emerged as tractable systems to explore tumor-initiating cells (TICs) and uncover new therapeutic targets. Here, we introduce basic knowledge of CTC biology, including CTC clusters and evidence for EMT/cancer stem cell (CSC) hybrid phenotypes. We report and evaluate the CTC-derived models generated to date in different types of cancer and shed a light on challenges and key findings associated with these novel assays.


Subject(s)
Carcinogenesis/pathology , Cell Culture Techniques/methods , Models, Biological , Neoplastic Cells, Circulating/pathology , Animals , Epithelial-Mesenchymal Transition/physiology , Humans , Neoplastic Stem Cells/pathology , Tumor Stem Cell Assay/methods
8.
J Thorac Dis ; 11(Suppl 1): S45-S56, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30775027

ABSTRACT

Growing evidences for tumor heterogeneity confirm that single-tumor biopsies frequently fail to reveal the widespread mutagenic profile of tumor. Repeated biopsies are in most cases unfeasible, especially in advanced cancers. We describe here how circulating tumor cells (CTCs) isolated from minimally invasive blood sample might inform us about intratumor heterogeneity, tumor evolution and treatment resistance. We also discuss the advances of CTCs research, most notably in molecularly selected non-small cell lung cancer (NSCLC) patients, highlighting challenges and opportunities related to personalized therapy.

9.
Clin Cancer Res ; 25(22): 6671-6682, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31439588

ABSTRACT

PURPOSE: Patients with anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) inevitably develop resistance to ALK inhibitors. New diagnostic strategies are needed to assess resistance mechanisms and provide patients with the most effective therapy. We asked whether single circulating tumor cell (CTC) sequencing can inform on resistance mutations to ALK inhibitors and underlying tumor heterogeneity in ALK-rearranged NSCLC. EXPERIMENTAL DESIGN: Resistance mutations were investigated in CTCs isolated at the single-cell level from patients at disease progression on crizotinib (n = 14) or lorlatinib (n = 3). Three strategies including filter laser-capture microdissection, fluorescence activated cell sorting, and the DEPArray were used. One hundred twenty-six CTC pools and 56 single CTCs were isolated and sequenced. Hotspot regions over 48 cancer-related genes and 14 ALK mutations were examined to identify ALK-independent and ALK-dependent resistance mechanisms. RESULTS: Multiple mutations in various genes in ALK-independent pathways were predominantly identified in CTCs of crizotinib-resistant patients. The RTK-KRAS (EGFR, KRAS, BRAF genes) and TP53 pathways were recurrently mutated. In one lorlatinib-resistant patient, two single CTCs out of 12 harbored ALK compound mutations. CTC-1 harbored the ALK G1202R/F1174C compound mutation virtually similar to ALK G1202R/F1174L present in the corresponding tumor biopsy. CTC-10 harbored a second ALK G1202R/T1151M compound mutation not detected in the tumor biopsy. By copy-number analysis, CTC-1 and the tumor biopsy had similar profiles, whereas CTC-10 harbored multiple copy-number alterations and whole-genome duplication. CONCLUSIONS: Our results highlight the genetic heterogeneity and clinical utility of CTCs to identify therapeutic resistance mutations in ALK-rearranged patients. Single CTC sequencing may be a unique tool to assess heterogeneous resistance mechanisms and help clinicians for treatment personalization and resistance options to ALK-targeted therapies.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , Gene Rearrangement , Lung Neoplasms/genetics , Neoplastic Cells, Circulating/metabolism , Protein Kinase Inhibitors/pharmacology , Adult , Aged , Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Computational Biology/methods , Crizotinib/pharmacology , Crizotinib/therapeutic use , DNA Mutational Analysis , Female , Humans , Immunohistochemistry , Immunophenotyping , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Neoplastic Cells, Circulating/pathology , Protein Kinase Inhibitors/therapeutic use , Whole Genome Sequencing , Young Adult
10.
Methods Mol Biol ; 1634: 133-141, 2017.
Article in English | MEDLINE | ID: mdl-28819846

ABSTRACT

Circulating tumor cells (CTCs) may represent an easily accessible source of tumor material to assess genetic aberrations such as gene-rearrangements or gene-amplifications and screen cancer patients eligible for targeted therapies. As the number of CTCs is a critical parameter to identify such biomarkers, we developed fluorescent in situ hybridization (FISH) for CTCs enriched on filters (filter-adapted-FISH, FA-FISH). Here, we describe the FA-FISH protocol, the combination of immunofluorescent staining (DAPI/CD45) and FA-FISH techniques, as well as the semi-automated microscopy method that we developed to improve the feasibility and reliability of FISH analyses in filtration-enriched CTC.


Subject(s)
Cell Separation/methods , Filtration/methods , In Situ Hybridization, Fluorescence/methods , Neoplasms/diagnosis , Neoplastic Cells, Circulating/pathology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Biomarkers, Tumor/metabolism , Cell Count , Cell Separation/instrumentation , Cell Size , Equipment Design , Filtration/instrumentation , Fluorescent Antibody Technique/methods , Fluorescent Dyes/chemistry , Humans , Immunoconjugates/chemistry , Indoles/chemistry , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/immunology , Leukocyte Common Antigens/metabolism , Neoplasms/blood , Neoplasms/immunology , Neoplasms/pathology , Neoplastic Cells, Circulating/immunology , Neoplastic Cells, Circulating/metabolism , Protein Binding , Rheology
11.
Transl Lung Cancer Res ; 6(4): 444-453, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28904888

ABSTRACT

In non-small cell lung cancer (NSCLC), diagnosis of predictive biomarkers for targeted therapies is currently done in small tumor biopsies. However, tumor biopsies can be invasive, in some cases associated with risk, and tissue adequacy, both in terms of quantity and quality is often insufficient. The development of efficient and non-invasive methods to identify genetic alterations is a key challenge which circulating tumor cells (CTCs) have the potential to be exploited for. CTCs are extremely rare and phenotypically diverse, two characteristics that impose technical challenges and impact the success of robust molecular analysis. Here we introduce the clinical needs in this disease that mainly consist of the diagnosis of epidermal growth factor receptor (EGFR) activating alterations and anaplastic lymphoma kinase (ALK) rearrangement. We present the proof-of-concept studies that explore the detection of these genetic alterations in CTCs from NSCLC patients. Finally, we discuss steps that are still required before CTCs are routinely used for diagnosis of EGFR-mutations and ALK-rearrangements in this disease.

12.
Expert Rev Mol Diagn ; 15(12): 1605-29, 2015.
Article in English | MEDLINE | ID: mdl-26564313

ABSTRACT

In non-small-cell lung cancer (NSCLC), genotyping tumor biopsies for targetable somatic alterations has become routine practice. However, serial biopsies have limitations: they may be technically difficult or impossible and could incur serious risks to patients. Circulating tumor cells (CTCs) offer an alternative source for tumor analysis that is easily accessible and presents the potential to identify predictive biomarkers to tailor therapies on a personalized basis. Examined here is our current knowledge of CTC detection and characterization in NSCLC and their potential role in EGFR-mutant, ALK-rearranged and ROS1-rearranged patients. This is followed by discussion of the ongoing issues such as the question of CTC partnership as diagnostic tools in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Molecular Diagnostic Techniques , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Animals , Antigens, Surface/metabolism , Biomarkers, Tumor , DNA, Neoplasm/blood , Epithelial-Mesenchymal Transition/genetics , Gene Expression Profiling/methods , Genomics/methods , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis
13.
Front Oncol ; 4: 281, 2014.
Article in English | MEDLINE | ID: mdl-25414829

ABSTRACT

The advent of rationally targeted therapies such as small-molecule tyrosine kinase inhibitors (TKIs) has considerably transformed the therapeutic management of a subset of patients with non-small-cell lung cancer (NSCLC) harboring defined molecular abnormalities. When such genetic molecular alterations are detected the use of specific TKI has demonstrated better results (overall response rate, progression free survival) compared to systemic therapy. However, the detection of such molecular abnormalities is complicated by the difficulty in obtaining sufficient tumor material, in terms of quantity and quality, from a biopsy. Here, we described how circulating tumor cells (CTCs) can have a clinical utility in anaplastic lymphoma kinase (ALK) positive NSCLC patients to diagnose ALK-EML4 gene rearrangement and to guide therapeutic management of these patients. The ability to detect genetic abnormalities such ALK rearrangement in CTCs shows that these cells could offer new perspectives both for the diagnosis and the monitoring of ALK-positive patients eligible for treatment with ALK inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL