Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
PLoS Pathog ; 19(4): e1011293, 2023 04.
Article in English | MEDLINE | ID: mdl-37014911

ABSTRACT

The mutation profile of the SARS-CoV-2 Omicron (lineage BA.1) variant posed a concern for naturally acquired and vaccine-induced immunity. We investigated the ability of prior infection with an early SARS-CoV-2 ancestral isolate (Australia/VIC01/2020, VIC01) to protect against disease caused by BA.1. We established that BA.1 infection in naïve Syrian hamsters resulted in a less severe disease than a comparable dose of the ancestral virus, with fewer clinical signs including less weight loss. We present data to show that these clinical observations were almost absent in convalescent hamsters challenged with the same dose of BA.1 50 days after an initial infection with ancestral virus. These data provide evidence that convalescent immunity against ancestral SARS-CoV-2 is protective against BA.1 in the Syrian hamster model of infection. Comparison with published pre-clinical and clinical data supports consistency of the model and its predictive value for the outcome in humans. Further, the ability to detect protection against the less severe disease caused by BA.1 demonstrates continued value of the Syrian hamster model for evaluation of BA.1-specific countermeasures.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , Convalescence , Mesocricetus , SARS-CoV-2
2.
Cell Mol Life Sci ; 78(17-18): 6337-6349, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34398253

ABSTRACT

Signaling via the B-cell receptor (BCR) is a key driver and therapeutic target in chronic lymphocytic leukemia (CLL). BCR stimulation of CLL cells induces expression of eIF4A, an initiation factor important for translation of multiple oncoproteins, and reduces expression of PDCD4, a natural inhibitor of eIF4A, suggesting that eIF4A may be a critical nexus controlling protein expression downstream of the BCR in these cells. We, therefore, investigated the effect of eIF4A inhibitors (eIF4Ai) on BCR-induced responses. We demonstrated that eIF4Ai (silvestrol and rocaglamide A) reduced anti-IgM-induced global mRNA translation in CLL cells and also inhibited accumulation of MYC and MCL1, key drivers of proliferation and survival, respectively, without effects on upstream signaling responses (ERK1/2 and AKT phosphorylation). Analysis of normal naïve and non-switched memory B cells, likely counterparts of the two main subsets of CLL, demonstrated that basal RNA translation was higher in memory B cells, but was similarly increased and susceptible to eIF4Ai-mediated inhibition in both. We probed the fate of MYC mRNA in eIF4Ai-treated CLL cells and found that eIF4Ai caused a profound accumulation of MYC mRNA in anti-IgM treated cells. This was mediated by MYC mRNA stabilization and was not observed for MCL1 mRNA. Following drug wash-out, MYC mRNA levels declined but without substantial MYC protein accumulation, indicating that stabilized MYC mRNA remained blocked from translation. In conclusion, BCR-induced regulation of eIF4A may be a critical signal-dependent nexus for therapeutic attack in CLL and other B-cell malignancies, especially those dependent on MYC and/or MCL1.


Subject(s)
Eukaryotic Initiation Factor-4A/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Antigen, B-Cell/metabolism , Antibodies, Anti-Idiotypic/pharmacology , Benzofurans/pharmacology , Cells, Cultured , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Protein Biosynthesis/drug effects , Proto-Oncogene Proteins c-myc/genetics , RNA Stability/drug effects , RNA, Messenger/metabolism , Signal Transduction/drug effects , Triterpenes/pharmacology
3.
BMC Biol ; 16(1): 70, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29925374

ABSTRACT

BACKGROUND: Recent advances in clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing have led to the use of long single-stranded DNA (lssDNA) molecules for generating conditional mutations. However, there is still limited available data on the efficiency and reliability of this method. RESULTS: We generated conditional mouse alleles using lssDNA donor templates and performed extensive characterization of the resulting mutations. We observed that the use of lssDNA molecules as donors efficiently yielded founders bearing the conditional allele, with seven out of nine projects giving rise to modified alleles. However, rearranged alleles including nucleotide changes, indels, local rearrangements and additional integrations were also frequently generated by this method. Specifically, we found that alleles containing unexpected point mutations were found in three of the nine projects analyzed. Alleles originating from illegitimate repairs or partial integration of the donor were detected in eight projects. Furthermore, additional integrations of donor molecules were identified in four out of the seven projects analyzed by copy counting. This highlighted the requirement for a thorough allele validation by polymerase chain reaction, sequencing and copy counting of the mice generated through this method. We also demonstrated the feasibility of using lssDNA donors to generate thus far problematic point mutations distant from active CRISPR cutting sites by targeting two distinct genes (Gckr and Rims1). We propose a strategy to perform extensive quality control and validation of both types of mouse models generated using lssDNA donors. CONCLUSION: lssDNA donors reproducibly generate conditional alleles and can be used to introduce point mutations away from CRISPR/Cas9 cutting sites in mice. However, our work demonstrates that thorough quality control of new models is essential prior to reliably experimenting with mice generated by this method. These advances in genome editing techniques shift the challenge of mutagenesis from generation to the validation of new mutant models.


Subject(s)
DNA, Single-Stranded , Gene Editing/methods , Gene Targeting , Mice/genetics , Alleles , Animals , CRISPR-Cas Systems , Mutation , Reproducibility of Results
4.
Methods ; 121-122: 68-76, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28363792

ABSTRACT

The application of CRISPR/Cas9 technology has revolutionised genetics by greatly enhancing the efficacy of genome editing in the early embryo. Furthermore, the system has enabled the generation of allele types previously incompatible with in vivo mutagenesis. Despite its versatility and ease of implementation, CRISPR/Cas9 editing outcome is unpredictable and can generate mosaic founders. Therefore, careful genotyping and characterisation of new mutants is proving essential. The literature presents a wide range of protocols for molecular characterisation, each representing different levels of investment. We present strategies and protocols for designing, producing and screening CRISPR/Cas9 edited founders and genotyping their offspring according to desired allele type (indel, point mutation and deletion).


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , Endonucleases/genetics , Gene Editing/methods , Gene Knockout Techniques , Gene Transfer Techniques , RNA, Guide, Kinetoplastida/genetics , Alleles , Animals , Animals, Newborn , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Embryo, Mammalian , Endonucleases/metabolism , Gene Targeting/methods , Genome , Genotyping Techniques , INDEL Mutation , Mice , Mice, Transgenic , Microinjections , Point Mutation , Quality Control , RNA, Guide, Kinetoplastida/metabolism , Recombinational DNA Repair , Zygote/cytology , Zygote/metabolism
5.
Viruses ; 15(3)2023 03 11.
Article in English | MEDLINE | ID: mdl-36992434

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) and its expansion to a worldwide pandemic resulted in efforts to assess and develop interventions to reduce the disease burden. Despite the introduction of vaccine programmes against SARS-CoV-2, global incidence levels in early 2022 remained high, demonstrating a need for the development of physiologically relevant models, which are essential for the identification of alternative antiviral strategies. The hamster model of SARS-CoV-2 infection has been widely adopted due to similarities with humans in terms of host cell entry mechanism (via ACE2), and aspects of symptomology and virus shedding. We have previously described a natural transmission hamster model that better represents the natural course of infection. In the present study, we have conducted further testing of the model using the first-in-class antiviral Neumifil, which has previously shown promise against SARS-CoV-2 after a direct intranasal challenge. Neumifil is an intranasally delivered carbohydrate-binding module (CBM) which reduces the binding of viruses to their cellular receptor. By targeting the host cell, Neumifil has the potential to provide broad protection against multiple pathogens and variants. This study demonstrates that using a combination of a prophylactic and therapeutic delivery of Neumifil significantly reduces the severity of clinical signs in animals infected via a natural route of transmission and indicates a reduction of viral loads in the upper respiratory tract. Further refinements of the model are required in order to ensure the adequate transmission of the virus. However, our results provide additional data to the evidence base of Neumifil efficacy against respiratory virus infection and demonstrate that the transmission model is a potentially valuable tool for testing antiviral compounds against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Carbohydrates
6.
Viruses ; 14(5)2022 05 06.
Article in English | MEDLINE | ID: mdl-35632718

ABSTRACT

The rapid global spread of severe acute respiratory coronavirus 2 (SARS-CoV-2) has resulted in an urgent effort to find efficacious therapeutics. Broad-spectrum therapies which could be used for other respiratory pathogens confer advantages, as do those based on targeting host cells that are not prone to the development of resistance by the pathogen. We tested an intranasally delivered carbohydrate-binding module (CBM) therapy, termed Neumifil, which is based on a CBM that has previously been shown to offer protection against the influenza virus through the binding of sialic acid receptors. Using the recognised hamster model of SARS-CoV-2 infection, we demonstrate that Neumifil significantly reduces clinical disease severity and pathological changes in the nasal cavity. Furthermore, we demonstrate Neumifil binding to the human angiotensin-converting enzyme 2 (ACE2) receptor and spike protein of SARS-CoV-2. This is the first report describing the testing of this type of broad-spectrum antiviral therapy in vivo and provides evidence for the advancement of Neumifil in further preclinical and clinical studies.


Subject(s)
COVID-19 Drug Treatment , Peptidyl-Dipeptidase A , Carbohydrates , Cricetinae , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
Cell Signal ; 94: 110311, 2022 06.
Article in English | MEDLINE | ID: mdl-35306137

ABSTRACT

B-cell receptor (BCR) signaling plays a major role in the pathogenesis of B-cell malignancies and is an established target for therapy, including in chronic lymphocytic leukemia cells (CLL), the most common B-cell malignancy. We previously demonstrated that activation of BCR signaling in primary CLL cells downregulated expression of PDCD4, an inhibitor of the translational initiation factor eIF4A and a potential tumor suppressor in lymphoma. Regulation of the PDCD4/eIF4A axis appeared to be important for expression of the MYC oncoprotein as MYC mRNA translation was increased following BCR stimulation and MYC protein induction was repressed by pharmacological inhibition of eIF4A. Here we show that MYC expression is also associated with PDCD4 down-regulation in CLL cells in vivo and characterize the signaling pathways that mediate BCR-induced PDCD4 down-regulation in CLL and lymphoma cells. PDCD4 downregulation was mediated by proteasomal degradation as it was inhibited by proteasome inhibitors in both primary CLL cells and B-lymphoma cell lines. In lymphoma cells, PDCD4 degradation was predominantly dependent on signaling via the AKT pathway. By contrast, in CLL cells, both ERK and AKT pathways contributed to PDCD4 down-regulation and dual inhibition using ibrutinib with either MEK1/2 or mTORC1 inhibition was required to fully reverse PDCD4 down-regulation. Consistent with this, dual inhibition of BTK with MEK1/2 or mTORC1 resulted in the strongest inhibition of BCR-induced MYC expression. This study provides important new insight into the regulation of mRNA translation in B-cell malignancies and a rationale for combinations of kinase inhibitors to target translation control and MYC expression.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Apoptosis Regulatory Proteins/metabolism , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/therapeutic use , Signal Transduction
8.
Viruses ; 13(11)2021 11 09.
Article in English | MEDLINE | ID: mdl-34835057

ABSTRACT

The global pandemic of coronavirus disease (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to an international thrust to study pathogenesis and evaluate interventions. Experimental infection of hamsters and the resulting respiratory disease is one of the preferred animal models since clinical signs of disease and virus shedding are similar to more severe cases of human COVID-19. The main route of challenge has been direct inoculation of the virus via the intranasal route. To resemble the natural infection, we designed a bespoke natural transmission cage system to assess whether recipient animals housed in physically separate adjacent cages could become infected from a challenged donor animal in a central cage, with equal airflow across the two side cages. To optimise viral shedding in the donor animals, a low and moderate challenge dose were compared after direct intranasal challenge, but similar viral shedding responses were observed and no discernible difference in kinetics. The results from our natural transmission set-up demonstrate that most recipient hamsters are infected within the system developed, with variation in the kinetics and levels of disease between individual animals. Common clinical outputs used for the assessment in directly-challenged hamsters, such as weight loss, are less obvious in hamsters who become infected from naturally acquiring the infection. The results demonstrate the utility of a natural transmission model for further work on assessing the differences between virus strains and evaluating interventions using a challenge system which more closely resembles human infection.


Subject(s)
COVID-19/transmission , Disease Models, Animal , Mesocricetus , SARS-CoV-2/physiology , Animals , COVID-19/pathology , COVID-19/virology , Cricetinae , Female , Lung/pathology , Male , Nasal Cavity/pathology , Viral Load , Virus Shedding
9.
Blood Adv ; 4(14): 3316-3328, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32717030

ABSTRACT

Although the MYC oncogenic network represents an attractive therapeutic target for lymphoma, MYC inhibitors have been difficult to develop. Alternatively, inhibitors of epigenetic/ transcriptional regulators, particularly the bromodomain and extraterminal (BET) family, have been used to modulate MYC. However, current benzodiazepine-derivative BET inhibitors (BETi) elicit disappointing responses and dose-limiting toxicity in relapsed/refractory lymphoma, potentially because of enrichment of high-risk molecular features and chemical backbone-associated toxicities. Consequently, novel nonbenzodiazepine BETi and improved mechanistic understanding are required. Here we characterize the responses of aggressive MYC-driven lymphomas to 2 nonbenzodiazepine BETi: PLX51107 and PLX2853. Both invoked BIM-dependent apoptosis and in vivo therapy, associated with miR-17∼92 repression, in murine Eµ-myc lymphomas, with PLX2853 exhibiting enhanced potency. Accordingly, exogenous BCL-2 expression abrogated these effects. Because high BCL-2 expression is common in diffuse large B-cell lymphoma (DLBCL), BETi were ineffective in driving apoptosis and in vivo therapy of DLBCL cell lines, mirroring clinical results. However, BETi-mediated BIM upregulation and miR-17∼92 repression remained intact. Consequently, coadministration of BETi and ABT199/venetoclax restored cell death and in vivo therapy. Collectively, these data identify BIM-dependent apoptosis as a critical mechanism of action for this class of BETi that, via coadministration of BH3 mimetics, can deliver effective tumor control in DLBCL.


Subject(s)
Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Animals , Bridged Bicyclo Compounds, Heterocyclic , Cell Line, Tumor , Mice , Nerve Tissue Proteins/antagonists & inhibitors , Oxazoles , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-myc , Pyridines , Pyrroles , Receptors, Cell Surface/antagonists & inhibitors , Sulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL