Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Immunity ; 51(3): 479-490.e6, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31402259

ABSTRACT

Natural killer (NK) cells are cytotoxic type 1 innate lymphoid cells (ILCs) that defend against viruses and mediate anti-tumor responses, yet mechanisms controlling their development and function remain incompletely understood. We hypothesized that the abundantly expressed microRNA-142 (miR-142) is a critical regulator of type 1 ILC biology. Interleukin-15 (IL-15) signaling induced miR-142 expression, whereas global and ILC-specific miR-142-deficient mice exhibited a cell-intrinsic loss of NK cells. Death of NK cells resulted from diminished IL-15 receptor signaling within miR-142-deficient mice, likely via reduced suppressor of cytokine signaling-1 (Socs1) regulation by miR-142-5p. ILCs persisting in Mir142-/- mice demonstrated increased expression of the miR-142-3p target αV integrin, which supported their survival. Global miR-142-deficient mice exhibited an expansion of ILC1-like cells concurrent with increased transforming growth factor-ß (TGF-ß) signaling. Further, miR-142-deficient mice had reduced NK-cell-dependent function and increased susceptibility to murine cytomegalovirus (MCMV) infection. Thus, miR-142 critically integrates environmental cues for proper type 1 ILC homeostasis and defense against viral infection.


Subject(s)
Homeostasis/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , MicroRNAs/immunology , Animals , Cell Line , Female , HEK293 Cells , Humans , Killer Cells, Natural/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Muromegalovirus/immunology , NIH 3T3 Cells , Receptors, Interleukin-15/immunology , Signal Transduction/immunology , Suppressor of Cytokine Signaling Proteins/immunology , Transforming Growth Factor beta/immunology
3.
Eur J Immunol ; : e2451173, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39246120

ABSTRACT

Natural killer (NK) cells are innate lymphoid cells that protect a host from viral infections and malignancies. MicroRNA-146a (miR-146a) is an important regulator of immune function that is highly expressed in NK cells and is further upregulated during murine cytomegalovirus (MCMV) infection. Here we utilized mice with a global targeted deletion of miR-146a to understand its impact on the innate immune responses to MCMV infection. MiR-146a-/- mice were protected from lethal MCMV infection, which was intrinsic to the hematopoietic compartment based on bone marrow chimera experiments. NK cell depletion abrogated this protection, implicating NK cells as critical for the miR-146a-/- protection from MCMV. Surprisingly, NK cells from miR-146a-deficient mice were largely similar to control NK cells with respect to development, maturation, trafficking, and effector functions. However, miR-146a-/- mice had increased NK cell numbers and frequency of the most mature Stage IV (CD27-CD11b+) NK cells in the liver at baseline, enhanced STAT1 phosphorylation, and increased selective expansion of Ly49H+ NK cells and T cells during MCMV infection. This study demonstrates a critical role for miR-146a in the host response to MCMV, arising from mechanisms that include increased NK cell numbers and early T-cell expansion.

5.
Blood ; 141(8): 856-868, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36416736

ABSTRACT

Interest in adoptive cell therapy for treating cancer is exploding owing to early clinical successes of autologous chimeric antigen receptor (CAR) T lymphocyte therapy. However, limitations using T cells and autologous cell products are apparent as they (1) take weeks to generate, (2) utilize a 1:1 donor-to-patient model, (3) are expensive, and (4) are prone to heterogeneity and manufacturing failures. CAR T cells are also associated with significant toxicities, including cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and prolonged cytopenias. To overcome these issues, natural killer (NK) cells are being explored as an alternative cell source for allogeneic cell therapies. NK cells have an inherent ability to recognize cancers, mediate immune functions of killing and communication, and do not induce graft-versus-host disease, cytokine release syndrome, or immune effector cell-associated neurotoxicity syndrome. NK cells can be obtained from blood or cord blood or be derived from hematopoietic stem and progenitor cells or induced pluripotent stem cells, and can be expanded and cryopreserved for off-the-shelf availability. The first wave of point-of-care NK cell therapies led to the current allogeneic NK cell products being investigated in clinical trials with promising preliminary results. Basic advances in NK cell biology and cellular engineering have led to new translational strategies to block inhibition, enhance and broaden target cell recognition, optimize functional persistence, and provide stealth from patients' immunity. This review details NK cell biology, as well as NK cell product manufacturing, engineering, and combination therapies explored in the clinic leading to the next generation of potent, off-the-shelf cellular therapies for blood cancers.


Subject(s)
Hematopoietic Stem Cell Transplantation , Neoplasms , Humans , Immunotherapy, Adoptive/methods , Cytokine Release Syndrome , Killer Cells, Natural , Neoplasms/therapy
6.
Blood ; 141(26): 3153-3165, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37130030

ABSTRACT

T cells engineered to express chimeric antigen receptors (CARs) targeting CD19 have demonstrated impressive activity against relapsed or refractory B-cell cancers yet fail to induce durable remissions for nearly half of all patients treated. Enhancing the efficacy of this therapy requires detailed understanding of the molecular circuitry that restrains CAR-driven antitumor T-cell function. We developed and validated an in vitro model that drives T-cell dysfunction through chronic CAR activation and interrogated how CAR costimulatory domains, central components of CAR structure and function, contribute to T-cell failure. We found that chronic activation of CD28-based CARs results in activation of classical T-cell exhaustion programs and development of dysfunctional cells that bear the hallmarks of exhaustion. In contrast, 41BB-based CARs activate a divergent molecular program and direct differentiation of T cells into a novel cell state. Interrogation using CAR T cells from a patient with progressive lymphoma confirmed the activation of this novel program in a failing clinical product. Furthermore, we demonstrate that 41BB-dependent activation of the transcription factor FOXO3 is directly responsible for impairing CAR T-cell function. These findings identify that costimulatory domains are critical regulators of CAR-driven T-cell failure and that targeted interventions are required to overcome costimulation-dependent dysfunctional programs.


Subject(s)
Lymphoma , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Antigen, T-Cell/genetics , Immunotherapy, Adoptive/methods , T-Lymphocytes , Lymphoma/etiology , Antigens, CD19
7.
Cancer Immunol Immunother ; 73(9): 179, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960949

ABSTRACT

Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.


Subject(s)
Immunologic Memory , Killer Cells, Natural , Recombinant Fusion Proteins , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Animals , Recombinant Fusion Proteins/genetics , Mice , Cell- and Tissue-Based Therapy/methods , Immunotherapy, Adoptive/methods , Interleukin-15/metabolism
8.
Blood ; 139(13): 1999-2010, 2022 03 31.
Article in English | MEDLINE | ID: mdl-34780623

ABSTRACT

New therapies are needed for patients with relapsed/refractory (rel/ref) diffuse large B-cell lymphoma (DLBCL) who do not benefit from or are ineligible for stem cell transplant and chimeric antigen receptor therapy. The CD30-targeted, antibody-drug conjugate brentuximab vedotin (BV) and the immunomodulator lenalidomide (Len) have demonstrated promising activity as single agents in this population. We report the results of a phase 1/dose expansion trial evaluating the combination of BV/Len in rel/ref DLBCL. Thirty-seven patients received BV every 21 days, with Len administered continuously for a maximum of 16 cycles. The maximum tolerated dose of the combination was 1.2 mg/kg BV with 20 mg/d Len. BV/Len was well tolerated with a toxicity profile consistent with their use as single agents. Most patients required granulocyte colony-stimulating factor support because of neutropenia. The overall response rate was 57% (95% CI, 39.6-72.5), complete response rate, 35% (95% CI, 20.7-52.6); median duration of response, 13.1 months; median progression-free survival, 10.2 months (95% CI, 5.5-13.7); and median overall survival, 14.3 months (95% CI, 10.2-35.6). Response rates were highest in patients with CD30+ DLBCL (73%), but they did not differ according to cell of origin (P = .96). NK cell expansion and phenotypic changes in CD8+ T-cell subsets in nonresponders were identified by mass cytometry. BV/Len represents a potential treatment option for patients with rel/ref DLBCL. This combination is being further explored in a phase 3 study (registered on https://clinicaltrials.org as NCT04404283). This trial was registered on https://clinicaltrials.gov as NCT02086604.


Subject(s)
Brentuximab Vedotin , Lenalidomide , Lymphoma, Large B-Cell, Diffuse , Brentuximab Vedotin/adverse effects , Humans , Immunoconjugates/adverse effects , Lenalidomide/adverse effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Neoplasm Recurrence, Local/drug therapy , Treatment Outcome
9.
Blood ; 139(11): 1670-1683, 2022 03 17.
Article in English | MEDLINE | ID: mdl-34871371

ABSTRACT

Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Child , Hematopoietic Stem Cell Transplantation/methods , Humans , Killer Cells, Natural , Leukemia, Myeloid, Acute/therapy , Transplantation, Homologous , Unrelated Donors
10.
Blood ; 139(8): 1177-1183, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34797911

ABSTRACT

Natural killer (NK) cells are a promising alternative to T cells for cancer immunotherapy. Adoptive therapies with allogeneic, cytokine-activated NK cells are being investigated in clinical trials. However, the optimal cytokine support after adoptive transfer to promote NK cell expansion, and persistence remains unclear. Correlative studies from 2 independent clinical trial cohorts treated with major histocompatibility complex-haploidentical NK cell therapy for relapsed/refractory acute myeloid leukemia revealed that cytokine support by systemic interleukin-15 (IL-15; N-803) resulted in reduced clinical activity, compared with IL-2. We hypothesized that the mechanism responsible was IL-15/N-803 promoting recipient CD8 T-cell activation that in turn accelerated donor NK cell rejection. This idea was supported by increased proliferating CD8+ T-cell numbers in patients treated with IL-15/N-803, compared with IL-2. Moreover, mixed lymphocyte reactions showed that IL-15/N-803 enhanced responder CD8 T-cell activation and proliferation, compared with IL-2 alone. Additionally, IL-15/N-803 accelerated the ability of responding T cells to kill stimulator-derived memory-like NK cells, demonstrating that additional IL-15 can hasten donor NK cell elimination. Thus, systemic IL-15 used to support allogeneic cell therapy may paradoxically limit their therapeutic window of opportunity and clinical activity. This study indicates that stimulating patient CD8 T-cell allo-rejection responses may critically limit allogeneic cellular therapy supported with IL-15. This trial was registered at www.clinicaltrials.gov as #NCT03050216 and #NCT01898793.


Subject(s)
Antineoplastic Agents/administration & dosage , CD8-Positive T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Interleukin-15/administration & dosage , Killer Cells, Natural/transplantation , Leukemia, Myeloid, Acute , Recombinant Fusion Proteins/administration & dosage , Allogeneic Cells/immunology , Female , Humans , Interleukin-15/immunology , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Male
11.
Immunity ; 43(2): 218-20, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26287678

ABSTRACT

The molecular mechanisms important to generate innate natural killer cell "memory" are poorly understood. In this issue of Immunity, O'Sullivan et al. (2015) demonstrate that mitophagy plays a critical role in natural killer cell memory formation following viral infection.


Subject(s)
Herpesviridae Infections/immunology , Killer Cells, Natural/immunology , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitophagy/genetics , Muromegalovirus/immunology , Animals
12.
Blood ; 136(20): 2308-2318, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32614951

ABSTRACT

Natural killer (NK) cells are a promising cellular immunotherapy for cancer. Cytokine-induced memory-like (ML) NK cells differentiate after activation with interleukin-12 (IL-12), IL-15, and IL-18, exhibit potent antitumor responses, and safely induce complete remissions in patients with leukemia. However, many cancers are not fully recognized via NK cell receptors. Chimeric antigen receptors (CARs) have been used to enhance tumor-specific recognition by effector lymphocytes. We hypothesized that ML differentiation and CAR engineering would result in complementary improvements in NK cell responses against NK-resistant cancers. To test this idea, peripheral blood ML NK cells were modified to express an anti-CD19 CAR (19-CAR-ML), which displayed significantly increased interferon γ production, degranulation, and specific killing against NK-resistant lymphoma lines and primary targets compared with nonspecific control CAR-ML NK cells or conventional CAR NK cells. The 19-CAR and ML responses were synergistic and CAR specific and required immunoreceptor tyrosine-based activation motif signaling. Furthermore, 19-CAR-ML NK cells generated from lymphoma patients exhibited improved responses against their autologous lymphomas. 19-CAR-ML NK cells controlled lymphoma burden in vivo and improved survival in human xenograft models. Thus, CAR engineering of ML NK cells enhanced responses against resistant cancers and warrants further investigation, with the potential to broaden ML NK cell recognition against a variety of NK cell-resistant tumors.


Subject(s)
Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Lymphoma/immunology , Receptors, Chimeric Antigen , Animals , Cytotoxicity, Immunologic/immunology , Humans , Mice , Xenograft Model Antitumor Assays
13.
Biol Blood Marrow Transplant ; 26(12): 2223-2228, 2020 12.
Article in English | MEDLINE | ID: mdl-32829079

ABSTRACT

For patients with relapsed or refractory classical Hodgkin lymphoma (cHL), salvage chemotherapy followed by consolidation with autologous stem cell transplant (ASCT) remains the standard of care. Even with this aggressive treatment strategy, 5-year progression-free survival is ≤50%, and there remains interest in maintenance strategies to improve long-term disease-free survival. Lenalidomide is an immunomodulatory agent with demonstrated activity in multiple subtypes of lymphoma including cHL, and has also been shown to improve both progression-free and overall survival as maintenance therapy after ASCT in multiple myeloma. This multicenter study evaluated maintenance lenalidomide after ASCT for patients with cHL. Patients were enrolled 60 to 90 days post-transplant and received oral lenalidomide on days 1 to 28 of 28-day cycles for a maximum of 18 cycles. Lenalidomide was started at 15 mg daily and increased to maximum of 25 mg daily if tolerated. The primary objective of this study was to assess the feasibility of this regimen, with a goal <30% rate of discontinuation at or before cycle 12 for drug-related reasons. Twenty-seven patients were enrolled and 26 received at least 1 dose of lenalidomide. With a median follow-up of 51.3 months (range, 12.2 to 76.2 months), 23 of 26 patients were alive. Median event-free survival was 9.4 months and median progression-free survival had not been reached, with 17 of 26 patients (65.4%) remaining in remission at last follow-up. Excluding 4 patients who discontinued therapy for progression and 2 who discontinued due to noncompliance, the discontinuation rate at or before cycle 12 was 52%. Treatment was complicated by a high frequency of hematologic adverse events, with 15 patients (58%) experiencing grade 3 to 4 hematologic toxicity and 5 (19%) experiencing grade 4 hematologic toxicity. We conclude that the regimen of maintenance lenalidomide explored in this study is not feasible for patients with cHL immediately following ASCT. An alternative lenalidomide dose or schedule may be better tolerated following ASCT for patients with relapsed or refractory cHL.


Subject(s)
Hodgkin Disease , Multiple Myeloma , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Disease-Free Survival , Hodgkin Disease/drug therapy , Humans , Lenalidomide/therapeutic use , Multiple Myeloma/drug therapy , Pilot Projects , Transplantation, Autologous , Treatment Outcome
14.
Blood ; 131(2): 182-190, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29074501

ABSTRACT

Most patients with follicular lymphoma (FL) experience multiple relapses necessitating subsequent lines of therapy. Ibrutinib, a Bruton tyrosine kinase (BTK) inhibitor approved for the treatment of several B-cell malignancies, showed promising activity in FL in a phase 1 study. We report the results of a phase 2 trial evaluating ibrutinib in recurrent FL. Forty patients with recurrent FL were treated with ibrutinib 560 mg/d until progression or intolerance. The primary end point was overall response rate (ORR). Exploratory analyses included correlations of outcome with recurrent mutations identified in a cancer gene panel that used next-generation sequencing in pretreatment biopsies from 31 patients and results of early interim positron emission tomography/computed tomography scans in 20 patients. ORR was 37.5% with a complete response rate of 12.5%, median progression-free survival (PFS) of 14 months, and 2-year PFS of 20.4%. Response rates were significantly higher among patients whose disease was sensitive to rituximab (52.6%) compared with those who were rituximab refractory (16.7%) (P = .04). CARD11 mutations were present in 16% of patients (5 of 31) and predicted resistance to ibrutinib with only wild-type patients responding (P = .002). Maximum standardized uptake value at cycle 1 day 8 correlated with response and PFS. Ibrutinib was well-tolerated with a toxicity profile similar to labeled indications. Ibrutinib is a well-tolerated treatment with modest activity in relapsed FL. Evaluation of BTK inhibitors in earlier lines of therapy may be warranted on the basis of improved response rates in rituximab-sensitive disease. Somatic mutations such as CARD11 may have an impact on response to ibrutinib, may inform clinical decisions, and should be evaluated in larger data sets. This trial was registered at www.clinicaltrials.gov as #NCT01849263.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Lymphoma, Follicular/drug therapy , Neoplasm Recurrence, Local/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Adenine/analogs & derivatives , Aged , Aged, 80 and over , CARD Signaling Adaptor Proteins/genetics , Disease Progression , Female , Guanylate Cyclase/genetics , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Male , Middle Aged , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Piperidines , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Pyrazoles/administration & dosage , Pyrazoles/adverse effects , Pyrimidines/administration & dosage , Pyrimidines/adverse effects , Treatment Outcome
15.
Blood ; 131(23): 2515-2527, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29463563

ABSTRACT

New therapies for patients with hematologic malignancies who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) are needed. Interleukin 15 (IL-15) is a cytokine that stimulates CD8+ T-cell and natural killer (NK) cell antitumor responses, and we hypothesized this cytokine may augment antileukemia/antilymphoma immunity in vivo. To test this, we performed a first-in-human multicenter phase 1 trial of the IL-15 superagonist complex ALT-803 in patients who relapsed >60 days after allo-HCT. ALT-803 was administered to 33 patients via the IV or subcutaneous (SQ) routes once weekly for 4 doses (dose levels of 1, 3, 6, and 10 µg/kg). ALT-803 was well tolerated, and no dose-limiting toxicities or treatment-emergent graft-versus-host disease requiring systemic therapy was observed in this clinical setting. Adverse events following IV administration included constitutional symptoms temporally related to increased serum IL-6 and interferon-γ. To mitigate these effects, the SQ route was tested. SQ delivery resulted in self-limited injection site rashes infiltrated with lymphocytes without acute constitutional symptoms. Pharmacokinetic analysis revealed prolonged (>96 hour) serum concentrations following SQ, but not IV, injection. ALT-803 stimulated the activation, proliferation, and expansion of NK cells and CD8+ T cells without increasing regulatory T cells. Responses were observed in 19% of evaluable patients, including 1 complete remission lasting 7 months. Thus, ALT-803 is a safe, well-tolerated agent that significantly increased NK and CD8+ T cell numbers and function. This immunostimulatory IL-15 superagonist warrants further investigation to augment antitumor immunity alone and combined with other immunotherapies. This trial was registered at www.clinicaltrials.gov as #NCT01885897.


Subject(s)
Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation , Interleukin-15/agonists , Neoplasm Recurrence, Local/drug therapy , Proteins/therapeutic use , Adult , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , Hematologic Neoplasms/immunology , Humans , Interleukin-15/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Male , Middle Aged , Neoplasm Recurrence, Local/immunology , Proteins/adverse effects , Proteins/pharmacokinetics , Recombinant Fusion Proteins , Young Adult
16.
N Engl J Med ; 375(21): 2023-2036, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27959731

ABSTRACT

BACKGROUND: The molecular determinants of clinical responses to decitabine therapy in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS) are unclear. METHODS: We enrolled 84 adult patients with AML or MDS in a single-institution trial of decitabine to identify somatic mutations and their relationships to clinical responses. Decitabine was administered at a dose of 20 mg per square meter of body-surface area per day for 10 consecutive days in monthly cycles. We performed enhanced exome or gene-panel sequencing in 67 of these patients and serial sequencing at multiple time points to evaluate patterns of mutation clearance in 54 patients. An extension cohort included 32 additional patients who received decitabine in different protocols. RESULTS: Of the 116 patients, 53 (46%) had bone marrow blast clearance (<5% blasts). Response rates were higher among patients with an unfavorable-risk cytogenetic profile than among patients with an intermediate-risk or favorable-risk cytogenetic profile (29 of 43 patients [67%] vs. 24 of 71 patients [34%], P<0.001) and among patients with TP53 mutations than among patients with wild-type TP53 (21 of 21 [100%] vs. 32 of 78 [41%], P<0.001). Previous studies have consistently shown that patients with an unfavorable-risk cytogenetic profile and TP53 mutations who receive conventional chemotherapy have poor outcomes. However, in this study of 10-day courses of decitabine, neither of these risk factors was associated with a lower rate of overall survival than the rate of survival among study patients with intermediate-risk cytogenetic profiles. CONCLUSIONS: Patients with AML and MDS who had cytogenetic abnormalities associated with unfavorable risk, TP53 mutations, or both had favorable clinical responses and robust (but incomplete) mutation clearance after receiving serial 10-day courses of decitabine. Although these responses were not durable, they resulted in rates of overall survival that were similar to those among patients with AML who had an intermediate-risk cytogenetic profile and who also received serial 10-day courses of decitabine. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT01687400 .).


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Azacitidine/analogs & derivatives , Bone Marrow/pathology , Leukemia, Myeloid, Acute/drug therapy , Mutation , Myelodysplastic Syndromes/drug therapy , Tumor Suppressor Protein p53/genetics , 5-Methylcytosine/analysis , Adult , Aged , Aged, 80 and over , Antimetabolites, Antineoplastic/adverse effects , Azacitidine/administration & dosage , Azacitidine/adverse effects , Biomarkers, Tumor/analysis , Bone Marrow/chemistry , Decitabine , Exome , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/mortality , Prospective Studies , Risk Factors , Survival Rate
17.
Blood ; 129(4): 473-483, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28064239

ABSTRACT

Follicular lymphoma (FL) is the most common form of indolent non-Hodgkin lymphoma, yet it remains only partially characterized at the genomic level. To improve our understanding of the genetic underpinnings of this incurable and clinically heterogeneous disease, whole-exome sequencing was performed on tumor/normal pairs from a discovery cohort of 24 patients with FL. Using these data and mutations identified in other B-cell malignancies, 1716 genes were sequenced in 113 FL tumor samples from 105 primarily treatment-naive individuals. We identified 39 genes that were mutated significantly above background mutation rates. CREBBP mutations were associated with inferior PFS. In contrast, mutations in previously unreported HVCN1, a voltage-gated proton channel-encoding gene and B-cell receptor signaling modulator, were associated with improved PFS. In total, 47 (44.8%) patients harbor mutations in the interconnected B-cell receptor (BCR) and CXCR4 signaling pathways. Histone gene mutations were more frequent than previously reported (identified in 43.8% of patients) and often co-occurred (17.1% of patients). A novel, recurrent hotspot was identified at a posttranslationally modified residue in the histone H2B family. This study expands the number of mutated genes described in several known signaling pathways and complexes involved in lymphoma pathogenesis (BCR, Notch, SWitch/sucrose nonfermentable (SWI/SNF), vacuolar ATPases) and identified novel recurrent mutations (EGR1/2, POU2AF1, BTK, ZNF608, HVCN1) that require further investigation in the context of FL biology, prognosis, and treatment.


Subject(s)
CREB-Binding Protein/genetics , Gene Expression Regulation, Neoplastic , Ion Channels/genetics , Lymphoma, Follicular/genetics , Receptors, Antigen, B-Cell/genetics , Signal Transduction/genetics , Adult , Agammaglobulinaemia Tyrosine Kinase , Aged , Aged, 80 and over , CREB-Binding Protein/metabolism , Disease-Free Survival , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Female , Gene Expression Profiling , Histones/genetics , Histones/metabolism , Humans , Ion Channels/metabolism , Lymphoma, Follicular/diagnosis , Lymphoma, Follicular/mortality , Lymphoma, Follicular/pathology , Male , Middle Aged , Mutation , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Receptors, Notch/genetics , Receptors, Notch/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
19.
Trends Immunol ; 37(12): 877-888, 2016 12.
Article in English | MEDLINE | ID: mdl-27773685

ABSTRACT

Due to their ability to kill cancer cells and produce proinflammatory cytokines, natural killer (NK) cells have long been of clinical interest for their antitumor properties. The recent discovery of NK cell memory demonstrates that NK cell functions, and potentially antitumor responses, can be enhanced long term. Following nonspecific activation with the cytokines IL-12, IL-15, and IL-18 or in response to antigens or cytomegalovirus (CMV), human and mouse NK cells exhibit stable, enhanced functional responses with phenotypic and molecular changes. Here we review mechanisms driving the differentiation of NK cell memory-like properties, evidence for antitumor activity, and the challenges and opportunities in harnessing memory-like NK cells for cancer immunotherapy.


Subject(s)
Cancer Vaccines/immunology , Immunologic Memory , Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Neoplasms/therapy , Animals , Cell Differentiation , Cytokines/metabolism , Cytomegalovirus/immunology , Cytotoxicity, Immunologic , Humans , Inflammation Mediators/metabolism , Killer Cells, Natural/transplantation , Lymphocyte Activation , Lymphocyte Subsets/transplantation , Mice , Neoplasms/immunology
20.
Trends Immunol ; 37(6): 351-353, 2016 06.
Article in English | MEDLINE | ID: mdl-27179621

ABSTRACT

Paradigm-shifting studies have identified NKG2C(+) adaptive natural killer (NK) cells in individuals infected with cytomegalovirus. Recently in Cell Reports, Liu et al. demonstrate that NKG2C(-/-) HCMV(+) individuals also generate adaptive NK cells, and reveal CD2 as a major co-stimulatory receptor for these NK cells specialized to respond via FcγRIIIa/CD16.


Subject(s)
Adaptive Immunity , CD2 Antigens/metabolism , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Receptors, IgG/metabolism , Humans , Immunity, Innate , Immunologic Memory , Interleukin-12/metabolism , Interleukin-15/metabolism , Interleukin-18/metabolism , Lymphocyte Activation
SELECTION OF CITATIONS
SEARCH DETAIL