Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Appl Microbiol Biotechnol ; 102(24): 10645-10663, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30306201

ABSTRACT

Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain's inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.


Subject(s)
Bifidobacterium animalis/growth & development , Bifidobacterium animalis/genetics , Food Microbiology/methods , Milk/microbiology , Animals , Bifidobacterium animalis/drug effects , Carbohydrate Metabolism , Drug Resistance, Microbial , Female , Gastrointestinal Microbiome , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genome, Bacterial , Mice, Inbred BALB C , Probiotics
2.
Nutrients ; 13(12)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34960094

ABSTRACT

Healthy, plant-based diets, rich in fermentable residues, may induce gas-related symptoms. The aim of this exploratory study was to assess the effects of a fermented milk product, containing probiotics, on the tolerance of a healthy diet in patients with disorders of gut-brain interactions (DGBI), complaining of excessive flatulence. In an open design, a 3-day healthy, mostly plant-based diet was administered to patients with DGBI (52 included, 43 completed) before and at the end of 28 days of consumption of a fermented milk product (FMP) containing Bifidobacterium animalis subsp. lactis CNCM I-2494 and lactic acid bacteria. As compared to a habitual diet, the flatulogenic diet increased the perception of digestive symptoms (flatulence score 7.1 ± 1.6 vs. 5.8 ± 1.9; p < 0.05) and the daily number of anal gas evacuations (22.4 ± 12.5 vs. 16.5 ± 10.2; p < 0.0001). FMP consumption reduced the flatulence sensation score (by -1.6 ± 2.2; p < 0.05) and the daily number of anal gas evacuations (by -5.3 ± 8.2; p < 0.0001). FMP consumption did not significantly alter the overall gut microbiota composition, but some changes in the microbiota correlated with the observed clinical improvement. The consumption of a product containing B. lactis CNCM I-2494 improved the tolerance of a healthy diet in patients with DGBI, and this effect may be mediated, in part, by the metabolic activity of the microbiota.


Subject(s)
Bifidobacterium animalis , Cultured Milk Products/microbiology , Diet, Healthy/adverse effects , Diet, Vegetarian/adverse effects , Flatulence/etiology , Flatulence/prevention & control , Gases , Intestines/physiology , Adult , Aged , Bifidobacterium animalis/physiology , Female , Flatulence/microbiology , Gastrointestinal Microbiome , Humans , Male , Middle Aged
3.
mBio ; 11(4)2020 07 14.
Article in English | MEDLINE | ID: mdl-32665271

ABSTRACT

We investigated the requirement of 15 human butyrate-producing gut bacterial strains for eight B vitamins and the proteinogenic amino acids by a combination of genome sequence analysis and in vitro growth experiments. The Ruminococcaceae species Faecalibacterium prausnitzii and Subdoligranulum variabile were auxotrophic for most of the vitamins and the amino acid tryptophan. Within the Lachnospiraceae, most species were prototrophic for all amino acids and several vitamins, but biotin auxotrophy was widespread. In addition, most of the strains belonging to Eubacterium rectale and Roseburia spp., but few of the other Lachnospiraceae strains, were auxotrophic for thiamine and folate. Synthetic coculture experiments of five thiamine or folate auxotrophic strains with different prototrophic bacteria in the absence and presence of different vitamin concentrations were carried out. This demonstrated that cross-feeding between bacteria does take place and revealed differences in cross-feeding efficiency between prototrophic strains. Vitamin-independent growth stimulation in coculture compared to monococulture was also observed, in particular for F. prausnitzii A2-165, suggesting that it benefits from the provision of other growth factors from community members. The presence of multiple vitamin auxotrophies in the most abundant butyrate-producing Firmicutes species found in the healthy human colon indicates that these bacteria depend upon vitamins supplied from the diet or via cross-feeding from other members of the microbial community.IMPORTANCE Microbes in the intestinal tract have a strong influence on human health. Their fermentation of dietary nondigestible carbohydrates leads to the formation of health-promoting short-chain fatty acids, including butyrate, which is the main fuel for the colonic wall and has anticarcinogenic and anti-inflammatory properties. A good understanding of the growth requirements of butyrate-producing bacteria is important for the development of efficient strategies to promote these microbes in the gut, especially in cases where their abundance is altered. The demonstration of the inability of several dominant butyrate producers to grow in the absence of certain vitamins confirms the results of previous in silico analyses. Furthermore, establishing that strains prototrophic for thiamine or folate (butyrate producers and non-butyrate producers) were able to stimulate growth and affect the composition of auxotrophic synthetic communities suggests that the provision of prototrophic bacteria that are efficient cross feeders may stimulate butyrate-producing bacteria under certain in vivo conditions.


Subject(s)
Bacteria/genetics , Butyrates/metabolism , Fermentation , Microbiota , Vitamins/biosynthesis , Bacteria/metabolism , Clostridiales/genetics , Clostridiales/physiology , Colon/microbiology , Faecalibacterium prausnitzii/genetics , Faecalibacterium prausnitzii/physiology , Humans , Ruminococcus/genetics , Ruminococcus/physiology
4.
Nutrients ; 12(2)2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31991794

ABSTRACT

BACKGROUND: Healthy plant-based diets rich in fermentable residues may induce gas-related symptoms. Our aim was to determine the potential of a fermented milk product with probiotics in improving digestive comfort with such diets. METHODS: In an open design, a 3-day high-residue diet was administered to healthy subjects (n = 74 included, n = 63 completed) before and following 28 days consumption of a fermented milk product (FMP) containing Bifidobacterium animalis subsp. lactis CNCM I-2494 and lactic acid bacteria. MAIN OUTCOMES: digestive sensations, number of daytime anal gas evacuations, and gas volume evacuated during 4 h after a probe meal. RESULTS: As compared to the habitual diet, the high-residue diet induced gas-related symptoms (flatulence score 4.9 vs. 1.2; p ≤ 0.0001), increased the daily number of anal gas evacuations (20.7 vs. 8.7; p < 0.0001), and impaired digestive well-being (1.0 vs. 3.4; p < 0.05). FMP consumption reduced flatulence sensation (by -1.7 [-1.9; -1.6]; p < 0.0001), reduced the number of daily evacuations (by -5.8 [-6.5; -5.1]; p < 0.0001), and improved digestive well-being (by +0.6 [+0.4; +0.7]; p < 0.05). FMP consumption did not affect the gas volume evacuated after a probe meal. CONCLUSION: In healthy subjects, consumption of a FMP containing B. lactis CNCM I-2494 and lactic acid bacteria improves the tolerance of a flatulogenic diet by subjective and objective criteria (sensations and number of anal gas evacuations, respectively).


Subject(s)
Abdominal Pain/prevention & control , Bifidobacterium animalis/physiology , Cultured Milk Products/microbiology , Dietary Carbohydrates/adverse effects , Fermentation , Flatulence/prevention & control , Lactobacillales/physiology , Probiotics/administration & dosage , Abdominal Pain/etiology , Abdominal Pain/microbiology , Adolescent , Adult , Aged , Dietary Carbohydrates/metabolism , Female , Flatulence/etiology , Flatulence/microbiology , Gastrointestinal Microbiome , Humans , Male , Middle Aged , Pilot Projects , Probiotics/adverse effects , Proof of Concept Study , Spain , Time Factors , Treatment Outcome , Young Adult
5.
BMJ Open ; 9(3): e017995, 2019 03 30.
Article in English | MEDLINE | ID: mdl-30928918

ABSTRACT

OBJECTIVE: To systematically review the effect of oral intake of bacterial probiotics on 15 variables related to obesity, diabetes and non-alcoholic fatty liver disease. DESIGN: Systematic review and meta-analysis. DATA SOURCES: Medline, EMBASE and COCHRANE from 1990 to June 2018. ELIGIBILITY CRITERIA: Randomised controlled trials (≥14 days) excluding hypercholesterolaemia, alcoholic liver disease, polycystic ovary syndrome and children <3 years. RESULTS: One hundred and five articles met inclusion criteria, representing 6826 subjects. In overweight but not obese subjects, probiotics induced improvements in: body weight (k=25 trials, d=-0.94 kg mean difference, 95% CI -1.17 to -0.70, I²=0.0%), body mass index (k=32, d=-0.55 kg/m², 95% CI -0.86 to -0.23, I²=91.9%), waist circumference (k=13, d=-1.31 cm, 95% CI -1.79 to -0.83, I²=14.5%), body fat mass (k=11, d=-0.96 kg, 95% CI -1.21 to -0.71, I²=0.0%) and visceral adipose tissue mass (k=5, d=-6.30 cm², 95% CI -9.05 to -3.56, I²=0.0%). In type 2 diabetics, probiotics reduced fasting glucose (k=19, d=-0.66 mmol/L, 95% CI -1.00 to -0.31, I²=27.7%), glycated haemoglobin (k=13, d=-0.28 pp, 95% CI -0.46 to -0.11, I²=54.1%), insulin (k=13, d=-1.66 mU/L, 95% CI -2.70 to -0.61, I²=37.8%) and homeostatic model of insulin resistance (k=10, d=-1.05 pp, 95% CI -1.48 to -0.61, I²=18.2%). In subjects with fatty liver diseases, probiotics reduced alanine (k=12, d=-10.2 U/L, 95% CI -14.3 to -6.0, I²=93.50%) and aspartate aminotransferases (k=10, d=-9.9 U/L, 95% CI -14.1 to -5.8, I²=96.1%). These improvements were mostly observed with bifidobacteria (Bifidobacterium breve, B. longum), Streptococcus salivarius subsp. thermophilus and lactobacilli (Lactobacillus acidophilus, L. casei, L. delbrueckii) containing mixtures and influenced by trials conducted in one country. CONCLUSIONS: The intake of probiotics resulted in minor but consistent improvements in several metabolic risk factors in subjects with metabolic diseases. TRIAL REGISTRATION NUMBER: CRD42016033273.


Subject(s)
Diabetes Mellitus/therapy , Non-alcoholic Fatty Liver Disease/therapy , Obesity/therapy , Probiotics/pharmacology , Diabetes Mellitus/metabolism , Dietary Supplements , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Randomized Controlled Trials as Topic , Treatment Outcome
6.
Sci Rep ; 4: 6328, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25209713

ABSTRACT

The gut microbiota (GM) consists of resident commensals and transient microbes conveyed by the diet but little is known about the role of the latter on GM homeostasis. Here we show, by a conjunction of quantitative metagenomics, in silico genome reconstruction and metabolic modeling, that consumption of a fermented milk product containing dairy starters and Bifidobacterium animalis potentiates colonic short chain fatty acids production and decreases abundance of a pathobiont Bilophila wadsworthia compared to a milk product in subjects with irritable bowel syndrome (IBS, n = 28). The GM changes parallel improvement of IBS state, suggesting a role of the fermented milk bacteria in gut homeostasis. Our data challenge the view that microbes ingested with food have little impact on the human GM functioning and rather provide support for beneficial health effects.


Subject(s)
Cultured Milk Products , Irritable Bowel Syndrome/microbiology , Microbiota/genetics , Probiotics , Stomach/microbiology , Bifidobacterium/growth & development , Bilophila/growth & development , Butyrates/metabolism , Diet , Feces/microbiology , Food Microbiology , Humans , Lactobacillus delbrueckii/growth & development , Lactococcus lactis/growth & development , RNA, Ribosomal, 16S/genetics , Streptococcus thermophilus/growth & development
7.
J Bacteriol ; 189(4): 1351-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16980450

ABSTRACT

We studied the roles of Streptococcus thermophilus phosphogalactosyltransferase (EpsE) (the priming enzyme), tyrosine kinase (EpsD), phosphatase (EpsB), and a membrane-associated protein with no known biochemical function (EpsC) in exopolysaccharide (EPS) synthesis. These proteins are well-conserved among bacteria and are usually encoded by clustered genes. Exopolysaccharide synthesis took place in the wild-type strain and a mutant lacking EpsB but not in mutants lacking EpsC, EpsD, or EpsE. The three mutants unable to synthesize EPS lacked the EpsE phosphogalactosyltransferase activity, while the two EPS-synthesizing strains possessed this activity, showing that EpsC and EpsD are required for EpsE function. An EpsD phosphorylated form was found in all strains except the epsC mutant, indicating that EpsC is necessary for EpsD phosphorylation. Moreover, the phosphorylated form of EpsD, a supposedly cytoplasmic protein, was found to be associated with the plasma membrane, possibly due to interaction with EpsC. Finally, the EpsD and EpsE elution profiles in a gel filtration chromatography assay were similar, suggesting that these two proteins colocalize in the membrane. Mutation of Tyr200, predicted to be a phosphorylation site and present in a conserved motif in bacterial phosphoglycosyltransferases, led to EpsE inactivation. In contrast, mutation of Tyr162 or Tyr199 had no effect. Taken together, these data show that EpsD controls EpsE activity. Possible mechanisms for this control are discussed.


Subject(s)
Glycosyltransferases/metabolism , Polysaccharides, Bacterial/biosynthesis , Protein-Tyrosine Kinases/metabolism , Streptococcus thermophilus/enzymology , Streptococcus thermophilus/metabolism , Amino Acid Sequence , Gene Deletion , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL