Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446272

ABSTRACT

ATP, as a paracrine signalling molecule, induces intracellular Ca2+ elevation via the activation of purinergic receptors on the surface of glia-like cochlear supporting cells. These cells, including the Deiters' cells (DCs), are also coupled by gap junctions that allow the propagation of intercellular Ca2+ waves via diffusion of Ca2+ mobilising second messenger IP3 between neighbouring cells. We have compared the ATP-evoked Ca2+ transients and the effect of two different gap junction (GJ) blockers (octanol and carbenoxolone, CBX) on the Ca2+ transients in DCs located in the apical and middle turns of the hemicochlea preparation of BALB/c mice (P14-19). Octanol had no effect on Ca2+ signalling, while CBX inhibited the ATP response, more prominently in the middle turn. Based on astrocyte models and using our experimental results, we successfully simulated the Ca2+ dynamics in DCs in different cochlear regions. The mathematical model reliably described the Ca2+ transients in the DCs and suggested that the tonotopical differences could originate from differences in purinoceptor and Ca2+ pump expressions and in IP3-Ca2+ release mechanisms. The cochlear turn-dependent effect of CBX might be the result of the differing connexin isoform composition of GJs along the tonotopic axis. The contribution of IP3-mediated Ca2+ signalling inhibition by CBX cannot be excluded.


Subject(s)
Calcium , Gap Junctions , Mice , Animals , Mice, Inbred BALB C , Calcium/metabolism , Gap Junctions/metabolism , Receptors, Purinergic/metabolism , Organ of Corti/metabolism , Hearing , Adenosine Triphosphate/metabolism
2.
J Neurosci ; 40(45): 8652-8668, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33060174

ABSTRACT

Inhibitory interneurons integrate into developing circuits in specific ratios and distributions. In the neocortex, inhibitory network formation occurs concurrently with the apoptotic elimination of a third of GABAergic interneurons. The cell surface molecules that select interneurons to survive or die are unknown. Here, we report that members of the clustered Protocadherins (cPCDHs) control GABAergic interneuron survival during developmentally-regulated cell death. Conditional deletion of the gene cluster encoding the γ-Protocadherins (Pcdhgs) from developing GABAergic neurons in mice of either sex causes a severe loss of inhibitory populations in multiple brain regions and results in neurologic deficits such as seizures. By focusing on the neocortex and the cerebellar cortex, we demonstrate that reductions of inhibitory interneurons result from elevated apoptosis during the critical postnatal period of programmed cell death (PCD). By contrast, cortical interneuron (cIN) populations are not affected by removal of Pcdhgs from pyramidal neurons or glial cells. Interneuron loss correlates with reduced AKT signaling in Pcdhg mutant interneurons, and is rescued by genetic blockade of the pro-apoptotic factor BAX. Together, these findings identify the PCDHGs as pro-survival transmembrane proteins that select inhibitory interneurons for survival and modulate the extent of PCD. We propose that the PCDHGs contribute to the formation of balanced inhibitory networks by controlling the size of GABAergic interneuron populations in the developing brain.SIGNIFICANCE STATEMENT A pivotal step for establishing appropriate excitatory-inhibitory ratios is adjustment of neuronal populations by cell death. In the mouse neocortex, a third of GABAergic interneurons are eliminated by BAX-dependent apoptosis during the first postnatal week. Interneuron cell death is modulated by neural activity and pro-survival pathways but the cell-surface molecules that select interneurons for survival or death are unknown. We demonstrate that members of the cadherin superfamily, the clustered γ-Protocadherins (PCDHGs), regulate the survival of inhibitory interneurons and the balance of cell death. Deletion of the Pcdhgs in mice causes inhibitory interneuron loss in the cortex and cerebellum, and leads to motor deficits and seizures. Our findings provide a molecular basis for controlling inhibitory interneuron population size during circuit formation.


Subject(s)
Cadherins/physiology , Cell Death/physiology , Interneurons/physiology , gamma-Aminobutyric Acid/physiology , Animals , Apoptosis/genetics , Cadherin Related Proteins , Cadherins/genetics , Cerebral Cortex/cytology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/growth & development , Electroencephalography , Female , Magnetic Resonance Imaging , Male , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Nerve Net/physiology , Nervous System Diseases/etiology , Oncogene Protein v-akt/genetics , Oncogene Protein v-akt/physiology , Seizures/etiology , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/physiology
3.
Mol Psychiatry ; 25(9): 2017-2035, 2020 09.
Article in English | MEDLINE | ID: mdl-30224722

ABSTRACT

Principal neurons encode information by varying their firing rate and patterns precisely fine-tuned through GABAergic interneurons. Dysregulation of inhibition can lead to neuropsychiatric disorders, yet little is known about the molecular basis underlying inhibitory control. Here, we find that excessive GABA release from basket cells (BCs) attenuates the firing frequency of Purkinje neurons (PNs) in the cerebellum of Fragile X Mental Retardation 1 (Fmr1) knockout (KO) mice, a model of Fragile X Syndrome (FXS) with abrogated expression of the Fragile X Mental Retardation Protein (FMRP). This over-inhibition originates from increased excitability and Ca2+ transients in the presynaptic terminals, where Kv1.2 potassium channels are downregulated. By paired patch-clamp recordings, we further demonstrate that acutely introducing an N-terminal fragment of FMRP into BCs normalizes GABA release in the Fmr1-KO synapses. Conversely, direct injection of an inhibitory FMRP antibody into BCs, or membrane depolarization of BCs, enhances GABA release in the wild type synapses, leading to abnormal inhibitory transmission comparable to the Fmr1-KO neurons. We discover that the N-terminus of FMRP directly binds to a phosphorylated serine motif on the C-terminus of Kv1.2; and that loss of this interaction in BCs exaggerates GABA release, compromising the firing activity of PNs and thus the output from the cerebellar circuitry. An allosteric Kv1.2 agonist, docosahexaenoic acid, rectifies the dysregulated inhibition in vitro as well as acoustic startle reflex and social interaction in vivo of the Fmr1-KO mice. Our results unravel a novel molecular locus for targeted intervention of FXS and perhaps autism.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Animals , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Interneurons/metabolism , Mice , Mice, Knockout , Synaptic Transmission , gamma-Aminobutyric Acid
4.
J Neuroinflammation ; 17(1): 51, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32028989

ABSTRACT

BACKGROUND: Radiotherapy is widely used and effective for treating brain tumours, but inevitably impairs cognition as it arrests cellular processes important for learning and memory. This is particularly evident in the aged brain with limited regenerative capacity, where radiation produces irreparable neuronal damage and activation of neighbouring microglia. The latter is responsible for increased neuronal death and contributes to cognitive decline after treatment. To date, there are few effective means to prevent cognitive deficits after radiotherapy. METHODS: Here we implanted hematopoietic stem cells (HSCs) from young or old (2- or 18-month-old, respectively) donor mice expressing green fluorescent protein (GFP) into old recipients and assessed cognitive abilities 3 months post-reconstitution. RESULTS: Regardless of donor age, GFP+ cells homed to the brain of old recipients and expressed the macrophage/microglial marker, Iba1. However, only young cells attenuated deficits in novel object recognition and spatial memory and learning in old mice post-irradiation. Mechanistically, old recipients that received young HSCs, but not old, displayed significantly greater dendritic spine density and long-term potentiation (LTP) in CA1 neurons of the hippocampus. Lastly, we found that GFP+/Iba1+ cells from young and old donors were differentially polarized to an anti- and pro-inflammatory phenotype and produced neuroprotective factors and reactive nitrogen species in vivo, respectively. CONCLUSION: Our results suggest aged peripherally derived microglia-like cells may exacerbate cognitive impairments after radiotherapy, whereas young microglia-like cells are polarized to a reparative phenotype in the irradiated brain, particularly in neural circuits associated with rewards, learning, and memory. These findings present a proof-of-principle for effectively reinstating central cognitive function of irradiated brains with peripheral stem cells from young donor bone marrow.


Subject(s)
Cognitive Dysfunction/therapy , Hematopoietic Stem Cell Transplantation , Maze Learning/physiology , Radiotherapy/adverse effects , Recovery of Function/physiology , Animals , Behavior, Animal/physiology , Cognitive Dysfunction/etiology , Dendritic Spines/physiology , Hippocampus/physiology , Humans , Long-Term Potentiation/physiology , Memory/physiology , Mice , Neurons/physiology , Spinocerebellar Ataxias/genetics , Treatment Outcome
6.
J Chem Phys ; 148(24): 241739, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29960375

ABSTRACT

We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ∼0.1 eV/Šaverage error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

7.
J Neurosci ; 34(42): 14032-45, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25319700

ABSTRACT

Mitral cells express low-voltage activated Cav3.3 channels on their distal apical tuft dendrites (McKay et al., 2006; Johnston and Delaney, 2010). They also discharge Na(+)-dependent dendritic action potentials and release glutamate from these dendrites. Around resting membrane potentials, between -65 and -50 mV, Cav3.x channels are a primary determinant of cytoplasmic [Ca(2+)]. In this study using C57 mice, we present evidence that subthreshold Cav3.x-mediated Ca(2+) influx modulates action potential evoked transmitter release and directly drives asynchronous release from distal tuft dendrites. Presynaptic hyperpolarization and selective block of Cav3.x channels with Z941 (Tringham et al., 2012) reduce mitral-to-mitral EPSP amplitude, increase the coefficient of variation of EPSPs, and increase paired-pulse ratios, consistent with a reduced probability of transmitter release. Both hyperpolarization and Cav3.x channel blockade reduce steady-state cytoplasmic [Ca(2+)] in the tuft dendrite without reducing action potential evoked Ca(2+) influx, suggesting that background [Ca(2+)] modulates evoked release. We demonstrate that Cav3.x-mediated Ca(2+) influx from even one mitral cell at membrane potentials between -65 and -50 mV is sufficient to produce feedback inhibition from periglomerular neurons. Deinactivation of Cav3.x channels by hyperpolarization increases T-type Ca(2+) influx upon repolarization and increases feedback inhibition to produce subthreshold modulation of the mitral-periglomerular reciprocal circuit.


Subject(s)
Calcium Channels, T-Type/physiology , Caveolin 3/physiology , Dendrites/physiology , Olfactory Bulb/physiology , Olfactory Pathways/physiology , Presynaptic Terminals/physiology , Action Potentials/physiology , Animals , Excitatory Postsynaptic Potentials/physiology , Female , Male , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Neural Inhibition/physiology , Organ Culture Techniques
9.
Nat Cancer ; 4(10): 1418-1436, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37697045

ABSTRACT

Glioblastoma (GBM) is an incurable brain cancer that lacks effective therapies. Here we show that EAG2 and Kvß2, which are predominantly expressed by GBM cells at the tumor-brain interface, physically interact to form a potassium channel complex due to a GBM-enriched Kvß2 isoform. In GBM cells, EAG2 localizes at neuron-contacting regions in a Kvß2-dependent manner. Genetic knockdown of the EAG2-Kvß2 complex decreases calcium transients of GBM cells, suppresses tumor growth and invasion and extends the survival of tumor-bearing mice. We engineered a designer peptide to disrupt EAG2-Kvß2 interaction, thereby mitigating tumor growth in patient-derived xenograft and syngeneic mouse models across GBM subtypes without overt toxicity. Neurons upregulate chemoresistant genes in GBM cells in an EAG2-Kvß2-dependent manner. The designer peptide targets neuron-associated GBM cells and possesses robust efficacy in treating temozolomide-resistant GBM. Our findings may lead to the next-generation therapeutic agent to benefit patients with GBM.


Subject(s)
Glioblastoma , Humans , Mice , Animals , Glioblastoma/drug therapy , Temozolomide/pharmacology , Temozolomide/therapeutic use , Ether-A-Go-Go Potassium Channels/therapeutic use , Disease Models, Animal , Peptides/therapeutic use , Neurons/pathology
10.
Neuron ; 111(1): 30-48.e14, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36323321

ABSTRACT

Major obstacles in brain cancer treatment include the blood-tumor barrier (BTB), which limits the access of most therapeutic agents, and quiescent tumor cells, which resist conventional chemotherapy. Here, we show that Sox2+ tumor cells project cellular processes to ensheathe capillaries in mouse medulloblastoma (MB), a process that depends on the mechanosensitive ion channel Piezo2. MB develops a tissue stiffness gradient as a function of distance to capillaries. Sox2+ tumor cells perceive substrate stiffness to sustain local intracellular calcium, actomyosin tension, and adhesion to promote cellular process growth and cell surface sequestration of ß-catenin. Piezo2 knockout reverses WNT/ß-catenin signaling states between Sox2+ tumor cells and endothelial cells, compromises the BTB, reduces the quiescence of Sox2+ tumor cells, and markedly enhances the MB response to chemotherapy. Our study reveals that mechanosensitive tumor cells construct the BTB to mask tumor chemosensitivity. Targeting Piezo2 addresses the BTB and tumor quiescence properties that underlie treatment failures in brain cancer.


Subject(s)
Brain Neoplasms , beta Catenin , Mice , Animals , beta Catenin/metabolism , beta Catenin/therapeutic use , Endothelial Cells/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain/metabolism , Ion Channels/metabolism , Blood-Brain Barrier/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL