Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Publication year range
1.
Annu Rev Neurosci ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669478

ABSTRACT

It has long been argued that only humans could produce and understand language. But now, for the first time, artificial language models (LMs) achieve this feat. Here we survey the new purchase LMs are providing on the question of how language is implemented in the brain. We discuss why, a priori, LMs might be expected to share similarities with the human language system. We then summarize evidence that LMs represent linguistic information similarly enough to humans to enable relatively accurate brain encoding and decoding during language processing. Finally, we examine which LM properties-their architecture, task performance, or training-are critical for capturing human neural responses to language and review studies using LMs as in silico model organisms for testing hypotheses about language. These ongoing investigations bring us closer to understanding the representations and processes that underlie our ability to comprehend sentences and express thoughts in language.

2.
Nature ; 630(8017): 575-586, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898296

ABSTRACT

Language is a defining characteristic of our species, but the function, or functions, that it serves has been debated for centuries. Here we bring recent evidence from neuroscience and allied disciplines to argue that in modern humans, language is a tool for communication, contrary to a prominent view that we use language for thinking. We begin by introducing the brain network that supports linguistic ability in humans. We then review evidence for a double dissociation between language and thought, and discuss several properties of language that suggest that it is optimized for communication. We conclude that although the emergence of language has unquestionably transformed human culture, language does not appear to be a prerequisite for complex thought, including symbolic thought. Instead, language is a powerful tool for the transmission of cultural knowledge; it plausibly co-evolved with our thinking and reasoning capacities, and only reflects, rather than gives rise to, the signature sophistication of human cognition.


Subject(s)
Brain , Cognition , Communication , Language , Thinking , Animals , Humans , Brain/physiology , Cognition/physiology , Culture , Thinking/physiology , Linguistics
3.
Nature ; 631(8021): 610-616, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961302

ABSTRACT

From sequences of speech sounds1,2 or letters3, humans can extract rich and nuanced meaning through language. This capacity is essential for human communication. Yet, despite a growing understanding of the brain areas that support linguistic and semantic processing4-12, the derivation of linguistic meaning in neural tissue at the cellular level and over the timescale of action potentials remains largely unknown. Here we recorded from single cells in the left language-dominant prefrontal cortex as participants listened to semantically diverse sentences and naturalistic stories. By tracking their activities during natural speech processing, we discover a fine-scale cortical representation of semantic information by individual neurons. These neurons responded selectively to specific word meanings and reliably distinguished words from nonwords. Moreover, rather than responding to the words as fixed memory representations, their activities were highly dynamic, reflecting the words' meanings based on their specific sentence contexts and independent of their phonetic form. Collectively, we show how these cell ensembles accurately predicted the broad semantic categories of the words as they were heard in real time during speech and how they tracked the sentences in which they appeared. We also show how they encoded the hierarchical structure of these meaning representations and how these representations mapped onto the cell population. Together, these findings reveal a finely detailed cortical organization of semantic representations at the neuron scale in humans and begin to illuminate the cellular-level processing of meaning during language comprehension.


Subject(s)
Comprehension , Language , Neurons , Prefrontal Cortex , Semantics , Single-Cell Analysis , Speech Perception , Humans , Comprehension/physiology , Speech Perception/physiology , Neurons/physiology , Male , Prefrontal Cortex/physiology , Prefrontal Cortex/cytology , Female , Adult , Phonetics , Young Adult
4.
Nat Rev Neurosci ; 25(5): 289-312, 2024 May.
Article in English | MEDLINE | ID: mdl-38609551

ABSTRACT

Language behaviour is complex, but neuroscientific evidence disentangles it into distinct components supported by dedicated brain areas or networks. In this Review, we describe the 'core' language network, which includes left-hemisphere frontal and temporal areas, and show that it is strongly interconnected, independent of input and output modalities, causally important for language and language-selective. We discuss evidence that this language network plausibly stores language knowledge and supports core linguistic computations related to accessing words and constructions from memory and combining them to interpret (decode) or generate (encode) linguistic messages. We emphasize that the language network works closely with, but is distinct from, both lower-level - perceptual and motor - mechanisms and higher-level systems of knowledge and reasoning. The perceptual and motor mechanisms process linguistic signals, but, in contrast to the language network, are sensitive only to these signals' surface properties, not their meanings; the systems of knowledge and reasoning (such as the system that supports social reasoning) are sometimes engaged during language use but are not language-selective. This Review lays a foundation both for in-depth investigations of these different components of the language processing pipeline and for probing inter-component interactions.


Subject(s)
Brain , Language , Humans , Brain/physiology , Nerve Net/physiology , Neural Pathways/physiology , Brain Mapping
5.
Nature ; 591(7851): 610-614, 2021 03.
Article in English | MEDLINE | ID: mdl-33505022

ABSTRACT

Human social behaviour crucially depends on our ability to reason about others. This capacity for theory of mind has a vital role in social cognition because it enables us not only to form a detailed understanding of the hidden thoughts and beliefs of other individuals but also to understand that they may differ from our own1-3. Although a number of areas in the human brain have been linked to social reasoning4,5 and its disruption across a variety of psychosocial disorders6-8, the basic cellular mechanisms that underlie human theory of mind remain undefined. Here, using recordings from single cells in the human dorsomedial prefrontal cortex, we identify neurons that reliably encode information about others' beliefs across richly varying scenarios and that distinguish self- from other-belief-related representations. By further following their encoding dynamics, we show how these cells represent the contents of the others' beliefs and accurately predict whether they are true or false. We also show how they track inferred beliefs from another's specific perspective and how their activities relate to behavioural performance. Together, these findings reveal a detailed cellular process in the human dorsomedial prefrontal cortex for representing another's beliefs and identify candidate neurons that could support theory of mind.


Subject(s)
Neurons/cytology , Neurons/physiology , Social Behavior , Theory of Mind/physiology , Adult , Aged , Female , Humans , Male , Middle Aged , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Single-Cell Analysis , Thinking/physiology
6.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38466812

ABSTRACT

How do polyglots-individuals who speak five or more languages-process their languages, and what can this population tell us about the language system? Using fMRI, we identified the language network in each of 34 polyglots (including 16 hyperpolyglots with knowledge of 10+ languages) and examined its response to the native language, non-native languages of varying proficiency, and unfamiliar languages. All language conditions engaged all areas of the language network relative to a control condition. Languages that participants rated as higher proficiency elicited stronger responses, except for the native language, which elicited a similar or lower response than a non-native language of similar proficiency. Furthermore, unfamiliar languages that were typologically related to the participants' high-to-moderate-proficiency languages elicited a stronger response than unfamiliar unrelated languages. The results suggest that the language network's response magnitude scales with the degree of engagement of linguistic computations (e.g. related to lexical access and syntactic-structure building). We also replicated a prior finding of weaker responses to native language in polyglots than non-polyglot bilinguals. These results contribute to our understanding of how multiple languages coexist within a single brain and provide new evidence that the language network responds more strongly to stimuli that more fully engage linguistic computations.


Subject(s)
Multilingualism , Humans , Magnetic Resonance Imaging , Language , Brain/diagnostic imaging , Brain/physiology , Brain Mapping
7.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38494886

ABSTRACT

A network of left frontal and temporal brain regions supports language processing. This "core" language network stores our knowledge of words and constructions as well as constraints on how those combine to form sentences. However, our linguistic knowledge additionally includes information about phonemes and how they combine to form phonemic clusters, syllables, and words. Are phoneme combinatorics also represented in these language regions? Across five functional magnetic resonance imaging experiments, we investigated the sensitivity of high-level language processing brain regions to sublexical linguistic regularities by examining responses to diverse nonwords-sequences of phonemes that do not constitute real words (e.g. punes, silory, flope). We establish robust responses in the language network to visually (experiment 1a, n = 605) and auditorily (experiments 1b, n = 12, and 1c, n = 13) presented nonwords. In experiment 2 (n = 16), we find stronger responses to nonwords that are more well-formed, i.e. obey the phoneme-combinatorial constraints of English. Finally, in experiment 3 (n = 14), we provide suggestive evidence that the responses in experiments 1 and 2 are not due to the activation of real words that share some phonology with the nonwords. The results suggest that sublexical regularities are stored and processed within the same fronto-temporal network that supports lexical and syntactic processes.


Subject(s)
Brain Mapping , Language , Brain Mapping/methods , India , Brain/diagnostic imaging , Brain/physiology , Linguistics , Magnetic Resonance Imaging
8.
J Cogn Neurosci ; 36(7): 1427-1471, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38683732

ABSTRACT

Human language is expressive because it is compositional: The meaning of a sentence (semantics) can be inferred from its structure (syntax). It is commonly believed that language syntax and semantics are processed by distinct brain regions. Here, we revisit this claim using precision fMRI methods to capture separation or overlap of function in the brains of individual participants. Contrary to prior claims, we find distributed sensitivity to both syntax and semantics throughout a broad frontotemporal brain network. Our results join a growing body of evidence for an integrated network for language in the human brain within which internal specialization is primarily a matter of degree rather than kind, in contrast with influential proposals that advocate distinct specialization of different brain areas for different types of linguistic functions.


Subject(s)
Brain Mapping , Brain , Magnetic Resonance Imaging , Semantics , Humans , Male , Female , Adult , Brain/physiology , Brain/diagnostic imaging , Young Adult , Language , Neural Pathways/physiology
10.
Cereb Cortex ; 33(10): 6299-6319, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36585774

ABSTRACT

Language comprehension and the ability to infer others' thoughts (theory of mind [ToM]) are interrelated during development and language use. However, neural evidence that bears on the relationship between language and ToM mechanisms is mixed. Although robust dissociations have been reported in brain disorders, brain activations for contrasts that target language and ToM bear similarities, and some have reported overlap. We take another look at the language-ToM relationship by evaluating the response of the language network, as measured with fMRI, to verbal and nonverbal ToM across 151 participants. Individual-participant analyses reveal that all core language regions respond more strongly when participants read vignettes about false beliefs compared to the control vignettes. However, we show that these differences are largely due to linguistic confounds, and no such effects appear in a nonverbal ToM task. These results argue against cognitive and neural overlap between language processing and ToM. In exploratory analyses, we find responses to social processing in the "periphery" of the language network-right-hemisphere homotopes of core language areas and areas in bilateral angular gyri-but these responses are not selectively ToM-related and may reflect general visual semantic processing.


Subject(s)
Brain Mapping , Theory of Mind , Humans , Brain Mapping/methods , Theory of Mind/physiology , Brain/diagnostic imaging , Brain/physiology , Language , Problem Solving , Magnetic Resonance Imaging/methods
11.
Cereb Cortex ; 33(19): 10380-10400, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37557910

ABSTRACT

The relationship between language and thought is the subject of long-standing debate. One claim states that language facilitates categorization of objects based on a certain feature (e.g. color) through the use of category labels that reduce interference from other, irrelevant features. Therefore, language impairment is expected to affect categorization of items grouped by a single feature (low-dimensional categories, e.g. "Yellow Things") more than categorization of items that share many features (high-dimensional categories, e.g. "Animals"). To test this account, we conducted two behavioral studies with individuals with aphasia and an fMRI experiment with healthy adults. The aphasia studies showed that selective low-dimensional categorization impairment was present in some, but not all, individuals with severe anomia and was not characteristic of aphasia in general. fMRI results revealed little activity in language-responsive brain regions during both low- and high-dimensional categorization; instead, categorization recruited the domain-general multiple-demand network (involved in wide-ranging cognitive tasks). Combined, results demonstrate that the language system is not implicated in object categorization. Instead, selective low-dimensional categorization impairment might be caused by damage to brain regions responsible for cognitive control. Our work adds to the growing evidence of the dissociation between the language system and many cognitive tasks in adults.


Subject(s)
Aphasia , Language , Humans , Adult , Brain/diagnostic imaging , Aphasia/diagnostic imaging
12.
Cereb Cortex ; 33(8): 4384-4404, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36130104

ABSTRACT

A fronto-temporal brain network has long been implicated in language comprehension. However, this network's role in language production remains debated. In particular, it remains unclear whether all or only some language regions contribute to production, and which aspects of production these regions support. Across 3 functional magnetic resonance imaging experiments that rely on robust individual-subject analyses, we characterize the language network's response to high-level production demands. We report 3 novel results. First, sentence production, spoken or typed, elicits a strong response throughout the language network. Second, the language network responds to both phrase-structure building and lexical access demands, although the response to phrase-structure building is stronger and more spatially extensive, present in every language region. Finally, contra some proposals, we find no evidence of brain regions-within or outside the language network-that selectively support phrase-structure building in production relative to comprehension. Instead, all language regions respond more strongly during production than comprehension, suggesting that production incurs a greater cost for the language network. Together, these results align with the idea that language comprehension and production draw on the same knowledge representations, which are stored in a distributed manner within the language-selective network and are used to both interpret and generate linguistic utterances.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Language , Brain/physiology , Comprehension/physiology
13.
Cereb Cortex ; 33(12): 7904-7929, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37005063

ABSTRACT

Language and music are two human-unique capacities whose relationship remains debated. Some have argued for overlap in processing mechanisms, especially for structure processing. Such claims often concern the inferior frontal component of the language system located within "Broca's area." However, others have failed to find overlap. Using a robust individual-subject fMRI approach, we examined the responses of language brain regions to music stimuli, and probed the musical abilities of individuals with severe aphasia. Across 4 experiments, we obtained a clear answer: music perception does not engage the language system, and judgments about music structure are possible even in the presence of severe damage to the language network. In particular, the language regions' responses to music are generally low, often below the fixation baseline, and never exceed responses elicited by nonmusic auditory conditions, like animal sounds. Furthermore, the language regions are not sensitive to music structure: they show low responses to both intact and structure-scrambled music, and to melodies with vs. without structural violations. Finally, in line with past patient investigations, individuals with aphasia, who cannot judge sentence grammaticality, perform well on melody well-formedness judgments. Thus, the mechanisms that process structure in language do not appear to process music, including music syntax.


Subject(s)
Aphasia , Music , Humans , Broca Area , Language , Magnetic Resonance Imaging , Brain Mapping , Perception
14.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34737231

ABSTRACT

The neuroscience of perception has recently been revolutionized with an integrative modeling approach in which computation, brain function, and behavior are linked across many datasets and many computational models. By revealing trends across models, this approach yields novel insights into cognitive and neural mechanisms in the target domain. We here present a systematic study taking this approach to higher-level cognition: human language processing, our species' signature cognitive skill. We find that the most powerful "transformer" models predict nearly 100% of explainable variance in neural responses to sentences and generalize across different datasets and imaging modalities (functional MRI and electrocorticography). Models' neural fits ("brain score") and fits to behavioral responses are both strongly correlated with model accuracy on the next-word prediction task (but not other language tasks). Model architecture appears to substantially contribute to neural fit. These results provide computationally explicit evidence that predictive processing fundamentally shapes the language comprehension mechanisms in the human brain.


Subject(s)
Brain/physiology , Language , Models, Neurological , Neural Networks, Computer , Humans
15.
J Neurosci ; 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36002263

ABSTRACT

To understand language, we must infer structured meanings from real-time auditory or visual signals. Researchers have long focused on word-by-word structure building in working memory as a mechanism that might enable this feat. However, some have argued that language processing does not typically involve rich word-by-word structure building, and/or that apparent working memory effects are underlyingly driven by surprisal (how predictable a word is in context). Consistent with this alternative, some recent behavioral studies of naturalistic language processing that control for surprisal have not shown clear working memory effects. In this fMRI study, we investigate a range of theory-driven predictors of word-by-word working memory demand during naturalistic language comprehension in humans of both sexes under rigorous surprisal controls. In addition, we address a related debate about whether the working memory mechanisms involved in language comprehension are language-specialized or domain-general. To do so, in each participant, we functionally localize (a) the language-selective network and (b) the 'multiple demand' network, which supports working memory across domains. Results show robust surprisal-independent effects of memory demand in the language network and no effect of memory demand in the multiple demand network. Our findings thus support the view that language comprehension involves computationally demanding word-by-word structure building operations in working memory, in addition to any prediction-related mechanisms. Further, these memory operations appear to be primarily carried out by the same neural resources that store linguistic knowledge, with no evidence of involvement of brain regions known to support working memory across domains.SIGNIFICANCE STATEMENT:This study uses fMRI to investigate signatures of working memory (WM) demand during naturalistic story listening, using a broad range of theoretically motivated estimates of WM demand. Results support a strong effect of WM demand in the brain that is distinct from effects of word predictability. Further, these WM demands register primarily in language-selective regions, rather than in 'multiple demand' regions that have previously been associated with WM in non-linguistic domains. Our findings support a core role for WM in incremental language processing, using WM resources that are specialized for language.

16.
Behav Brain Sci ; 46: e390, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054303

ABSTRACT

In the target article, Bowers et al. dispute deep artificial neural network (ANN) models as the currently leading models of human vision without producing alternatives. They eschew the use of public benchmarking platforms to compare vision models with the brain and behavior, and they advocate for a fragmented, phenomenon-specific modeling approach. These are unconstructive to scientific progress. We outline how the Brain-Score community is moving forward to add new model-to-human comparisons to its community-transparent suite of benchmarks.


Subject(s)
Brain , Neural Networks, Computer , Humans
17.
Cogn Neuropsychol ; 39(5-8): 249-275, 2022.
Article in English | MEDLINE | ID: mdl-36653302

ABSTRACT

The visual word form area (VWFA), a region canonically located within left ventral temporal cortex (VTC), is specialized for orthography in literate adults presumbly due to its connectivity with frontotemporal language regions. But is a typical, left-lateralized language network critical for the VWFA's emergence? We investigated this question in an individual (EG) born without the left superior temporal lobe but who has normal reading ability. EG showed canonical typical face-selectivity bilateraly but no wordselectivity either in right VWFA or in the spared left VWFA. Moreover, in contrast with the idea that the VWFA is simply part of the language network, no part of EG's VTC showed selectivity to higher-level linguistic processing. Interestingly, EG's VWFA showed reliable multivariate patterns that distinguished words from other categories. These results suggest that a typical left-hemisphere language network is necessary for acanonical VWFA, and that orthographic processing can otherwise be supported by a distributed neural code.


Subject(s)
Dyslexia , Reading , Adult , Humans , Magnetic Resonance Imaging , Temporal Lobe , Language
18.
Cereb Cortex ; 31(1): 62-76, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32820332

ABSTRACT

Acquiring a foreign language is challenging for many adults. Yet certain individuals choose to acquire sometimes dozens of languages and often just for fun. Is there something special about the minds and brains of such polyglots? Using robust individual-level markers of language activity, measured with fMRI, we compared native language processing in polyglots versus matched controls. Polyglots (n = 17, including nine "hyper-polyglots" with proficiency in 10-55 languages) used fewer neural resources to process language: Their activations were smaller in both magnitude and extent. This difference was spatially and functionally selective: The groups were similar in their activation of two other brain networks-the multiple demand network and the default mode network. We hypothesize that the activation reduction in the language network is experientially driven, such that the acquisition and use of multiple languages makes language processing generally more efficient. However, genetic and longitudinal studies will be critical to distinguish this hypothesis from the one whereby polyglots' brains already differ at birth or early in development. This initial characterization of polyglots' language network opens the door to future investigations of the cognitive and neural architecture of individuals who gain mastery of multiple languages, including changes in this architecture with linguistic experiences.


Subject(s)
Language Development , Multilingualism , Nerve Net/physiology , Adult , Brain Mapping , Default Mode Network , Female , Functional Laterality , Humans , Language , Learning , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Young Adult
19.
Cereb Cortex ; 31(9): 4006-4023, 2021 07 29.
Article in English | MEDLINE | ID: mdl-33895807

ABSTRACT

What role do domain-general executive functions play in human language comprehension? To address this question, we examine the relationship between behavioral measures of comprehension and neural activity in the domain-general "multiple demand" (MD) network, which has been linked to constructs like attention, working memory, inhibitory control, and selection, and implicated in diverse goal-directed behaviors. Specifically, functional magnetic resonance imaging data collected during naturalistic story listening are compared with theory-neutral measures of online comprehension difficulty and incremental processing load (reading times and eye-fixation durations). Critically, to ensure that variance in these measures is driven by features of the linguistic stimulus rather than reflecting participant- or trial-level variability, the neuroimaging and behavioral datasets were collected in nonoverlapping samples. We find no behavioral-neural link in functionally localized MD regions; instead, this link is found in the domain-specific, fronto-temporal "core language network," in both left-hemispheric areas and their right hemispheric homotopic areas. These results argue against strong involvement of domain-general executive circuits in language comprehension.


Subject(s)
Comprehension/physiology , Language , Nerve Net/physiology , Adult , Attention/physiology , Brain/diagnostic imaging , Executive Function/physiology , Female , Fixation, Ocular , Functional Laterality , Humans , Language Tests , Magnetic Resonance Imaging , Male , Memory, Short-Term/physiology , Psycholinguistics , Psychomotor Performance/physiology , Reading , Young Adult
20.
J Neurosci ; 40(23): 4536-4550, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32317387

ABSTRACT

Aside from the language-selective left-lateralized frontotemporal network, language comprehension sometimes recruits a domain-general bilateral frontoparietal network implicated in executive functions: the multiple demand (MD) network. However, the nature of the MD network's contributions to language comprehension remains debated. To illuminate the role of this network in language processing in humans, we conducted a large-scale fMRI investigation using data from 30 diverse word and sentence comprehension experiments (481 unique participants [female and male], 678 scanning sessions). In line with prior findings, the MD network was active during many language tasks. Moreover, similar to the language-selective network, which is robustly lateralized to the left hemisphere, these responses were stronger in the left-hemisphere MD regions. However, in contrast with the language-selective network, the MD network responded more strongly (1) to lists of unconnected words than to sentences, and (2) in paradigms with an explicit task compared with passive comprehension paradigms. Indeed, many passive comprehension tasks failed to elicit a response above the fixation baseline in the MD network, in contrast to strong responses in the language-selective network. Together, these results argue against a role for the MD network in core aspects of sentence comprehension, such as inhibiting irrelevant meanings or parses, keeping intermediate representations active in working memory, or predicting upcoming words or structures. These results align with recent evidence of relatively poor tracking of the linguistic signal by the MD regions during naturalistic comprehension, and instead suggest that the MD network's engagement during language processing reflects effort associated with extraneous task demands.SIGNIFICANCE STATEMENT Domain-general executive processes, such as working memory and cognitive control, have long been implicated in language comprehension, including in neuroimaging studies that have reported activation in domain-general multiple demand (MD) regions for linguistic manipulations. However, much prior evidence has come from paradigms where language interpretation is accompanied by extraneous tasks. Using a large fMRI dataset (30 experiments/481 participants/678 sessions), we demonstrate that MD regions are engaged during language comprehension in the presence of task demands, but not during passive reading/listening, conditions that strongly activate the frontotemporal language network. These results present a fundamental challenge to proposals whereby linguistic computations, such as inhibiting irrelevant meanings, keeping representations active in working memory, or predicting upcoming elements, draw on domain-general executive resources.


Subject(s)
Brain Mapping/methods , Comprehension/physiology , Language , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Adolescent , Adult , Aged , Brain/diagnostic imaging , Brain/physiology , Executive Function/physiology , Female , Humans , Male , Middle Aged , Photic Stimulation/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL