Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Otolaryngol ; 45(4): 104298, 2024.
Article in English | MEDLINE | ID: mdl-38640809

ABSTRACT

PURPOSE: To investigate glycoprotein nonmetastatic melanoma protein B (GPNMB) and vascular endothelial growth factor (VEGF) as potential fluorescent imaging markers by comparing their protein expression to epidermal growth factor receptor (EGFR). MATERIALS AND METHODS: Thirty-eight paired samples of untreated head and neck squamous cell carcinoma (HNSCC) primary tumours (PT) and corresponding synchronous lymph node metastases (LNM) were selected. After immunohistochemical staining, expression was assessed and compared by the percentage of positive tumour cells. Data were analysed using the Mann-Whitney test, effect sizes (ESr) and Spearman's correlation coefficient (r). RESULTS: GPNMB expression was observed in 100 % of PT, and median 80 % (range 5-100 %) of tumour cells, VEGF in 92 % and 60 % (0-100 %), EGFR in 87 % and 60 % (0-100 %) respectively. In corresponding LNM, GPNMB expression was observed in 100 % of LNM and median 90 % (20-100 %) of tumour cells, VEGF in 87 % and 65 % (0-100 %), and EGFR in 84 % and 35 % (0-100 %). A positive correlation was found between expression in PT and LNM for GPNMB (r = 0.548) and EGFR (r = 0.618) (p < 0.001), but not for VEGF (r = -0.020; p = 0.905). GPNMB expression was present in a higher percentage of tumour cells compared to EGFR in PT (p = 0.015, ESr = -0.320) and in LNM (p < 0.001, ESr = -0.478), while VEGF was not (p = 1.00, ESr = -0.109 and - 0.152, respectively). CONCLUSION: GPNMB expression is higher than EGFR in untreated HNSCC PT and corresponding LNM, while VEGF expression is comparable to EGFR. GPNMB is a promising target for fluorescent imaging in HNSCC.


Subject(s)
Biomarkers, Tumor , ErbB Receptors , Head and Neck Neoplasms , Lymphatic Metastasis , Membrane Glycoproteins , Squamous Cell Carcinoma of Head and Neck , Vascular Endothelial Growth Factor A , Humans , Membrane Glycoproteins/metabolism , Vascular Endothelial Growth Factor A/metabolism , ErbB Receptors/metabolism , Male , Female , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/diagnostic imaging , Middle Aged , Aged , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Adult , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/diagnostic imaging , Immunohistochemistry , Aged, 80 and over
2.
Allergy ; 78(10): 2623-2643, 2023 10.
Article in English | MEDLINE | ID: mdl-37584170

ABSTRACT

The field of medicine is witnessing an exponential growth of interest in artificial intelligence (AI), which enables new research questions and the analysis of larger and new types of data. Nevertheless, applications that go beyond proof of concepts and deliver clinical value remain rare, especially in the field of allergy. This narrative review provides a fundamental understanding of the core concepts of AI and critically discusses its limitations and open challenges, such as data availability and bias, along with potential directions to surmount them. We provide a conceptual framework to structure AI applications within this field and discuss forefront case examples. Most of these applications of AI and machine learning in allergy concern supervised learning and unsupervised clustering, with a strong emphasis on diagnosis and subtyping. A perspective is shared on guidelines for good AI practice to guide readers in applying it effectively and safely, along with prospects of field advancement and initiatives to increase clinical impact. We anticipate that AI can further deepen our knowledge of disease mechanisms and contribute to precision medicine in allergy.


Subject(s)
Artificial Intelligence , Hypersensitivity , Humans , Machine Learning , Precision Medicine , Hypersensitivity/diagnosis , Hypersensitivity/therapy
3.
Article in English | MEDLINE | ID: mdl-38017325

ABSTRACT

PURPOSE: Multifocal disease in PTC is associated with an increased recurrence rate. Multifocal disease (MD) is underdiagnosed with the current gold standard of pre-operative ultrasound staging. Here, we evaluate the use of EMI-137 targeted molecular fluorescence-guided imaging (MFGI) and spectroscopy as a tool for the intra-operative detection of uni- and multifocal papillary thyroid cancer (PTC) aiming to improve disease staging and treatment selection. METHODS: A phase-1 study (NCT03470259) with EMI-137 was conducted to evaluate the possibility of detecting PTC using MFGI and quantitative fiber-optic spectroscopy. RESULTS: Fourteen patients underwent hemi- or total thyroidectomy (TTX) after administration of 0.09 mg/kg (n = 1), 0.13 mg/kg (n = 8), or 0.18 mg/kg (n = 5) EMI-137. Both MFGI and spectroscopy could differentiate PTC from healthy thyroid tissue after administration of EMI-137, which binds selectively to MET in PTC. 0.13 mg/kg was the lowest dosage EMI-137 that allowed for differentiation between PTC and healthy thyroid tissue. The smallest PTC focus detected by MFGI was 1.4 mm. MFGI restaged 80% of patients from unifocal to multifocal PTC compared to ultrasound. CONCLUSION: EMI-137-guided MFGI and spectroscopy can be used to detect multifocal PTC. This may improve disease staging and treatment selection between hemi- and total thyroidectomy by better differentiation between unifocal and multifocal disease. TRIAL REGISTRATION: NCT03470259.

4.
BMC Cancer ; 23(1): 166, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36805683

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of melanoma and other cancers. However, no reliable biomarker of survival or response has entered the clinic to identify those patients with melanoma who are most likely to benefit from ICIs. Glycosylation affects proteins and lipids' structure and functions. Tumours are characterized by aberrant glycosylation which may contribute to their progression and hinder an effective antitumour immune response. METHODS: We aim at identifying novel glyco-markers of response and survival by leveraging the N-glycome of total serum proteins collected in 88 ICI-naive patients with advanced melanoma from two European countries. Samples were collected before and during ICI treatment. RESULTS: We observe that responders to ICIs present with a pre-treatment N-glycome profile significantly shifted towards higher abundancy of low-branched structures containing lower abundances of antennary fucose, and that this profile is positively associated with survival and a better predictor of response than clinical variables alone. CONCLUSION: While changes in serum protein glycosylation have been previously implicated in a pro-metastatic melanoma behaviour, we show here that they are also associated with response to ICI, opening new avenues for the stratification of patients and the design of adjunct therapies aiming at improving immune response.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Humans , Melanoma/drug therapy , Ambulatory Care Facilities , Europe , Polysaccharides
5.
Eur J Nucl Med Mol Imaging ; 49(10): 3557-3570, 2022 08.
Article in English | MEDLINE | ID: mdl-35389070

ABSTRACT

PURPOSE: Patients undergoing prophylactic central compartment dissection (PCLND) for papillary thyroid cancer (PTC) are often overtreated. This study aimed to determine if molecular fluorescence-guided imaging (MFGI) and spectroscopy can be useful for detecting PTC nodal metastases (NM) and to identify negative central compartments intraoperatively. METHODS: We used a data-driven prioritization strategy based on transcriptomic profiles of 97 primary PTCs and 80 normal thyroid tissues (NTT) to identify tumor-specific antigens for a clinically available near-infrared fluorescent tracer. Protein expression of the top prioritized antigen was immunohistochemically validated with a tissue microarray containing primary PTC (n = 741) and NTT (n = 108). Staining intensity was correlated with 10-year locoregional recurrence-free survival (LRFS). A phase 1 study (NCT03470259) with EMI-137, targeting MET, was conducted to evaluate safety, optimal dosage for detecting PTC NM with MFGI, feasibility of NM detection with quantitative fiber-optic spectroscopy, and selective binding of EMI-137 for MET. RESULTS: MET was selected as the most promising antigen. A worse LRFS was observed in patients with positive versus negative MET staining (81.9% versus 93.2%; p = 0.02). In 19 patients, no adverse events related to EMI-137 occurred. 0.13 mg/kg EMI-137 was selected as optimal dosage for differentiating NM from normal lymph nodes using MFGI (p < 0.0001) and spectroscopy (p < 0.0001). MFGI identified 5/19 levels (26.3%) without NM. EMI-137 binds selectively to MET. CONCLUSION: MET is overexpressed in PTC and associated with increased locoregional recurrence rates. Perioperative administration of EMI-137 is safe and facilitates NM detection using MFGI and spectroscopy, potentially reducing the number of negative PCLNDs with more than 25%. CLINICAL TRIAL REGISTRATION: NCT03470259.


Subject(s)
Carcinoma, Papillary , Carcinoma , Thyroid Neoplasms , Carcinoma/pathology , Carcinoma, Papillary/diagnostic imaging , Humans , Lymph Nodes/pathology , Neoplasm Recurrence, Local/pathology , Spectrum Analysis , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Neoplasms/pathology , Thyroidectomy
6.
Lancet Oncol ; 22(12): 1681-1691, 2021 12.
Article in English | MEDLINE | ID: mdl-34767759

ABSTRACT

BACKGROUND: Patients with cancer have an increased risk of complications from SARS-CoV-2 infection. Vaccination to prevent COVID-19 is recommended, but data on the immunogenicity and safety of COVID-19 vaccines for patients with solid tumours receiving systemic cancer treatment are scarce. Therefore, we aimed to assess the impact of immunotherapy, chemotherapy, and chemoimmunotherapy on the immunogenicity and safety of the mRNA-1273 (Moderna Biotech, Madrid, Spain) COVID-19 vaccine as part of the Vaccination Against COVID in Cancer (VOICE) trial. METHODS: This prospective, multicentre, non-inferiority trial was done across three centres in the Netherlands. Individuals aged 18 years or older with a life expectancy of more than 12 months were enrolled into four cohorts: individuals without cancer (cohort A [control cohort]), and patients with solid tumours, regardless of stage and histology, treated with immunotherapy (cohort B), chemotherapy (cohort C), or chemoimmunotherapy (cohort D). Participants received two mRNA-1273 vaccinations of 100 µg in 0·5 mL intramuscularly, 28 days apart. The primary endpoint, analysed per protocol (excluding patients with a positive baseline sample [>10 binding antibody units (BAU)/mL], indicating previous SARS-CoV-2 infection), was defined as the SARS-CoV-2 spike S1-specific IgG serum antibody response (ie, SARS-CoV-2-binding antibody concentration of >10 BAU/mL) 28 days after the second vaccination. For the primary endpoint analysis, a non-inferiority design with a margin of 10% was used. We also assessed adverse events in all patients who received at least one vaccination, and recorded solicited adverse events in participants who received at least one vaccination but excluding those who already had seroconversion (>10 BAU/mL) at baseline. This study is ongoing and is registered with ClinicalTrials.gov, NCT04715438. FINDINGS: Between Feb 17 and March 12, 2021, 791 participants were enrolled and followed up for a median of 122 days (IQR 118 to 128). A SARS-CoV-2-binding antibody response was found in 240 (100%; 95% CI 98 to 100) of 240 evaluable participants in cohort A, 130 (99%; 96 to >99) of 131 evaluable patients in cohort B, 223 (97%; 94 to 99) of 229 evaluable patients in cohort C, and 143 (100%; 97 to 100) of 143 evaluable patients in cohort D. The SARS-CoV-2-binding antibody response in each patient cohort was non-inferior compared with cohort A. No new safety signals were observed. Grade 3 or worse serious adverse events occurred in no participants in cohort A, three (2%) of 137 patients in cohort B, six (2%) of 244 patients in cohort C, and one (1%) of 163 patients in cohort D, with four events (two of fever, and one each of diarrhoea and febrile neutropenia) potentially related to the vaccination. There were no vaccine-related deaths. INTERPRETATION: Most patients with cancer develop, while receiving chemotherapy, immunotherapy, or both for a solid tumour, an adequate antibody response to vaccination with the mRNA-1273 COVID-19 vaccine. The vaccine is also safe in these patients. The minority of patients with an inadequate response after two vaccinations might benefit from a third vaccination. FUNDING: ZonMw, The Netherlands Organisation for Health Research and Development.


Subject(s)
2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/immunology , Antineoplastic Agents/immunology , Immunotherapy , Neoplasms/therapy , Vaccination/adverse effects , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Aged , Antibodies, Viral/blood , Antineoplastic Agents/therapeutic use , COVID-19/prevention & control , Cohort Studies , Combined Modality Therapy , Female , Humans , Immunogenicity, Vaccine , Immunomodulation , Injections, Intramuscular , Interferon-gamma/metabolism , Male , Middle Aged , Neoplasms/immunology , Netherlands , Prospective Studies , SARS-CoV-2/immunology , Surveys and Questionnaires
7.
Cancer Metastasis Rev ; 39(3): 999-1013, 2020 09.
Article in English | MEDLINE | ID: mdl-32367253

ABSTRACT

Response evaluation for cancer treatment consists primarily of clinical and radiological assessments. In addition, a limited number of serum biomarkers that assess treatment response are available for a small subset of malignancies. Through recent technological innovations, new methods for measuring tumor burden and treatment response are becoming available. By utilization of highly sensitive techniques, tumor-specific mutations in circulating DNA can be detected and circulating tumor DNA (ctDNA) can be quantified. These so-called liquid biopsies provide both molecular information about the genomic composition of the tumor and opportunities to evaluate tumor response during therapy. Quantification of tumor-specific mutations in plasma correlates well with tumor burden. Moreover, with liquid biopsies, it is also possible to detect mutations causing secondary resistance during treatment. This review focuses on the clinical utility of ctDNA as a response and follow-up marker in patients with non-small cell lung cancer, melanoma, colorectal cancer, and breast cancer. Relevant studies were retrieved from a literature search using PubMed database. An overview of the available literature is provided and the relevance of ctDNA as a response marker in anti-cancer therapy for clinical practice is discussed. We conclude that the use of plasma-derived ctDNA is a promising tool for treatment decision-making based on predictive testing, detection of resistance mechanisms, and monitoring tumor response. Necessary steps for translation to daily practice and future perspectives are discussed.


Subject(s)
Circulating Tumor DNA/blood , Neoplasms/genetics , Neoplasms/therapy , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Humans , Liquid Biopsy , Mutation , Neoplasms/blood , Neoplasms/pathology , Predictive Value of Tests
8.
Pharmacogenomics J ; 21(2): 152-164, 2021 04.
Article in English | MEDLINE | ID: mdl-33011741

ABSTRACT

Genetic variation may mediate the increased risk of cardiovascular disease (CVD) in chemotherapy-treated testicular cancer (TC) patients compared to the general population. Involved single nucleotide polymorphisms (SNPs) might differ from known CVD-associated SNPs in the general population. We performed an explorative genome-wide association study (GWAS) in TC patients. TC patients treated with platinum-based chemotherapy between 1977 and 2011, age ≤55 years at diagnosis, and ≥3 years relapse-free follow-up were genotyped. Association between SNPs and CVD occurrence during treatment or follow-up was analyzed. Data-driven Expression Prioritized Integration for Complex Trait (DEPICT) provided insight into enriched gene sets, i.e., biological themes. During a median follow-up of 11 years (range 3-37), CVD occurred in 53 (14%) of 375 genotyped patients. Based on 179 SNPs associated at p ≤ 0.001, 141 independent genomic loci associated with CVD occurrence. Subsequent, DEPICT found ten biological themes, with the RAC2/RAC3 network (linked to endothelial activation) as the most prominent theme. Biology of this network was illustrated in a TC cohort (n = 60) by increased circulating endothelial cells during chemotherapy. In conclusion, the ten observed biological themes highlight possible pathways involved in CVD in chemotherapy-treated TC patients. Insight in the genetic susceptibility to CVD in TC patients can aid future intervention strategies.


Subject(s)
Antineoplastic Agents/therapeutic use , Cardiovascular Diseases/genetics , Neoplasms, Germ Cell and Embryonal/drug therapy , Neoplasms, Germ Cell and Embryonal/genetics , Organoplatinum Compounds/therapeutic use , Testicular Neoplasms/drug therapy , Testicular Neoplasms/genetics , Adolescent , Adult , Cohort Studies , Endothelial Cells/drug effects , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Young Adult
9.
Nature ; 518(7538): 187-196, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25673412

ABSTRACT

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.


Subject(s)
Adipose Tissue/metabolism , Body Fat Distribution , Genome-Wide Association Study , Insulin/metabolism , Quantitative Trait Loci/genetics , Adipocytes/metabolism , Adipogenesis/genetics , Age Factors , Body Mass Index , Epigenesis, Genetic , Europe/ethnology , Female , Genome, Human/genetics , Humans , Insulin Resistance/genetics , Male , Models, Biological , Neovascularization, Physiologic/genetics , Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Racial Groups/genetics , Sex Characteristics , Transcription, Genetic/genetics , Waist-Hip Ratio
10.
Nature ; 518(7538): 197-206, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25673413

ABSTRACT

Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.


Subject(s)
Body Mass Index , Genome-Wide Association Study , Obesity/genetics , Obesity/metabolism , Adipogenesis/genetics , Adiposity/genetics , Age Factors , Energy Metabolism/genetics , Europe/ethnology , Female , Genetic Predisposition to Disease/genetics , Glutamic Acid/metabolism , Humans , Insulin/metabolism , Insulin Secretion , Male , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Racial Groups/genetics , Synapses/metabolism
11.
Int J Mol Sci ; 22(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502178

ABSTRACT

Dysplasia and intramucosal esophageal squamous cell carcinoma (ESCC) frequently go unnoticed with white-light endoscopy and, therefore, progress to invasive tumors. If suitable targets are available, fluorescence molecular endoscopy might be promising to improve early detection. Microarray expression data of patient-derived normal esophagus (n = 120) and ESCC samples (n = 118) were analyzed by functional genomic mRNA (FGmRNA) profiling to predict target upregulation on protein levels. The predicted top 60 upregulated genes were prioritized based on literature and immunohistochemistry (IHC) validation to select the most promising targets for fluorescent imaging. By IHC, GLUT1 showed significantly higher expression in ESCC tissue (30 patients) compared to the normal esophagus adjacent to the tumor (27 patients) (p < 0.001). Ex vivo imaging of GLUT1 with the 2-DG 800CW tracer showed that the mean fluorescence intensity in ESCC (n = 17) and high-grade dysplasia (HGD, n = 13) is higher (p < 0.05) compared to that in low-grade dysplasia (LGD) (n = 7) and to the normal esophagus adjacent to the tumor (n = 5). The sensitivity and specificity of 2-DG 800CW to detect HGD and ESCC is 80% and 83%, respectively (ROC = 0.85). We identified and validated GLUT1 as a promising molecular imaging target and demonstrated that fluorescent imaging after topical application of 2-DG 800CW can differentiate HGD and ESCC from LGD and normal esophagus.


Subject(s)
Endoscopy/methods , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Gene Expression Regulation, Neoplastic , Glucose Transporter Type 1/genetics , Neoplasm Proteins/genetics , Early Diagnosis , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophagus/diagnostic imaging , Esophagus/metabolism , Fluorescence , Gene Expression Profiling , Humans , Immunohistochemistry , Oligonucleotide Array Sequence Analysis , RNA, Messenger , Sensitivity and Specificity
12.
J Pathol ; 249(1): 52-64, 2019 09.
Article in English | MEDLINE | ID: mdl-30972766

ABSTRACT

Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have improved the survival of patients with non-small cell lung cancer (NSCLC). Still, many patients do not respond to these inhibitors. PD-L1 (CD274) expression, one of the factors that influences the efficacy of immune checkpoint inhibitors, is dynamic. Here, we studied the regulation of PD-L1 expression in NSCLC without targetable genetic alterations in EGFR, ALK, BRAF, ROS1, MET, ERBB2 and RET. Analysis of RNA sequencing data from these NSCLCs revealed that inferred IFNγ, EGFR and MAPK signaling correlated with CD274 gene expression in lung adenocarcinoma. In a representative lung adenocarcinoma cell line panel, stimulation with EGF or IFNγ increased CD274 mRNA and PD-L1 protein and membrane levels, which were further enhanced by combining EGF and IFNγ. Similarly, tumor cell PD-L1 membrane levels increased after coculture with activated peripheral blood mononuclear cells. Inhibition of the MAPK pathway, using EGFR inhibitors cetuximab and erlotinib or the MEK 1 and 2 inhibitor selumetinib, prevented EGF- and IFNγ-induced CD274 mRNA and PD-L1 protein and membrane upregulation, but had no effect on IFNγ-induced MHC-I upregulation. Interestingly, although IFNγ increases transcriptional activity of CD274, MAPK signaling also increased stabilization of CD274 mRNA. In conclusion, MAPK pathway activity plays a key role in EGF- and IFNγ-induced PD-L1 expression in lung adenocarcinoma without targetable genetic alterations and may present a target to improve the efficacy of immunotherapy. © 2019 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Adenocarcinoma of Lung/enzymology , B7-H1 Antigen/metabolism , Lung Neoplasms/enzymology , Mitogen-Activated Protein Kinases/metabolism , A549 Cells , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Antineoplastic Agents/pharmacology , B7-H1 Antigen/genetics , Coculture Techniques , Epidermal Growth Factor/pharmacology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Hepatocyte Growth Factor/pharmacology , Humans , Interferon-gamma/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/genetics , Protein Kinase Inhibitors/pharmacology , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction
13.
Int J Mol Sci ; 21(11)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471032

ABSTRACT

Tumor-infiltrating CD8+ T cells (TIL) are of the utmost importance in anti-tumor immunity. CD103 defines tumor-resident memory T cells (TRM cells) associated with improved survival and response to immune checkpoint blockade (ICB) across human tumors. Co-expression of CD39 and CD103 marks tumor-specific TRM with enhanced cytolytic potential, suggesting that CD39+CD103+ TRM could be a suitable biomarker for immunotherapy. However, little is known about the transcriptional activity of TRM cells in situ. We analyzed CD39+CD103+ TRM cells sorted from human high-grade endometrial cancers (n = 3) using mRNA sequencing. Cells remained untreated or were incubated with PMA/ionomycin (activation), actinomycin D (a platinum-like chemotherapeutic that inhibits transcription), or a combination of the two. Resting CD39+CD103+ TRM cells were transcriptionally active and expressed a characteristic TRM signature. Activated CD39+CD103+ TRM cells differentially expressed PLEK, TWNK, and FOS, and cytokine genes IFNG, TNF, IL2, CSF2 (GM-CSF), and IL21. Findings were confirmed using qPCR and cytokine production was validated by flow cytometry of cytotoxic TIL. We studied transcript stability and found that PMA-responsive genes and mitochondrial genes were particularly stable. In conclusion, CD39+CD103+ TRM cells are transcriptionally active TRM cells with a polyfunctional, reactivation-responsive repertoire. Secondly, we hypothesize that differential regulation of transcript stability potentiates rapid responses upon TRM reactivation in tumors.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Endometrial Neoplasms/immunology , Endometrial Neoplasms/pathology , Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/drug effects , Cytotoxicity, Immunologic/drug effects , Dactinomycin/pharmacology , Endometrial Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Genotype , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Interleukins/metabolism , Ionomycin/pharmacology , Lymphocyte Activation/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Grading , RNA Stability/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Transcription, Genetic/drug effects
14.
Am J Pathol ; 188(9): 1973-1981, 2018 09.
Article in English | MEDLINE | ID: mdl-29935166

ABSTRACT

Glypican 3 (GPC3), a membrane-bound heparan sulfate proteoglycan, is overexpressed in approximately 70% to 80% of hepatocellular carcinomas, but is not expressed commonly in healthy tissues. This raised interest in GPC3 as a drug target and several GPC3-targeting drugs are in clinical development. We therefore predicted GPC3 protein overexpression across tumors and validated these predictions. Functional genomic mRNA profiling was applied to the expression profiles of 18,055 patient-derived tumor samples to predict GPC3 overexpression at the protein level in 60 tumor types and subtypes using healthy tissues as reference. For validation, predictions were compared with immunohistochemical (IHC) staining of a breast cancer tissue microarray and literature data reporting IHC GPC3 overexpression in various solid, hematologic, and pediatric tumors. The percentage of samples with predicted GPC3 overexpression was 77% for hepatocellular carcinomas (n = 364), 45% for squamous cell lung cancers (n = 405), and 19% for head and neck squamous cell cancers (n = 344). Breast cancer tissue microarray analysis showed GPC3 expression ranged from 12% to 17% in subgroups based on estrogen receptor and human epidermal growth factor receptor 2 status. In 28 of 34 tumor types for which functional genomic mRNA data could be compared with IHC there was a relative difference of ≤10%. This study provides a data-driven prioritization of tumor types and subtypes for future research with GPC3-targeting therapies.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genomics/methods , Glypicans/genetics , Neoplasms/genetics , RNA, Messenger/genetics , Case-Control Studies , Databases, Factual , Humans , Neoplasms/classification , Neoplasms/pathology
15.
BMC Cancer ; 19(1): 390, 2019 04 25.
Article in English | MEDLINE | ID: mdl-31023318

ABSTRACT

BACKGROUND: Upfront cytoreductive surgery with HIPEC (CRS-HIPEC) is the standard treatment for isolated resectable colorectal peritoneal metastases (PM) in the Netherlands. This study investigates whether addition of perioperative systemic therapy to CRS-HIPEC improves oncological outcomes. METHODS: This open-label, parallel-group, phase II-III, randomised, superiority study is performed in nine Dutch tertiary referral centres. Eligible patients are adults who have a good performance status, histologically or cytologically proven resectable PM of a colorectal adenocarcinoma, no systemic colorectal metastases, no systemic therapy for colorectal cancer within six months prior to enrolment, and no previous CRS-HIPEC. Eligible patients are randomised (1:1) to perioperative systemic therapy and CRS-HIPEC (experimental arm) or upfront CRS-HIPEC alone (control arm) by using central randomisation software with minimisation stratified by a peritoneal cancer index of 0-10 or 11-20, metachronous or synchronous PM, previous systemic therapy for colorectal cancer, and HIPEC with oxaliplatin or mitomycin C. At the treating physician's discretion, perioperative systemic therapy consists of either four 3-weekly neoadjuvant and adjuvant cycles of capecitabine with oxaliplatin (CAPOX), six 2-weekly neoadjuvant and adjuvant cycles of 5-fluorouracil/leucovorin with oxaliplatin (FOLFOX), or six 2-weekly neoadjuvant cycles of 5-fluorouracil/leucovorin with irinotecan (FOLFIRI) followed by four 3-weekly (capecitabine) or six 2-weekly (5-fluorouracil/leucovorin) adjuvant cycles of fluoropyrimidine monotherapy. Bevacizumab is added to the first three (CAPOX) or four (FOLFOX/FOLFIRI) neoadjuvant cycles. The first 80 patients are enrolled in a phase II study to explore the feasibility of accrual and the feasibility, safety, and tolerance of perioperative systemic therapy. If predefined criteria of feasibility and safety are met, the study continues as a phase III study with 3-year overall survival as primary endpoint. A total of 358 patients is needed to detect the hypothesised 15% increase in 3-year overall survival (control arm 50%; experimental arm 65%). Secondary endpoints are surgical characteristics, major postoperative morbidity, progression-free survival, disease-free survival, health-related quality of life, costs, major systemic therapy related toxicity, and objective radiological and histopathological response rates. DISCUSSION: This is the first randomised study that prospectively compares oncological outcomes of perioperative systemic therapy and CRS-HIPEC with upfront CRS-HIPEC alone for isolated resectable colorectal PM. TRIAL REGISTRATION: Clinicaltrials.gov/ NCT02758951 , NTR/ NTR6301 , ISRCTN/ ISRCTN15977568 , EudraCT/ 2016-001865-99 .


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/surgery , Peritoneal Neoplasms/drug therapy , Peritoneum/surgery , Adult , Bevacizumab/administration & dosage , Chemotherapy, Adjuvant/adverse effects , Colorectal Neoplasms/pathology , Combined Modality Therapy , Cytoreduction Surgical Procedures/adverse effects , Disease-Free Survival , Female , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Humans , Leucovorin/administration & dosage , Leucovorin/adverse effects , Male , Middle Aged , Neoplasm Metastasis , Oxaliplatin/administration & dosage , Oxaliplatin/adverse effects , Perioperative Period , Peritoneal Neoplasms/pathology , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/surgery , Peritoneum/drug effects , Peritoneum/pathology , Progression-Free Survival , Quality of Life
17.
Proc Natl Acad Sci U S A ; 111(38): 13790-4, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25201988

ABSTRACT

We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory.


Subject(s)
Cognition/physiology , Learning/physiology , Multifactorial Inheritance/physiology , Neuronal Plasticity/genetics , Polymorphism, Single Nucleotide , Synaptic Transmission/genetics , Calcium-Binding Proteins , Cell Adhesion Molecules, Neuronal/genetics , Female , Humans , Male , Memory/physiology , Nerve Tissue Proteins/genetics , Neural Cell Adhesion Molecules , Octamer Transcription Factors/genetics
18.
PLoS Genet ; 9(1): e1003201, 2013.
Article in English | MEDLINE | ID: mdl-23341781

ABSTRACT

Recently it has become clear that only a small percentage (7%) of disease-associated single nucleotide polymorphisms (SNPs) are located in protein-coding regions, while the remaining 93% are located in gene regulatory regions or in intergenic regions. Thus, the understanding of how genetic variations control the expression of non-coding RNAs (in a tissue-dependent manner) has far-reaching implications. We tested the association of SNPs with expression levels (eQTLs) of large intergenic non-coding RNAs (lincRNAs), using genome-wide gene expression and genotype data from five different tissues. We identified 112 cis-regulated lincRNAs, of which 45% could be replicated in an independent dataset. We observed that 75% of the SNPs affecting lincRNA expression (lincRNA cis-eQTLs) were specific to lincRNA alone and did not affect the expression of neighboring protein-coding genes. We show that this specific genotype-lincRNA expression correlation is tissue-dependent and that many of these lincRNA cis-eQTL SNPs are also associated with complex traits and diseases.


Subject(s)
Gene Expression Regulation , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , RNA, Long Noncoding , Genome-Wide Association Study , Genotype , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tissue Distribution
19.
Thorax ; 70(1): 21-32, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24990664

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a progressive, incurable lung disease characterised by abnormal tissue repair causing emphysema and small airways fibrosis. Since current therapy cannot modify this abnormal repair, it is crucial to unravel its underlying molecular mechanisms. Unbiased analysis of genome-wide gene expression profiles in lung tissue provides a powerful tool to investigate this. METHODS: We performed genome-wide gene expression profiling in 581 lung tissue samples from current and ex-smokers with (n=311) and without COPD (n=270). Subsequently, quantitative PCR, western blot and immunohistochemical analyses were performed to validate our main findings. RESULTS: 112 genes were found to be upregulated in patients with COPD compared with controls, whereas 61 genes were downregulated. Among the most upregulated genes were fibulin-5 (FBLN5), elastin (ELN), latent transforming growth factor ß binding protein 2 (LTBP2) and microfibrillar associated protein 4 (MFAP4), all implicated in elastogenesis. Our gene expression findings were validated at mRNA and protein level. We demonstrated higher ELN gene expression in COPD lung tissue and similar trends for FBLN5 and MFAP4, and negative correlations with lung function. FBLN5 protein levels were increased in COPD lung tissue and cleaved, possibly non-functional FBLN5 protein was present. Strong coexpression of FBLN5, ELN, LTBP2 and MFAP4 in lung tissue and in silico analysis indicated cofunctionality of these genes. Finally, colocalisation of FBLN5, MFAP4 and LTBP2 with elastic fibres was demonstrated in lung tissue. CONCLUSIONS: We identified a clear gene signature for elastogenesis in COPD and propose FBLN5 as a novel player in tissue repair in COPD.


Subject(s)
Extracellular Matrix Proteins/genetics , Gene Expression Regulation , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , RNA, Messenger/genetics , Aged , Blotting, Western , Elasticity , Extracellular Matrix Proteins/biosynthesis , Female , Gene Expression Profiling , Genome-Wide Association Study , Humans , Immunohistochemistry , Lung/physiopathology , Male , Middle Aged , Polymerase Chain Reaction , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology
20.
PLoS Genet ; 8(1): e1002431, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22275870

ABSTRACT

It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs) on gene expression between blood samples from 1,240 human subjects and four primary non-blood tissues (liver, subcutaneous, and visceral adipose tissue and skeletal muscle) from 85 subjects. We characterized four different mechanisms for 2,072 probes that show tissue-dependent genetic regulation between blood and non-blood tissues: on average 33.2% only showed cis-regulation in non-blood tissues; 14.5% of the eQTL probes were regulated by different, independent SNPs depending on the tissue of investigation. 47.9% showed a different effect size although they were regulated by the same SNPs. Surprisingly, we observed that 4.4% were regulated by the same SNP but with opposite allelic direction. We show here that SNPs that are located in transcriptional regulatory elements are enriched for tissue-dependent regulation, including SNPs at 3' and 5' untranslated regions (P = 1.84×10(-5) and 4.7×10(-4), respectively) and SNPs that are synonymous-coding (P = 9.9×10(-4)). SNPs that are associated with complex traits more often exert a tissue-dependent effect on gene expression (P = 2.6×10(-10)). Our study yields new insights into the genetic basis of tissue-dependent expression and suggests that complex trait associated genetic variants have even more complex regulatory effects than previously anticipated.


Subject(s)
Blood Proteins/genetics , Gene Expression Regulation , Intra-Abdominal Fat/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Subcutaneous Tissue/metabolism , Adolescent , Adult , Aged , Alleles , Female , Gene Expression Profiling , Genome, Human , Genotype , Humans , Male , Middle Aged , Organ Specificity , Regulatory Sequences, Nucleic Acid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL