Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 19(3): e1011260, 2023 03.
Article in English | MEDLINE | ID: mdl-36972292

ABSTRACT

Leprosy, caused by Mycobacterium leprae, rarely affects children younger than 5 years. Here, we studied a multiplex leprosy family that included monozygotic twins aged 22 months suffering from paucibacillary leprosy. Whole genome sequencing identified three amino acid mutations previously associated with Crohn's disease and Parkinson's disease as candidate variants for early onset leprosy: LRRK2 N551K, R1398H and NOD2 R702W. In genome-edited macrophages, we demonstrated that cells expressing the LRRK2 mutations displayed reduced apoptosis activity following mycobacterial challenge independently of NOD2. However, employing co-immunoprecipitation and confocal microscopy we showed that LRRK2 and NOD2 proteins interacted in RAW cells and monocyte-derived macrophages, and that this interaction was substantially reduced for the NOD2 R702W mutation. Moreover, we observed a joint effect of LRRK2 and NOD2 variants on Bacillus Calmette-Guérin (BCG)-induced respiratory burst, NF-κB activation and cytokine/chemokine secretion with a strong impact for the genotypes found in the twins consistent with a role of the identified mutations in the development of early onset leprosy.


Subject(s)
Genetic Predisposition to Disease , Leprosy , Child , Humans , Alleles , Genotype , Leprosy/genetics , Mutation , Nod2 Signaling Adaptor Protein/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics
2.
PLoS Pathog ; 16(8): e1008818, 2020 08.
Article in English | MEDLINE | ID: mdl-32776973

ABSTRACT

Leprosy is a chronic disease caused by Mycobacterium leprae. Worldwide, more than 200,000 new patients are affected by leprosy annually, making it the second most common mycobacterial disease after tuberculosis. The MHC/HLA region has been consistently identified as carrying major leprosy susceptibility variants in different populations at times with inconsistent results. To establish the unambiguous molecular identity of classical HLA class I and class II leprosy susceptibility factors, we applied next-generation sequencing to genotype with high-resolution 11 HLA class I and class II genes in 1,155 individuals from a Vietnamese leprosy case-control sample. HLA alleles belonging to an extended haplotype from HLA-A to HLA-DPB1 were associated with risk to leprosy. This susceptibility signal could be reduced to the HLA-DRB1*10:01~ HLA-DQA1*01:05 alleles which were in complete linkage disequilibrium (LD). In addition, haplotypes containing HLA-DRB3~ HLA-DRB1*12:02 and HLA-C*07:06~ HLA-B*44:03~ HLA-DRB1*07:01 alleles were found as two independent protective factors for leprosy. Moreover, we replicated the previously associated HLA-DRB1*15:01 as leprosy risk factor and HLA-DRB1*04:05~HLA-DQA1*03:03 as protective alleles. When we narrowed the analysis to the single amino acid level, we found that the associations of the HLA alleles were largely captured by four independent amino acids at HLA-DRß1 positions 57 (D) and 13 (F), HLA-B position 63 (E) and HLA-A position 19 (K). Hence, analyses at the amino acid level circumvented the ambiguity caused by strong LD of leprosy susceptibility HLA alleles and identified four distinct leprosy susceptibility factors.


Subject(s)
Amino Acids/genetics , Genetic Predisposition to Disease , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Leprosy/pathology , Mutation , Adolescent , Adult , Female , Haplotypes , Humans , Leprosy/genetics , Male , Young Adult
3.
PLoS Pathog ; 16(5): e1008565, 2020 05.
Article in English | MEDLINE | ID: mdl-32421744

ABSTRACT

Leprosy is a chronic infectious disease of the skin and peripheral nerves with a strong genetic predisposition. Recent genome-wide approaches have identified numerous common variants associated with leprosy, almost all in the Chinese population. We conducted the first family-based genome-wide association study of leprosy in 622 affected offspring from Vietnam, followed by replication in an independent sample of 1181 leprosy cases and 668 controls of the same ethnic origin. The most significant results were observed within the HLA region, in which six SNPs displayed genome-wide significant associations, all of which were replicated in the independent case/control sample. We investigated the signal in the HLA region in more detail, by conducting a multivariate analysis on the case/control sample of 319 GWAS-suggestive HLA hits for which evidence for replication was obtained. We identified three independently associated SNPs, two located in the HLA class I region (rs1265048: OR = 0.69 [0.58-0.80], combined p-value = 5.53x10-11; and rs114598080: OR = 1.47 [1.46-1.48], combined p-value = 8.77x10-13), and one located in the HLA class II region (rs3187964 (OR = 1.67 [1.55-1.80], combined p-value = 8.35x10-16). We also validated two previously identified risk factors for leprosy: the missense variant rs3764147 in the LACC1 gene (OR = 1.52 [1.41-1.63], combined p-value = 5.06x10-14), and the intergenic variant rs6871626 located close to the IL12B gene (OR = 0.73 [0.61-0.84], combined p-value = 6.44x10-8). These results shed new light on the genetic control of leprosy, by dissecting the influence of HLA SNPs, and validating the independent role of two additional variants in a large Vietnamese sample.


Subject(s)
Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Leprosy/genetics , Polymorphism, Single Nucleotide , Female , Genome-Wide Association Study , Humans , Interleukin-12 Subunit p40/genetics , Intracellular Signaling Peptides and Proteins/genetics , Leprosy/epidemiology , Male
4.
Proc Natl Acad Sci U S A ; 116(31): 15616-15624, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31308240

ABSTRACT

Type-1 reactions (T1R) are pathological inflammatory episodes and main contributors to nerve damage in leprosy. Here, we evaluate the genewise enrichment of rare protein-altering variants in 7 genes where common variants were previously associated with T1R. We selected 474 Vietnamese leprosy patients of which 237 were T1R-affected and 237 were T1R-free matched controls. Genewise enrichment of nonsynonymous variants was tested with both kernel-based (sequence kernel association test [SKAT]) and burden methods. Of the 7 genes tested 2 showed statistical evidence of association with T1R. For the LRRK2 gene an enrichment of nonsynonymous variants was observed in T1R-free controls (PSKAT-O = 1.6 × 10-4). This genewise association was driven almost entirely by the gain-of-function variant R1628P (P = 0.004; odds ratio = 0.29). The second genewise association was found for the Parkin coding gene PRKN (formerly PARK2) where 7 rare variants were enriched in T1R-affected cases (PSKAT-O = 7.4 × 10-5). Mutations in both PRKN and LRRK2 are known causes of Parkinson's disease (PD). Hence, we evaluated to what extent such rare amino acid changes observed in T1R are shared with PD. We observed that amino acids in Parkin targeted by nonsynonymous T1R-risk mutations were also enriched for mutations implicated in PD (P = 1.5 × 10-4). Hence, neuroinflammation in PD and peripheral nerve damage due to inflammation in T1R share overlapping genetic control of pathogenicity.


Subject(s)
Leprosy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mutation , Parkinson Disease , Ubiquitin-Protein Ligases , Female , Humans , Leprosy/genetics , Leprosy/metabolism , Leprosy/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
Int J Immunogenet ; 48(1): 25-35, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33151039

ABSTRACT

Leprosy is a prevalent disease in Brazil, which ranks as the country with the second highest number of cases in the world. The disease manifests in a spectrum of forms, and genetic differences in the host can help to elucidate the immunopathogenesis. For a better understanding of MICA association with leprosy, we performed a case-control and a family-based study in two endemic populations in Brazil. MICA and HLA-B alleles were evaluated in 409 leprosy patients and in 419 healthy contacts by PCR-SSOP-Luminex-based technology. In the familial study, analysis of 46 families was completed by direct sequencing of all exons and 3'/5'untranslated regions, using the Ilumina MiSeq platform. All data were collected between 2006 and 2009. Statistical analysis was performed using the Chi-square or Fisher's exact test together with a multivariate analysis. Family-based association was assessed by transmission disequilibrium test (TDT) software FBAT 2.0.4. We found associations between the haplotype MICA*002-HLA-B*35 with leprosy in both the per se and the multibacillary (MB) forms when compared to healthy contacts. The MICA allele *008 was associated with the clinical forms of paucibacillary (PB). Additionally, MICA*029 was associated with the clinical forms of MB. The association of MICA*029 allele (MICA-A4 variant) with the susceptibility to the MB form suggests this variant for the transmembrane domain of the MICA molecule may be a risk factor for leprosy. Two MICA and nine HLA-B variants were found associated with leprosy per se in the Colônia do Prata population. Linkage disequilibrium analysis revealed perfect linkage disequilibrium (LD) between HLA-B markers rs2596498 and rs2507992, and high LD (R2  = .92) between these and the marker rs2442718. This familial study demonstrates that MICA association signals are not independent from those observed for HLA-B. Our findings contribute the knowledge pool of the immunogenetics of Hansen's disease and reveals a new association of the MICA*029 allele.


Subject(s)
HLA-B Antigens/genetics , Histocompatibility Antigens Class I/genetics , Leprosy/immunology , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Adolescent , Adult , Alleles , Brazil/epidemiology , Case-Control Studies , Child , Endemic Diseases , Ethnicity/genetics , Exons/genetics , Family Health , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Haplotypes/genetics , Humans , Leprosy/epidemiology , Leprosy/genetics , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide , Protein Domains , Young Adult
6.
Hum Genet ; 139(6-7): 835-846, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31713021

ABSTRACT

Leprosy is a chronic infectious disease of the skin and peripheral nerves that presents a strong link with the host genetic background. Different approaches in genetic studies have been applied to leprosy and today leprosy is among the infectious diseases with the greatest number of genetic risk variants identified. Several leprosy genes have been implicated in host immune response to pathogens and point to specific pathways that are relevant for host defense to infection. In addition, host genetic factors are also involved in the heterogeneity of leprosy clinical manifestations and in excessive inflammatory responses that occur in some leprosy patients. Finally, genetic studies in leprosy have provided strong evidence of pleiotropic effects between leprosy and other complex diseases, such as immune-mediated or neurodegenerative diseases. These findings not only impact on the field of leprosy and infectious diseases but also make leprosy a good model for the study of complex immune-mediated diseases. Here, we summarize recent genetic findings in leprosy susceptibility and discuss the overlap of the genetic control in leprosy with Parkinson's disease and inflammatory bowel disease. Moreover, some limitations, challenges, and potential new avenues for future genetics studies of leprosy are also discussed in this review.


Subject(s)
Gene Expression Regulation , Genetic Predisposition to Disease , Leprosy/genetics , Leprosy/immunology , Models, Genetic , Humans
7.
PLoS Genet ; 13(8): e1006952, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28793313

ABSTRACT

Leprosy is a human infectious disease caused by Mycobacterium leprae. A strong host genetic contribution to leprosy susceptibility is well established. However, the modulation of the transcriptional response to infection and the mechanism(s) of disease control are poorly understood. To address this gap in knowledge of leprosy pathogenicity, we conducted a genome-wide search for expression quantitative trait loci (eQTL) that are associated with transcript variation before and after stimulation with M. leprae sonicate in whole blood cells. We show that M. leprae antigen stimulation mainly triggered the upregulation of immune related genes and that a substantial proportion of the differential gene expression is genetically controlled. Indeed, using stringent criteria, we identified 318 genes displaying cis-eQTL at an FDR of 0.01, including 66 genes displaying response-eQTL (reQTL), i.e. cis-eQTL that showed significant evidence for interaction with the M. leprae stimulus. Such reQTL correspond to regulatory variations that affect the interaction between human whole blood cells and M. leprae sonicate and, thus, likely between the human host and M. leprae bacilli. We found that reQTL were significantly enriched among binding sites of transcription factors that are activated in response to infection, and that they were enriched among single nucleotide polymorphisms (SNPs) associated with susceptibility to leprosy per se and Type-I Reaction, and seven of them have been targeted by recent positive selection. Our study suggested that natural selection shaped our genomic diversity to face pathogen exposure including M. leprae infection.


Subject(s)
Antigens, Bacterial/immunology , Leprosy/genetics , Quantitative Trait Loci , Down-Regulation , Genetic Association Studies , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Humans , Leprosy/immunology , Mycobacterium leprae , Polymorphism, Single Nucleotide , Principal Component Analysis , RNA, Bacterial/isolation & purification , Up-Regulation
8.
PLoS Genet ; 13(2): e1006637, 2017 02.
Article in English | MEDLINE | ID: mdl-28222097

ABSTRACT

Leprosy Type-1 Reactions (T1Rs) are pathological inflammatory responses that afflict a sub-group of leprosy patients and result in peripheral nerve damage. Here, we employed a family-based GWAS in 221 families with 229 T1R-affect offspring with stepwise replication to identify risk factors for T1R. We discovered, replicated and validated T1R-specific associations with SNPs located in chromosome region 10p21.2. Combined analysis across the three independent samples resulted in strong evidence of association of rs1875147 with T1R (p = 4.5x10-8; OR = 1.54, 95% CI = 1.32-1.80). The T1R-risk locus was restricted to a lncRNA-encoding genomic interval with rs1875147 being an eQTL for the lncRNA. Since a genetic overlap between leprosy and inflammatory bowel disease (IBD) has been detected, we evaluated if the shared genetic control could be traced to the T1R endophenotype. Employing the results of a recent IBD GWAS meta-analysis we found that 10.6% of IBD SNPs available in our dataset shared a common risk-allele with T1R (p = 2.4x10-4). This finding points to a substantial overlap in the genetic control of clinically diverse inflammatory disorders.


Subject(s)
Genetic Predisposition to Disease , Inflammatory Bowel Diseases/genetics , Leprosy/genetics , RNA, Long Noncoding/genetics , Female , Gene Expression Regulation , Genome-Wide Association Study , Humans , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/pathology , Leprosy/complications , Leprosy/pathology , Male , Nerve Degeneration/complications , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , RNA, Long Noncoding/biosynthesis , Risk Factors , Vietnam
10.
J Infect Dis ; 214(3): 475-8, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27132285

ABSTRACT

Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy.


Subject(s)
Genetic Predisposition to Disease , Leprosy/genetics , Leprosy/immunology , Superoxide Dismutase/genetics , Alleles , Case-Control Studies , Female , Genes , Genetic Association Studies , Humans , Male
11.
J Infect Dis ; 211(6): 968-77, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25320285

ABSTRACT

BACKGROUND: Type 1 reactions (T1R) affect a considerable proportion of patients with leprosy. In those with T1R, the host immune response pathologically overcompensates for the actual infectious threat, resulting in nerve damage and permanent disability. Based on the results of a genome-wide association study of leprosy per se, we investigated the TNFSF15 chromosomal region for a possible contribution to susceptibility to T1R. METHODS: We performed a high-resolution association scan of the TNFSF15 locus to evaluate the association with T1R in 2 geographically and ethnically distinct populations: a family-based sample from Vietnam and a case-control sample from Brazil, comprising a total of 1768 subjects. RESULTS: In the Vietnamese sample, 47 single-nucleotide polymorphisms (SNPs) overlapping TNFSF15 and the adjacent TNFSF8 gene were associated with T1R but not with leprosy. Of the 47 SNPs, 39 were cis-expression quantitative trait loci (cis-eQTL) for TNFSF8 including SNPs located within the TNFSF15 gene. In the Brazilian sample, 18 of these cis-eQTL SNPs overlapping the TNFSF8 gene were validated for association with T1R. CONCLUSIONS: Taken together, these results indicate TNFSF8 and not TNFSF15 as an important T1R susceptibility gene. Our data support the need for infection genetics to go beyond genes for pathogen control to explore genes involved in a commensurate host response.


Subject(s)
CD30 Ligand/genetics , Leprosy/genetics , Chromosome Mapping , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Leprosy/immunology , Polymorphism, Single Nucleotide , Tumor Necrosis Factor Ligand Superfamily Member 15/genetics
12.
Hum Genet ; 133(12): 1525-32, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25367361

ABSTRACT

Leprosy is a complex disease with phenotypes strongly influenced by genetic variation. A Chinese genome-wide association study (GWAS) depicted novel genes and pathways associated with leprosy susceptibility, only partially replicated by independent studies in different ethnicities. Here, we describe the results of a validation and replication study of the Chinese GWAS in Brazilians, using a stepwise strategy that involved two family-based and three independent case-control samples, resulting in 3,614 individuals enrolled. First, we genotyped a family-based sample for 36 tag single-nucleotide polymorphisms (SNPs) of five genes located in four different candidate loci: CCDC122-LACC1, NOD2, TNFSF15 and RIPK2. Association between leprosy and tag SNPs at NOD2 (rs8057431) and CCDC122-LACC1 (rs4942254) was then replicated in three additional, independent samples (combined OR(AA) = 0.49, P = 1.39e-06; OR(CC) = 0.72, P = 0.003, respectively). These results clearly implicate the NOD2 pathway in the regulation of leprosy susceptibility across diverse populations.


Subject(s)
Leprosy/genetics , Nod2 Signaling Adaptor Protein/genetics , Adolescent , Adult , Aged , Brazil , Child , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
13.
BMC Infect Dis ; 14: 438, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25117794

ABSTRACT

BACKGROUND: The objective of this study was to investigate the association between KIR genes and the immunopathogenesis of leprosy. METHODS: The types of KIR and HLA genes were evaluated by PCR-SSOP-Luminex in 408 patients with leprosy and 413 healthy individuals. Statistical analysis was performed using the Chi-square or Fisher's exact test and stepwise multivariate analysis. RESULTS: There was a higher frequency of activating KIR genes (KIR2DS1, 2DS2 and 3DS1) together with their HLA ligands in the tuberculoid (TT) group as compared to the lepromatous leprosy (LL) group. KIR2DL2/2DL2-C1 was more frequent in the patient, TT and LL groups than in the control group. Borderline patients presented a higher frequency of inhibitory pairs when compared to the control group, and a higher frequency of activating pairs as compared to the LL group. Multivariate analysis confirmed the associations and demonstrated that being a female is a protective factor against the development of the disease per se and the more severe clinical form. CONCLUSIONS: This study showed that activating and inhibitory KIR genes may influence the development of leprosy - in particular, activating genes may protect against the more aggressive form of the disease - thereby demonstrating the role of NK cells in the immunopathology of the disease.


Subject(s)
Genes, MHC Class I , Leprosy/genetics , Leprosy/pathology , Receptors, KIR/genetics , Adult , Brazil , Case-Control Studies , Female , Genotype , Humans , Killer Cells, Natural/cytology , Ligands , Male , Middle Aged , Phenotype
14.
Res Sq ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38352496

ABSTRACT

To understand natural resistance to Mycobacterium tuberculosis ( Mtb ) infection, we studied people living with HIV (PLWH) in an area of high Mtb transmission. Given that alveolar leukocytes may contribute to this resistance, we performed single cell RNA-sequencing of bronchoalveolar lavage cells, unstimulated or ex vivo stimulated with Mtb . We obtained high quality cells for 7 participants who were TST & IGRA positive (called LTBI) and 6 who were persistently TST & IGRA negative (called resisters). Alveolar macrophages (AM) from resisters displayed more of an M1 phenotype relative to LTBI AM at baseline. Alveolar lymphocytosis (10%-60%) was exhibited by 5/6 resisters, resulting in higher numbers of CD4 + and CD8 + IFNG -expressing cells at baseline and upon Mtb challenge than LTBI samples. Mycobactericidal granulysin was expressed almost exclusively by a cluster of CD8 + T cells that co-expressed granzyme B, perforin and NK cell receptors. For resisters, these poly-cytotoxic T cells over-represented activating NK cell receptors and were present at 15-fold higher numbers in alveoli compared to LTBI. Altogether, our results showed that alveolar lymphocytosis, with increased numbers of alveolar IFNG -expressing cells and CD8 + poly-cytotoxic T cells, as well as activated AM were strongly associated with protection from persistent Mtb infection in PLWH.

15.
Hum Genet ; 132(1): 107-16, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23052943

ABSTRACT

One of the persistent challenges of genetic association studies is the replication of genetic marker-disease associations across ethnic groups. Here, we conducted high-density association mapping of PARK2/PACRG SNPs with leprosy and identified 69 SNPs significantly associated with leprosy in 198 single-case Vietnamese leprosy families. A total of 56 associated SNPs localized to the overlapping promoter regions of PARK2/PACRG. For this region, multivariate analysis identified four SNPs belonging to two major SNP bins (rs1333955, rs7744433) and two single SNP bins (rs2023004, rs6936895) that capture the combined statistical evidence (P = 1.1 × 10(-5)) for association among Vietnamese patients. Next, we enrolled a case-control sample of 364 leprosy cases and 370 controls from Northern India. We genotyped all subjects for 149 SNPs that capture >80 % of the genetic variation in the Vietnamese sample and found 24 SNPs significantly associated with leprosy. Multivariate analysis identified three SNPs (rs1333955, rs9356058 and rs2023004) that capture the association with leprosy (P < 10(-8)). Hence, two SNPs (rs1333955 and rs2023004) were replicated by multivariate analysis between both ethnic groups. Marked differences in the linkage disequilibrium pattern explained some of the differences in univariate analysis between the two ethnic groups. In addition, the strength of association for two promoter region SNP bins was significantly stronger among young leprosy patients in the Vietnamese sample. The same trend was observed in the Indian sample, but due to the higher age-at-diagnosis of the patients the age effect was less pronounced.


Subject(s)
Ethnicity/genetics , Leprosy/genetics , Molecular Chaperones/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Adult , Age of Onset , Asian People/genetics , Case-Control Studies , Child , Female , Genetic Association Studies , Humans , India , Introns , Leprosy/diagnosis , Linkage Disequilibrium , Male , Microfilament Proteins , Middle Aged , Multivariate Analysis , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Vietnam , White People/genetics , Young Adult
17.
J Infect Dis ; 205(9): 1417-24, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22459738

ABSTRACT

In leprosy, type 1 reaction (T1R) and type 2 reaction (T2R) are major causes of nerve injury and permanent disabilities. A previous study on plasma levels of 27 cytokines in patients with T1R or T2R and controls with nonreactional leprosy identified the gene for interleukin 6 (IL-6) as a candidate for genetic analysis. Two nested case-control studies were built from a cohort of 409 patients with leprosy from central Brazil, monitored for T1R and T2R. There was evidence for association between T2R and IL-6 tag single-nucleotide polymorphisms rs2069832 (P = .002), rs2069840 (P = .03), and rs2069845 (P = .04), with information on the entire IL-6 locus, as well as functional IL-6 variant rs1800795 (P = .005). Moreover, IL-6 plasma levels in patients with T2R correlated with IL-6 genotypes (P = .04). No association was found between IL-6 variants and T1R. Identifying genetic predictive factors for leprosy reactions may have a major impact on preventive strategies.


Subject(s)
Genetic Predisposition to Disease , Interleukin-6/genetics , Leprosy/genetics , Adult , Aged , Brazil , Case-Control Studies , Female , Follow-Up Studies , Genetic Loci , Genetic Markers , Genotype , Humans , Leprosy/diagnosis , Leprosy/immunology , Leprosy/physiopathology , Logistic Models , Male , Middle Aged , Multivariate Analysis , Polymorphism, Single Nucleotide , Prospective Studies , Selection, Genetic , Young Adult
18.
An Bras Dermatol ; 98(2): 216-220, 2023.
Article in English | MEDLINE | ID: mdl-36529602

ABSTRACT

Vitiligo is an autoimmune disease of the skin that results in localized or disseminated white macules. One common feature of several existing classification protocols is the distribution of the disease into two main subtypes, non-segmental vitiligo (NSV) and segmental vitiligo (SV). SV is characterized by depigmentation spreading within one or more skin segments while NSV is widespread. Several clinical-epidemiological observations suggest that SV has distinct autoimmune pathophysiology compared to NSV. Furthermore, the clinical distribution pattern of SV lesions closely resembles other melanocyte mosaicism diseases. These observations led us to hypothesize that SV is caused by a localized autoimmune reaction targeting epidermal mosaicism melanocytes. Here, we proposed examples of experimental approaches to assess mosaicism in SV patients.


Subject(s)
Vitiligo , Humans , Vitiligo/genetics , Vitiligo/pathology , Mosaicism , Melanocytes/pathology , Skin/pathology , Epidermis/pathology
19.
Front Med (Lausanne) ; 10: 1233220, 2023.
Article in English | MEDLINE | ID: mdl-37564037

ABSTRACT

Introduction: Leprosy reactions (LR) are severe episodes of intense activation of the host inflammatory response of uncertain etiology, today the leading cause of permanent nerve damage in leprosy patients. Several genetic and non-genetic risk factors for LR have been described; however, there are limited attempts to combine this information to estimate the risk of a leprosy patient developing LR. Here we present an artificial intelligence (AI)-based system that can assess LR risk using clinical, demographic, and genetic data. Methods: The study includes four datasets from different regions of Brazil, totalizing 1,450 leprosy patients followed prospectively for at least 2 years to assess the occurrence of LR. Data mining using WEKA software was performed following a two-step protocol to select the variables included in the AI system, based on Bayesian Networks, and developed using the NETICA software. Results: Analysis of the complete database resulted in a system able to estimate LR risk with 82.7% accuracy, 79.3% sensitivity, and 86.2% specificity. When using only databases for which host genetic information associated with LR was included, the performance increased to 87.7% accuracy, 85.7% sensitivity, and 89.4% specificity. Conclusion: We produced an easy-to-use, online, free-access system that identifies leprosy patients at risk of developing LR. Risk assessment of LR for individual patients may detect candidates for close monitoring, with a potentially positive impact on the prevention of permanent disabilities, the quality of life of the patients, and upon leprosy control programs.

20.
Mem Inst Oswaldo Cruz ; 107 Suppl 1: 132-42, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23283464

ABSTRACT

Type-1 (T1R) and Type-2 (T2R) leprosy reactions (LR), which affect up to 50% of leprosy patients, are aggressive inflammatory episodes of sudden onset and highly variable incidence across populations. LR are often diagnosed concurrently with leprosy, but more frequently occur several months after treatment onset. It is not uncommon for leprosy patients to develop recurring reactional episodes; however, they rarely undergo both types of LR. Today, LR are the main cause of permanent disabilities associated with leprosy and represent a major challenge in the clinical management of leprosy patients. Although progress has been made in understanding the immunopathology of LR, the factors that cause a leprosy patient to suffer from LR are largely unknown. Given the impact that ethnic background has on the risk of developing LR, host genetic factors have long been suspected of contributing to LR. Indeed, polymorphisms in seven genes [Toll-like receptors (TLR)1, TLR2, nucleotide-binding oligomerisation domain containing 2, vitamin D receptor, natural resistance-associated macrophage protein 1, C4B and interleukin-6] have been found to be associated with one or more LR outcomes. The identification of host genetic markers with predictive value for LR would have a major impact on nerve damage control in leprosy. In this review, we present the recent advances achieved through genetic studies of LR.


Subject(s)
Biomarkers , Leprosy , Humans , Leprosy/genetics , Leprosy/immunology , Leprosy/pathology
SELECTION OF CITATIONS
SEARCH DETAIL