Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Publication year range
1.
Cell ; 171(6): 1354-1367.e20, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29103614

ABSTRACT

A number of bacterial cell processes are confined functional membrane microdomains (FMMs), structurally and functionally similar to lipid rafts of eukaryotic cells. How bacteria organize these intricate platforms and what their biological significance is remain important questions. Using the pathogen methicillin-resistant Staphylococcus aureus (MRSA), we show here that membrane-carotenoid interaction with the scaffold protein flotillin leads to FMM formation, which can be visualized using super-resolution array tomography. These membrane platforms accumulate multimeric protein complexes, for which flotillin facilitates efficient oligomerization. One of these proteins is PBP2a, responsible for penicillin resistance in MRSA. Flotillin mutants are defective in PBP2a oligomerization. Perturbation of FMM assembly using available drugs interferes with PBP2a oligomerization and disables MRSA penicillin resistance in vitro and in vivo, resulting in MRSA infections that are susceptible to penicillin treatment. Our study demonstrates that bacteria possess sophisticated cell organization programs and defines alternative therapies to fight multidrug-resistant pathogens using conventional antibiotics.


Subject(s)
Membrane Microdomains/metabolism , Methicillin-Resistant Staphylococcus aureus/physiology , Staphylococcal Infections/microbiology , Animals , Bacterial Proteins/metabolism , Carotenoids/metabolism , Cell Membrane/metabolism , Female , Membrane Microdomains/chemistry , Membrane Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Mice, Inbred BALB C , Penicillin-Binding Proteins/metabolism , Xanthophylls/metabolism
2.
Plant Cell ; 34(1): 616-632, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34755865

ABSTRACT

The onset of plant life is characterized by a major phase transition. During early heterotrophic seedling establishment, seed storage reserves fuel metabolic demands, allowing the plant to switch to autotrophic metabolism. Although metabolic pathways leading to storage compound mobilization are well-described, the regulatory circuits remain largely unresolved. Using an inducible knockdown approach of the evolutionarily conserved energy master regulator Snf1-RELATED-PROTEIN-KINASE1 (SnRK1), phenotypic studies reveal its crucial function in Arabidopsis thaliana seedling establishment. Importantly, glucose feeding largely restores growth defects of the kinase mutant, supporting its major impact in resource mobilization. Detailed metabolite studies reveal sucrose as a primary resource early in seedling establishment, in a SnRK1-independent manner. Later, SnRK1 orchestrates catabolism of triacylglycerols and amino acids. Concurrent transcriptomic studies highlight SnRK1 functions in controlling metabolic hubs fuelling gluconeogenesis, as exemplified by cytosolic PYRUVATE ORTHOPHOSPHATE DIKINASE (cyPPDK). Here, SnRK1 establishes its function via phosphorylation of the transcription factor BASIC LEUCINE ZIPPER63 (bZIP63), which directly targets and activates the cyPPDK promoter. Taken together, our results disclose developmental and catabolic functions of SnRK1 in seed storage mobilization and describe a prototypic gene regulatory mechanism. As seedling establishment is important for plant vigor and crop yield, our findings are of agronomical importance.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Seedlings/genetics , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Seedlings/growth & development , Transcription Factors/metabolism
3.
Adv Exp Med Biol ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38874889

ABSTRACT

To ensure optimum health and performance, lipid metabolism needs to be temporally aligned to other body processes and to daily changes in the environment. Central and peripheral circadian clocks and environmental signals such as light provide internal and external time cues to the body. Importantly, each of the key organs involved in insect lipid metabolism contains a molecular clockwork which ticks with a varying degree of autonomy from the central clock in the brain. In this chapter, we review our current knowledge about peripheral clocks in the insect fat body, gut and oenocytes, and light- and circadian-driven diel patterns in lipid metabolites and lipid-related transcripts. In addition, we highlight selected neuroendocrine signaling pathways that are or may be involved in the temporal coordination and control of lipid metabolism.

4.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542220

ABSTRACT

The accumulation of lipid droplets (LDs) and ceramides (Cer) is linked to non-alcoholic fatty liver disease (NAFLD), regularly co-existing with type 2 diabetes and decreased immune function. Chronic inflammation and increased disease severity in viral infections are the hallmarks of the obesity-related immunopathology. The upregulation of neutral sphingomyelinase-2 (NSM2) has shown to be associated with the pathology of obesity in tissues. Nevertheless, the role of sphingolipids and specifically of NSM2 in the regulation of immune cell response to a fatty acid (FA) rich environment is poorly studied. Here, we identified the presence of the LD marker protein perilipin 3 (PLIN3) in the intracellular nano-environment of NSM2 using the ascorbate peroxidase APEX2-catalyzed proximity-dependent biotin labeling method. In line with this, super-resolution structured illumination microscopy (SIM) shows NSM2 and PLIN3 co-localization in LD organelles in the presence of increased extracellular concentrations of oleic acid (OA). Furthermore, the association of enzymatically active NSM2 with isolated LDs correlates with increased Cer levels in these lipid storage organelles. NSM2 enzymatic activity is not required for NSM2 association with LDs, but negatively affects the LD numbers and cellular accumulation of long-chain unsaturated triacylglycerol (TAG) species. Concurrently, NSM2 expression promotes mitochondrial respiration and fatty acid oxidation (FAO) in response to increased OA levels, thereby shifting cells to a high energetic state. Importantly, endogenous NSM2 activity is crucial for primary human CD4+ T cell survival and proliferation in a FA rich environment. To conclude, our study shows a novel NSM2 intracellular localization to LDs and the role of enzymatically active NSM2 in metabolic response to enhanced FA concentrations in T cells.


Subject(s)
Diabetes Mellitus, Type 2 , Sphingomyelin Phosphodiesterase , Humans , Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Obesity/metabolism , Oleic Acid/metabolism , Sphingomyelin Phosphodiesterase/metabolism , T-Lymphocytes/metabolism , Triglycerides/metabolism
5.
J Lipid Res ; 64(10): 100417, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37481037

ABSTRACT

Modern lifestyle is often at odds with endogenously driven rhythmicity, which can lead to circadian disruption and metabolic syndrome. One signature for circadian disruption is a reduced or altered metabolite cycling in the circulating tissue reflecting the current metabolic status. Drosophila is a well-established model in chronobiology, but day-time dependent variations of transport metabolites in the fly circulation are poorly characterized. Here, we sampled fly hemolymph throughout the day and analyzed diacylglycerols (DGs), phosphoethanolamines (PEs) and phosphocholines (PCs) using LC-MS. In wild-type flies kept on sugar-only medium under a light-dark cycle, all transport lipid species showed a synchronized bimodal oscillation pattern with maxima at the beginning and end of the light phase which were impaired in period01 clock mutants. In wild-type flies under constant dark conditions, the oscillation became monophasic with a maximum in the middle of the subjective day. In strong support of clock-driven oscillations, levels of the targeted lipids peaked once in the middle of the light phase under time-restricted feeding independent of the time of food intake. When wild-type flies were reared on full standard medium, the rhythmic alterations of hemolymph lipid levels were greatly attenuated. Our data suggest that the circadian clock aligns daily oscillations of DGs, PEs, and PCs in the hemolymph to the anabolic siesta phase, with a strong influence of light on phase and modality.

6.
J Biol Chem ; 298(11): 102519, 2022 11.
Article in English | MEDLINE | ID: mdl-36152752

ABSTRACT

Plants and algae are faced with a conundrum: harvesting sufficient light to drive their metabolic needs while dissipating light in excess to prevent photodamage, a process known as nonphotochemical quenching. A slowly relaxing form of energy dissipation, termed qH, is critical for plants' survival under abiotic stress; however, qH location in the photosynthetic membrane is unresolved. Here, we tested whether we could isolate subcomplexes from plants in which qH was induced that would remain in an energy-dissipative state. Interestingly, we found that chlorophyll (Chl) fluorescence lifetimes were decreased by qH in isolated major trimeric antenna complexes, indicating that they serve as a site for qH-energy dissipation and providing a natively quenched complex with physiological relevance to natural conditions. Next, we monitored the changes in thylakoid pigment, protein, and lipid contents of antenna with active or inactive qH but did not detect any evident differences. Finally, we investigated whether specific subunits of the major antenna complexes were required for qH but found that qH was insensitive to trimer composition. Because we previously observed that qH can occur in the absence of specific xanthophylls, and no evident changes in pigments, proteins, or lipids were detected, we tentatively propose that the energy-dissipative state reported here may stem from Chl-Chl excitonic interaction.


Subject(s)
Chlorophyll , Light-Harvesting Protein Complexes , Photosystem II Protein Complex , Plants , Chlorophyll/chemistry , Light , Light-Harvesting Protein Complexes/chemistry , Photosynthesis , Photosystem II Protein Complex/chemistry , Plants/chemistry , Thylakoids/chemistry , Xanthophylls/chemistry
7.
Cell Mol Life Sci ; 77(23): 4939-4956, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31960114

ABSTRACT

The fruit fly Drosophila is a prime model in circadian research, but still little is known about its circadian regulation of metabolism. Daily rhythmicity in levels of several metabolites has been found, but knowledge about hydrophobic metabolites is limited. We here compared metabolite levels including lipids between period01 (per01) clock mutants and Canton-S wildtype (WTCS) flies in an isogenic and non-isogenic background using LC-MS. In the non-isogenic background, metabolites with differing levels comprised essential amino acids, kynurenines, pterinates, glycero(phospho)lipids, and fatty acid esters. Notably, detectable diacylglycerols (DAG) and acylcarnitines (AC), involved in lipid metabolism, showed lower levels in per01 mutants. Most of these differences disappeared in the isogenic background, yet the level differences for AC as well as DAG were consistent for fly bodies. AC levels were dependent on the time of day in WTCS in phase with food consumption under LD conditions, while DAGs showed weak daily oscillations. Two short-chain ACs continued to cycle even in constant darkness. per01 mutants in LD showed no or very weak diel AC oscillations out of phase with feeding activity. The low levels of DAGs and ACs in per01 did not correlate with lower total food consumption, body mass or weight. Clock mutant flies showed higher sensitivity to starvation independent of their background-dependent activity level. Our results suggest that neither feeding, energy storage nor mobilisation is significantly affected in per01 mutants, but point towards impaired mitochondrial activity, supported by upregulation of the mitochondrial stress marker 4EBP in the clock mutants.


Subject(s)
Circadian Clocks/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Lipid Metabolism/genetics , Loss of Function Mutation/genetics , Period Circadian Proteins/genetics , Starvation/genetics , Animals , Biomarkers/metabolism , Carnitine/analogs & derivatives , Carnitine/metabolism , Circadian Rhythm , Drosophila Proteins/metabolism , Feeding Behavior , Lipids/analysis , Male , Metabolome , Motor Activity , Period Circadian Proteins/metabolism , Stress, Physiological , Tryptophan/metabolism
8.
Plant Physiol ; 175(1): 486-497, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28733391

ABSTRACT

High temperatures rapidly induce a genetically programmed heat-shock response (HSR) that is essential to establish short-term acquired thermotolerance. In addition, an immediate HSR-independent metabolic response is triggered, resulting in an accumulation of unsaturated triacylglycerols (TAGs) in the cytosol. The metabolic processes involved in heat-induced TAG formation in plants and their physiological significance remain to be clarified. Lipidomic analyses of Arabidopsis (Arabidopsis thaliana) seedlings indicated that during heat stress, polyunsaturated fatty acids from thylakoid galactolipids are incorporated into cytosolic TAGs. In addition, rapid conversion of plastidic monogalactosyl diacylglycerols (MGDGs) into oligogalactolipids, acylated MGDGs, and diacylglycerols (DAGs), the direct precursor of TAGs, was observed. For TAG synthesis, DAG requires a fatty acid from the acyl-CoA pool or phosphatidylcholine. Since seedlings deficient in PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) were unable to accumulate TAGs after heat stress, phosphatidylcholine appears to be the major fatty acid donor. Results suggest that rapid plastid lipid metabolism drives TAG accumulation during heat stress. PDAT1-mediated TAG accumulation was found to increase heat resistance, since nonacclimated pdat1 mutant seedlings were more sensitive to severe heat stress, as indicated by a more dramatic decline of the maximum efficiency of PSII and lower seedling survival compared to wild-type seedlings. In contrast, nonacclimated trigalactosyldiacylglycerol1 (tgd1) mutants overaccumulating TAGs and oligogalactolipids were more resistant to heat stress. Hence, thylakoid lipid metabolism and TAG formation increases thermotolerance in addition to the genetically encoded HSR.


Subject(s)
Acyltransferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Heat-Shock Response , Phospholipids/metabolism , Thermotolerance , Triglycerides/metabolism , Acyltransferases/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Fatty Acids/metabolism , Galactolipids/metabolism , Gene Expression Regulation, Plant , Lipid Metabolism , Plants, Genetically Modified , Seedlings/enzymology , Seedlings/genetics , Seedlings/physiology , Thylakoids/metabolism
9.
Plant Cell ; 27(8): 2244-60, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26276836

ABSTRACT

Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Signal Transduction/genetics , Abscisic Acid/pharmacology , Amino Acids/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Calcium/metabolism , Carbohydrate Metabolism/drug effects , Carbohydrate Metabolism/genetics , Gene Expression Regulation, Plant/drug effects , Gluconeogenesis/drug effects , Gluconeogenesis/genetics , Immunoblotting , Mutation , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Serine-Threonine Kinases , Reverse Transcriptase Polymerase Chain Reaction , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Signal Transduction/drug effects , Sodium Chloride/pharmacology , Transcriptome/drug effects , Transcriptome/genetics
10.
Plant Cell Physiol ; 58(5): 925-933, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28371855

ABSTRACT

Storage of seeds is accompanied by loss of germination and oxidation of storage and membrane lipids. A lipidomic analysis revealed that during natural and artificial aging of Arabidopsis seeds, levels of several diacylglycerols and free fatty acids, such as linoleic acid and linolenic acid as well as free oxidized fatty acids and oxygenated triacylglycerols, increased. Lipids can be oxidized by enzymatic or non-enzymatic processes. In the enzymatic pathway, lipoxygenases (LOXs) catalyze the first oxygenation step of polyunsaturated fatty acids. Analysis of lipid levels in mutants with defects in the two 9-LOX genes revealed that the strong increase in free 9-hydroxy- and 9-keto-fatty acids is dependent on LOX1 but not LOX5. Fatty acid oxidation correlated with an aging-induced decrease of germination, raising the question of whether these oxylipins negatively regulate germination. However, seeds of the lox1 mutant were only slightly more tolerant to aging, indicating that 9-LOX products contribute to but are not the major cause of loss of germination during aging. In contrast to free oxidized fatty acids, accumulation of oxygenated triacylglycerols upon accelerated aging was mainly based on non-enzymatic oxidation of seed storage lipids.


Subject(s)
Arabidopsis/metabolism , Seeds/enzymology , Seeds/metabolism , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Lipoxygenase/genetics , Lipoxygenase/metabolism , Oxidation-Reduction , Seeds/physiology
11.
EMBO J ; 32(22): 2963-79, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24141880

ABSTRACT

Small RNAs use a diversity of well-characterized mechanisms to repress mRNAs, but how they activate gene expression at the mRNA level remains not well understood. The predominant activation mechanism of Hfq-associated small RNAs has been translational control whereby base pairing with the target prevents the formation of an intrinsic inhibitory structure in the mRNA and promotes translation initiation. Here, we report a translation-independent mechanism whereby the small RNA RydC selectively activates the longer of two isoforms of cfa mRNA (encoding cyclopropane fatty acid synthase) in Salmonella enterica. Target activation is achieved through seed pairing of the pseudoknot-exposed, conserved 5' end of RydC to an upstream region of the cfa mRNA. The seed pairing stabilizes the messenger, likely by interfering directly with RNase E-mediated decay in the 5' untranslated region. Intriguingly, this mechanism is generic such that the activation is equally achieved by seed pairing of unrelated small RNAs, suggesting that this mechanism may be utilized in the design of RNA-controlled synthetic circuits. Physiologically, RydC is the first small RNA known to regulate membrane stability.


Subject(s)
Methyltransferases/metabolism , RNA, Messenger/metabolism , RNA/physiology , 5' Untranslated Regions , Base Sequence , Enzyme Activation , Protein Biosynthesis , RNA/chemistry , Salmonella enterica/enzymology , Sequence Homology, Nucleic Acid
12.
Bioinformatics ; 31(7): 1150-3, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25433698

ABSTRACT

UNLABELLED: A major challenge for mass spectrometric-based lipidomics, aiming at describing all lipid species in a biological sample, lies in the computational and bioinformatic processing of the large amount of data that arises after data acquisition. Lipid-Pro is a software tool that supports the identification of lipids by interpreting large datasets generated by liquid chromatography--tandem mass spectrometry (LC-MS/MS) using the advanced data-independent acquisition mode MS(E). In the MS(E) mode, the instrument fragments all molecular ions generated from a sample and records time-resolved molecular ion data as well as fragment ion data for every detectable molecular ion. Lipid-Pro matches the retention time-aligned mass-to-charge ratio data of molecular- and fragment ions with a lipid database and generates a report on all identified lipid species. For generation of the lipid database, Lipid-Pro provides a module for construction of lipid species and their fragments using a flexible building block approach. Hence, Lipid-Pro is an easy to use analysis tool to interpret complex MS(E) lipidomics data and also offers a module to generate a user-specific lipid database. AVAILABILITY AND IMPLEMENTATION: Lipid-Pro is freely available at: http://www.neurogenetics.biozentrum.uni-wuerzburg.de/en/project/services/lipidpro/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Chromatography, Liquid/methods , Databases, Factual , Lipids/analysis , Metabolomics/methods , Software , Tandem Mass Spectrometry/methods , Humans
13.
Plant Physiol ; 167(4): 1592-603, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25667319

ABSTRACT

Different peroxidases, including 2-cysteine (2-Cys) peroxiredoxins (PRXs) and thylakoid ascorbate peroxidase (tAPX), have been proposed to be involved in the water-water cycle (WWC) and hydrogen peroxide (H2O2)-mediated signaling in plastids. We generated an Arabidopsis (Arabidopsis thaliana) double-mutant line deficient in the two plastid 2-Cys PRXs (2-Cys PRX A and B, 2cpa 2cpb) and a triple mutant deficient in 2-Cys PRXs and tAPX (2cpa 2cpb tapx). In contrast to wild-type and tapx single-knockout plants, 2cpa 2cpb double-knockout plants showed an impairment of photosynthetic efficiency and became photobleached under high light (HL) growth conditions. In addition, double-mutant plants also generated elevated levels of superoxide anion radicals, H2O2, and carbonylated proteins but lacked anthocyanin accumulation under HL stress conditions. Under HL conditions, 2-Cys PRXs seem to be essential in maintaining the WWC, whereas tAPX is dispensable. By comparison, this HL-sensitive phenotype was more severe in 2cpa 2cpb tapx triple-mutant plants, indicating that tAPX partially compensates for the loss of functional 2-Cys PRXs by mutation or inactivation by overoxidation. In response to HL, H2O2- and photooxidative stress-responsive marker genes were found to be dramatically up-regulated in 2cpa 2cpb tapx but not 2cpa 2cpb mutant plants, suggesting that HL-induced plastid to nucleus retrograde photooxidative stress signaling takes place after loss or inactivation of the WWC enzymes 2-Cys PRX A, 2-Cys PRX B, and tAPX.


Subject(s)
Arabidopsis/physiology , Ascorbate Peroxidases/metabolism , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Peroxiredoxins/metabolism , Water/physiology , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ascorbate Peroxidases/genetics , Carbon Dioxide/metabolism , Cysteine/metabolism , Light/adverse effects , Models, Biological , Mutation , Oxidative Stress , Photosynthesis/radiation effects , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/radiation effects , Plants, Genetically Modified , Plastids/metabolism , Seedlings/genetics , Seedlings/physiology , Seedlings/radiation effects , Stress, Physiological , Thylakoids/enzymology
14.
Plant Physiol ; 164(2): 570-83, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24368335

ABSTRACT

Agrobacterium tumefaciens-derived crown galls of Arabidopsis (Arabidopsis thaliana) contain elevated levels of unsaturated fatty acids and strongly express two fatty acid desaturase genes, ω3 FATTY ACID DESATURASE3 (FAD3) and STEAROYL-ACYL CARRIER PROTEIN Δ9-DESATURASE6 (SAD6). The fad3-2 mutant with impaired α-linolenic acid synthesis developed significantly smaller crown galls under normal, but not under high, relative humidity. This strongly suggests that FAD3 plays a role in increasing drought stress tolerance of crown galls. SAD6 is a member of the SAD family of as yet unknown function. Expression of the SAD6 gene is limited to hypoxia, a physiological condition found in crown galls. As no sad6 mutant exists and to link the function of SAD6 with fatty acid desaturation in crown galls, the lipid pattern was analyzed of plants with constitutive SAD6 overexpression (SAD6-OE). SAD6-OE plants contained lower stearic acid and higher oleic acid levels, which upon reduction of SAD6 overexpression by RNA interference (SAD6-OE-RNAi) regained wild-type-like levels. The development of crown galls was not affected either in SAD6-OE or SAD6-OE-RNAi or by RNA interference in crown galls. Since biochemical analysis of SAD6 in yeast (Saccharomyces cerevisiae) and Escherichia coli failed, SAD6 was ectopically expressed in the background of the well-known suppressor of salicylic acid-insensitive2 (ssi2-2) mutant to confirm the desaturase function of SAD6. All known ssi2-2 phenotypes were rescued, including the high stearic acid level. Thus, our findings suggest that SAD6 functions as a Δ9-desaturase, and together with FAD3 it increases the levels of unsaturated fatty acids in crown galls under hypoxia and drought stress conditions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/physiology , Droughts , Fatty Acid Desaturases/metabolism , Plant Tumors , Stress, Physiological , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Hypoxia/genetics , Chloroplasts/enzymology , Endoplasmic Reticulum/metabolism , Fatty Acid Desaturases/genetics , Fatty Acids/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Humidity , Inflorescence/enzymology , Inflorescence/genetics , Mutation/genetics , Phospholipids/metabolism , Plant Leaves/metabolism , Plant Tumors/genetics , Signal Transduction/genetics , Stress, Physiological/genetics , Up-Regulation/genetics
15.
J Exp Bot ; 66(15): 4517-26, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25977236

ABSTRACT

Heat acclimation enables plants to tolerate and survive short-term heat stress on hot days. In Arabidopsis thaliana, a genetically programmed heat shock response can be rapidly triggered in the temperature range of 32-38°C through activation of heat shock transcription factors (HSF). The heat shock response leads to heat acclimation and confers short-term protection against temperatures above 40°C. However, little is known about metabolic adjustments during heat acclimation.Untargeted metabolite analyses of A. thaliana seedlings revealed that levels of polyunsaturated triacylglycerols (TG) rapidly and dramatically increase during heat acclimation. TG accumulation was found to be temperature dependent in a temperature range of 32-50°C (optimum at 42°C) and reversible after a return from 37°C to normal growth temperatures. Heat-induced TGs accumulated in extra-chloroplastic compartments and increased in both roots and shoots to a similar extent. Analysis of mutants deficient in all four HSFA1 master regulator genes or the HSFA2 gene revealed that TG accumulation was not dependent on HSFs. Moreover, the TG response was not limited to heat stress because drought and salt stress also triggered an accumulation of TGs, but not short-term osmotic, cold, and high light stress. Lipid analysis revealed that heat-induced accumulation of TGs was not due to massive de novo fatty acid synthesis. It is hypothesized that TGs serve as transient stores for fatty acids that may be required for membrane remodelling during heat acclimation.


Subject(s)
Arabidopsis/physiology , Heat-Shock Response , Metabolome , Triglycerides/metabolism , Acclimatization , Arabidopsis/growth & development , Chromatography, High Pressure Liquid , Mass Spectrometry , Seedlings/growth & development , Seedlings/physiology , Temperature
16.
J Biol Chem ; 288(47): 34190-34204, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24108128

ABSTRACT

The survival of Mycobacterium tuberculosis depends on mycolic acids, very long α-alkyl-ß-hydroxy fatty acids comprising 60-90 carbon atoms. However, despite considerable efforts, little is known about how enzymes involved in mycolic acid biosynthesis recognize and bind their hydrophobic fatty acyl substrates. The condensing enzyme KasA is pivotal for the synthesis of very long (C38-42) fatty acids, the precursors of mycolic acids. To probe the mechanism of substrate and inhibitor recognition by KasA, we determined the structure of this protein in complex with a mycobacterial phospholipid and with several thiolactomycin derivatives that were designed as substrate analogs. Our structures provide consecutive snapshots along the reaction coordinate for the enzyme-catalyzed reaction and support an induced fit mechanism in which a wide cavity is established through the concerted opening of three gatekeeping residues and several α-helices. The stepwise characterization of the binding process provides mechanistic insights into the induced fit recognition in this system and serves as an excellent foundation for the development of high affinity KasA inhibitors.


Subject(s)
Antitubercular Agents/chemistry , Drug Delivery Systems , Enzyme Inhibitors/chemistry , Fatty Acid Synthases/chemistry , Mycobacterium tuberculosis/enzymology , Mycolic Acids/chemistry , Tuberculosis/enzymology , Antitubercular Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Fatty Acid Synthases/antagonists & inhibitors , Fatty Acid Synthases/metabolism , Mycolic Acids/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Tuberculosis/drug therapy
17.
Plant Cell Environ ; 37(2): 368-81, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23837879

ABSTRACT

Lipocalins are a group of multifunctional proteins, recognized as carriers of small lipophilic molecules, which have been characterized in bacteria and animals. Two true lipocalins have been recently identified in plants, the temperature-induced lipocalin (TIL) and the chloroplastic lipocalin (CHL), the expression of which is induced by various abiotic stresses. Each lipocalin appeared to be specialized in the responses to specific stress conditions in Arabidopsis thaliana, with AtTIL and AtCHL playing a protective role against heat and high light, respectively. The double mutant AtCHL KO × AtTIL KO deficient in both lipocalins was more sensitive to temperature, drought and light stresses than the single mutants, exhibiting intense lipid peroxidation. AtCHL deficiency dramatically enhanced the photosensitivity of mutants (vte1, npq1) affected in lipid protection mechanisms (tocopherols, zeaxanthin), confirming the role of lipocalins in the prevention of lipid peroxidation. Seeds of the AtCHL KO × AtTIL KO double mutant were very sensitive to natural and artificial ageing, and again this phenomenon was associated with the oxidation of polyunsaturated lipids. The presented results show that the Arabidopsis lipocalins AtTIL and AtCHL have overlapping functions in lipid protection which are essential for stress resistance and survival.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Lipocalins/physiology , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Droughts , Hot Temperature , Light , Lipid Peroxidation , Lipocalins/genetics , Oxidative Stress , Seeds/genetics , Seeds/physiology , Seeds/radiation effects
18.
Br J Nutr ; 111(11): 1945-56, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24661576

ABSTRACT

Prebiotics, probiotics and synbiotics are dietary ingredients with the potential to influence health and mucosal and systemic immune function by altering the composition of the gut microbiota. In the present study, a candidate prebiotic (xylo-oligosaccharide, XOS, 8 g/d), probiotic (Bifidobacterium animalis subsp. lactis Bi-07, 109 colony-forming units (CFU)/d) or synbiotic (8 g XOS+109 CFU Bi-07/d) was given to healthy adults (25-65 years) for 21 d. The aim was to identify the effect of the supplements on bowel habits, self-reported mood, composition of the gut microbiota, blood lipid concentrations and immune function. XOS supplementation increased mean bowel movements per d (P= 0·009), but did not alter the symptoms of bloating, abdominal pain or flatulence or the incidence of any reported adverse events compared with maltodextrin supplementation. XOS supplementation significantly increased participant-reported vitality (P= 0·003) and happiness (P= 0·034). Lowest reported use of analgesics was observed during the XOS+Bi-07 supplementation period (P= 0·004). XOS supplementation significantly increased faecal bifidobacterial counts (P= 0·008) and fasting plasma HDL concentrations (P= 0·005). Bi-07 supplementation significantly increased faecal B. lactis content (P= 0·007), lowered lipopolysaccharide-stimulated IL-4 secretion in whole-blood cultures (P= 0·035) and salivary IgA content (P= 0·040) and increased IL-6 secretion (P= 0·009). XOS supplementation resulted in lower expression of CD16/56 on natural killer T cells (P= 0·027) and lower IL-10 secretion (P= 0·049), while XOS and Bi-07 supplementation reduced the expression of CD19 on B cells (XOS × Bi-07, P= 0·009). The present study demonstrates that XOS induce bifidogenesis, improve aspects of the plasma lipid profile and modulate the markers of immune function in healthy adults. The provision of XOS+Bi-07 as a synbiotic may confer further benefits due to the discrete effects of Bi-07 on the gut microbiota and markers of immune function.


Subject(s)
Bifidobacterium/metabolism , Glucuronates/administration & dosage , Immune System , Oligosaccharides/administration & dosage , Synbiotics/administration & dosage , Adult , Biomarkers/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Colony Count, Microbial , Cross-Over Studies , Defecation , Double-Blind Method , Feces/microbiology , Female , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Glucuronates/chemistry , Healthy Volunteers , Humans , Immunoglobulin A/metabolism , Interleukin-10/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Male , Middle Aged , Oligosaccharides/chemistry , Prebiotics/administration & dosage , Probiotics/administration & dosage , Surveys and Questionnaires , Triglycerides/blood
19.
mBio ; : e0073224, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953353

ABSTRACT

Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.

20.
Plant Physiol ; 160(1): 365-78, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22822212

ABSTRACT

Lipid peroxidation (LPO) is induced by a variety of abiotic and biotic stresses. Although LPO is involved in diverse signaling processes, little is known about the oxidation mechanisms and major lipid targets. A systematic lipidomics analysis of LPO in the interaction of Arabidopsis (Arabidopsis thaliana) with Pseudomonas syringae revealed that LPO is predominantly confined to plastid lipids comprising galactolipid and triacylglyceride species and precedes programmed cell death. Singlet oxygen was identified as the major cause of lipid oxidation under basal conditions, while a 13-lipoxygenase (LOX2) and free radical-catalyzed lipid oxidation substantially contribute to the increase upon pathogen infection. Analysis of lox2 mutants revealed that LOX2 is essential for enzymatic membrane peroxidation but not for the pathogen-induced free jasmonate production. Despite massive oxidative modification of plastid lipids, levels of nonoxidized lipids dramatically increased after infection. Pathogen infection also induced an accumulation of fragmented lipids. Analysis of mutants defective in 9-lipoxygenases and LOX2 showed that galactolipid fragmentation is independent of LOXs. We provide strong in vivo evidence for a free radical-catalyzed galactolipid fragmentation mechanism responsible for the formation of the essential biotin precursor pimelic acid as well as of azelaic acid, which was previously postulated to prime the immune response of Arabidopsis. Our results suggest that azelaic acid is a general marker for LPO rather than a general immune signal. The proposed fragmentation mechanism rationalizes the pathogen-induced radical amplification and formation of electrophile signals such as phytoprostanes, malondialdehyde, and hexenal in plastids.


Subject(s)
Arabidopsis/chemistry , Dicarboxylic Acids/chemistry , Galactolipids/chemistry , Lipid Peroxidation , Pimelic Acids/chemistry , Plant Immunity , Arabidopsis/microbiology , Cell Membrane/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Lipoxygenase/chemistry , Oxidation-Reduction , Plant Leaves/chemistry , Plant Leaves/microbiology , Pseudomonas syringae/immunology , Pseudomonas syringae/pathogenicity , Singlet Oxygen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL