Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 22(6): 746-756, 2021 06.
Article in English | MEDLINE | ID: mdl-34031618

ABSTRACT

T cell exhaustion presents one of the major hurdles to cancer immunotherapy. Among exhausted CD8+ tumor-infiltrating lymphocytes, the terminally exhausted subset contributes directly to tumor cell killing owing to its cytotoxic effector function. However, this subset does not respond to immune checkpoint blockades and is difficult to be reinvigorated with restored proliferative capacity. Here, we show that a half-life-extended interleukin-10-Fc fusion protein directly and potently enhanced expansion and effector function of terminally exhausted CD8+ tumor-infiltrating lymphocytes by promoting oxidative phosphorylation, a process that was independent of the progenitor exhausted T cells. Interleukin-10-Fc was a safe and highly efficient metabolic intervention that synergized with adoptive T cell transfer immunotherapy, leading to eradication of established solid tumors and durable cures in the majority of treated mice. These findings show that metabolic reprogramming by upregulating mitochondrial pyruvate carrier-dependent oxidative phosphorylation can revitalize terminally exhausted T cells and enhance the response to cancer immunotherapy.


Subject(s)
Immunotherapy, Adoptive/methods , Interleukin-10/pharmacology , Neoplasms/therapy , Oxidative Phosphorylation/drug effects , T-Lymphocytes, Cytotoxic/drug effects , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Cell Line, Tumor , Combined Modality Therapy/methods , Disease Models, Animal , Drug Synergism , Female , HEK293 Cells , Half-Life , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin Fc Fragments/therapeutic use , Interleukin-10/therapeutic use , Mice , Mice, Transgenic , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Neoplasms/immunology , Neoplasms/pathology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Interleukin-10/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
2.
Am J Hum Genet ; 111(9): 2044-2058, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39142283

ABSTRACT

The ENIGMA research consortium develops and applies methods to determine clinical significance of variants in hereditary breast and ovarian cancer genes. An ENIGMA BRCA1/2 classification sub-group, formed in 2015 as a ClinGen external expert panel, evolved into a ClinGen internal Variant Curation Expert Panel (VCEP) to align with Food and Drug Administration recognized processes for ClinVar contributions. The VCEP reviewed American College of Medical Genetics and Genomics/Association of Molecular Pathology (ACMG/AMP) classification criteria for relevance to interpreting BRCA1 and BRCA2 variants. Statistical methods were used to calibrate evidence strength for different data types. Pilot specifications were tested on 40 variants and documentation revised for clarity and ease of use. The original criterion descriptions for 13 evidence codes were considered non-applicable or overlapping with other criteria. Scenario of use was extended or re-purposed for eight codes. Extensive analysis and/or data review informed specification descriptions and weights for all codes. Specifications were applied to pilot variants with pre-existing ClinVar classification as follows: 13 uncertain significance or conflicting, 14 pathogenic and/or likely pathogenic, and 13 benign and/or likely benign. Review resolved classification for 11/13 uncertain significance or conflicting variants and retained or improved confidence in classification for the remaining variants. Alignment of pre-existing ENIGMA research classification processes with ACMG/AMP classification guidelines highlighted several gaps in the research processes and the baseline ACMG/AMP criteria. Calibration of evidence strength was key to justify utility and strength of different data types for gene-specific application. The gene-specific criteria demonstrated value for improving ACMG/AMP-aligned classification of BRCA1 and BRCA2 variants.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Genetic Variation , Humans , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Female , Breast Neoplasms/genetics , Genomics/methods , Databases, Genetic , Ovarian Neoplasms/genetics , Genetic Predisposition to Disease , Genetic Testing/methods
3.
Am J Hum Genet ; 109(12): 2163-2177, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36413997

ABSTRACT

Recommendations from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) for interpreting sequence variants specify the use of computational predictors as "supporting" level of evidence for pathogenicity or benignity using criteria PP3 and BP4, respectively. However, score intervals defined by tool developers, and ACMG/AMP recommendations that require the consensus of multiple predictors, lack quantitative support. Previously, we described a probabilistic framework that quantified the strengths of evidence (supporting, moderate, strong, very strong) within ACMG/AMP recommendations. We have extended this framework to computational predictors and introduce a new standard that converts a tool's scores to PP3 and BP4 evidence strengths. Our approach is based on estimating the local positive predictive value and can calibrate any computational tool or other continuous-scale evidence on any variant type. We estimate thresholds (score intervals) corresponding to each strength of evidence for pathogenicity and benignity for thirteen missense variant interpretation tools, using carefully assembled independent data sets. Most tools achieved supporting evidence level for both pathogenic and benign classification using newly established thresholds. Multiple tools reached score thresholds justifying moderate and several reached strong evidence levels. One tool reached very strong evidence level for benign classification on some variants. Based on these findings, we provide recommendations for evidence-based revisions of the PP3 and BP4 ACMG/AMP criteria using individual tools and future assessment of computational methods for clinical interpretation.


Subject(s)
Calibration , Humans , Consensus , Educational Status , Virulence
4.
Hepatology ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546278

ABSTRACT

BACKGROUND AND AIMS: The immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them a promising therapeutic approach for liver fibrosis (LF). Here, we postulated that MSCs could potentially suppress the pro-fibrotic activity of intrahepatic B cells, thereby inhibiting LF progression. APPROACH AND RESULTS: Administration of MSCs significantly ameliorated LF as indicated by reduced myofibroblast activation, collagen deposition, and inflammation. The treatment efficacy of MSCs can be attributed to decreased infiltration, activation, and pro-inflammatory cytokine production of intrahepatic B cells. Single-cell RNA sequencing revealed a distinct intrahepatic B cell atlas, and a subtype of naive B cells (B-II) was identified, which were markedly abundant in fibrotic liver, displaying mature features with elevated expression of several proliferative and inflammatory genes. Transcriptional profiling of total B cells revealed that intrahepatic B cells displayed activation, proliferation, and pro-inflammatory gene profile during LF. Fibrosis was attenuated in mice ablated with B cells (µMT) or in vivo treatment with anti-CD20. Moreover, fibrosis was recapitulated in µMT after adoptive transfer of B cells, which in turn could be rescued by MSC injection, validating the pathogenic function of B cells and the efficacy of MSCs on B cell-promoted LF progression. Mechanistically, MSCs could inhibit the proliferation and cytokine production of intrahepatic B cells through exosomes, regulating the Mitogen-activated protein kinase and Nuclear factor kappa B signaling pathways. CONCLUSIONS: Intrahepatic B cells serve as a target of MSCs, play an important role in the process of MSC-induced amelioration of LF, and may provide new clues for revealing the novel mechanisms of MSC action.

5.
Cell Mol Life Sci ; 81(1): 124, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466420

ABSTRACT

Acute lung injury (ALI) is an inflammatory disease associated with alveolar injury, subsequent macrophage activation, inflammatory cell infiltration, and cytokine production. Mesenchymal stem cells (MSCs) are beneficial for application in the treatment of inflammatory diseases due to their immunomodulatory effects. However, the mechanisms of regulatory effects by MSCs on macrophages in ALI need more in-depth study. Lung tissues were collected from mice for mouse lung organoid construction. Alveolar macrophages (AMs) derived from bronchoalveolar lavage and interstitial macrophages (IMs) derived from lung tissue were co-cultured, with novel matrigel-spreading lung organoids to construct an in vitro model of lung organoids-immune cells. Mouse compact bone-derived MSCs were co-cultured with organoids-macrophages to confirm their therapeutic effect on acute lung injury. Changes in transcriptome expression profile were analyzed by RNA sequencing. Well-established lung organoids expressed various lung cell type-specific markers. Lung organoids grown on spreading matrigel had the property of functional cells growing outside the lumen. Lipopolysaccharide (LPS)-induced injury promoted macrophage chemotaxis toward lung organoids and enhanced the expression of inflammation-associated genes in inflammation-injured lung organoids-macrophages compared with controls. Treatment with MSCs inhibited the injury progress and reduced the levels of inflammatory components. Furthermore, through the nuclear factor-κB pathway, MSC treatment inhibited inflammatory and phenotypic transformation of AMs and modulated the antigen-presenting function of IMs, thereby affecting the inflammatory phenotype of lung organoids. Lung organoids grown by spreading matrigel facilitate the reception of external stimuli and the construction of in vitro models containing immune cells, which is a potential novel model for disease research. MSCs exert protective effects against lung injury by regulating different functions of AMs and IMs in the lung, indicating a potential mechanism for therapeutic intervention.


Subject(s)
Acute Lung Injury , Mesenchymal Stem Cells , Pneumonia , Mice , Animals , Macrophages, Alveolar/metabolism , Lipopolysaccharides/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/therapy , Lung/metabolism , Macrophages/metabolism , Disease Models, Animal , Inflammation/therapy , Inflammation/metabolism , Organoids/metabolism
6.
Acta Pharmacol Sin ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39284877

ABSTRACT

Palmitoyl-protein thioesterase 1 (PPT1) is a lysosomal depalmitoylation enzyme that mediates protein posttranslational modifications. Loss-of-function mutation of PPT1 causes a failure of the lysosomal degradation of palmitoylated proteins and results in a congenital disease characterized by progressive neuronal degeneration referred to as infantile neuronal ceroid lipofuscinosis (INCL). A mouse knock-in model of PPT1 (PPT1-KI) was established by introducing the R151X mutation into exon 5 of the PPT1 gene, which exhibited INCL-like pathological lesions. We previously reported that hippocampal γ oscillations were impaired in PPT1 mice. Hippocampal γ oscillations can be enhanced by selective activation of the dopamine D4 receptor (DR4), a dopamine D2-like receptor. In this study, we investigated the changes in DR expression and the effects of dopamine and various DR agonists on neural network activity, cognition and motor function in PPT1KI mice. Cognition and motor defects were evaluated via Y-maze, novel object recognition and rotarod tests. Extracellular field potentials were elicited in hippocampal slices, and neuronal network oscillations in the gamma frequency band (γ oscillations) were induced by perfusion with kainic acid (200 nM). PPT1KI mice displayed progressive impairments in γ oscillations and hippocampus-related memory, as well as abnormal expression profiles of dopamine receptors with preserved expression of DR1 and 3, increased membrane expression of DR4 and decreased DR2 levels. The immunocytochemistry analysis revealed the colocalization of PPT1 with DR4 or DR2 in the soma and large dendrites of both WT and PPT1KI mice. Immunoprecipitation confirmed the interaction between PPT1 and DR4 or DR2. The impaired γ oscillations and cognitive functions were largely restored by the application of exogenous dopamine, the selective DR2 agonist quinpirole or the DR4 agonist A412997. Furthermore, the administration of A412997 (0.5 mg/kg, i.p.) significantly upregulated the activity of CaMKII in the hippocampus of 5-month-old PPT1KI mice. Collectively, these results suggest that the activation of D2-like dopamine receptors improves cognition and network activity in PPT1KI mice and that specific DR subunits may be potential targets for the intervention of neurodegenerative disorders, such as INCL.

7.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000320

ABSTRACT

The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cadmium , Gene Expression Regulation, Plant , Plants, Genetically Modified , Populus , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Cadmium/toxicity , Cadmium/metabolism , Populus/genetics , Populus/metabolism , Populus/drug effects , Gene Expression Regulation, Plant/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Stress, Physiological/drug effects , Protein Kinases/metabolism , Protein Kinases/genetics , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding
8.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273303

ABSTRACT

Expansins are cell wall (CW) proteins that mediate the CW loosening and regulate salt tolerance in a positive or negative way. However, the role of Populus trichocarpa expansin A6 (PtEXPA6) in salt tolerance and the relevance to cell wall loosening is still unclear in poplars. PtEXPA6 gene was transferred into the hybrid species, Populus alba × P. tremula var. glandulosa (84K) and Populus tremula × P. alba INRA '717-1B4' (717-1B4). Under salt stress, the stem growth, gas exchange, chlorophyll fluorescence, activity and transcription of antioxidant enzymes, Na+ content, and Na+ flux of root xylem and petiole vascular bundle were investigated in wild-type and transgenic poplars. The correlation analysis and principal component analysis (PCA) were used to analyze the correlations among the characteristics and principal components. Our results show that the transcription of PtEXPA6 was downregulated upon a prolonged duration of salt stress (48 h) after a transient increase induced by NaCl (100 mM). The PtEXPA6-transgenic poplars of 84K and 717-1B4 showed a greater reduction (42-65%) in stem height and diameter growth after 15 days of NaCl treatment compared with wild-type (WT) poplars (11-41%). The Na+ accumulation in roots, stems, and leaves was 14-83% higher in the transgenic lines than in the WT. The Na+ buildup in the transgenic poplars affects photosynthesis; the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and the transcription of PODa2, SOD [Cu-Zn], and CAT1. Transient flux kinetics showed that the Na+ efflux of root xylem and leaf petiole vascular bundle were 1.9-3.5-fold greater in the PtEXPA6-transgenic poplars than in the WT poplars. PtEXPA6 overexpression increased root contractility and extensibility by 33% and 32%, indicating that PtEXPA6 increased the CW loosening in the transgenic poplars of 84K and 717-1B4. Noteworthily, the PtEXPA6-promoted CW loosening was shown to facilitate Na+ efflux of root xylem and petiole vascular bundle in the transgenic poplars. We conclude that the overexpression of PtEXPA6 leads to CW loosening that facilitates the radial translocation of Na+ into the root xylem and the subsequent Na+ translocation from roots to leaves, resulting in an excessive Na+ accumulation and consequently, reducing salt tolerance in transgenic poplars. Therefore, the downregulation of PtEXPA6 in NaCl-treated Populus trichocarpa favors the maintenance of ionic and reactive oxygen species (ROS) homeostasis under long-term salt stress.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Populus , Salt Stress , Sodium , Populus/genetics , Populus/metabolism , Populus/growth & development , Populus/drug effects , Sodium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Xylem/metabolism , Xylem/genetics , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Salt Tolerance/genetics , Biological Transport
9.
Pharmacol Res ; 194: 106851, 2023 08.
Article in English | MEDLINE | ID: mdl-37453673

ABSTRACT

Hypoxia-inducible factor-2α (HIF-2α) is a transcription factor responsible for regulating genes related to angiogenesis and metabolism. This study aims to explore the effect of a previously unreported mutation c.C2473T (p.R825S) in the C-terminal transactivation domain (CTAD) of HIF-2α that we detected in tissue of patients with liver disease. We sequenced available liver and matched blood samples obtained during partial liver resection or liver transplantation performed for clinical indications including hepatocellular carcinoma and liver failure. In tandem, we constructed cell lines and a transgenic mouse model bearing the corresponding identified mutation in HIF-2α from which we extracted primary hepatocytes. Lipid accumulation was evaluated in these cells and liver tissue from the mouse model using Oil Red O staining and biochemical measurements. We identified a mutation in the CTAD of HIF-2α (c.C2473T; p.R825S) in 5 of 356 liver samples obtained from patients with hepatopathy and dyslipidemia. We found that introduction of this mutation into the mouse model led to an elevated triglyceride level, lipid droplet accumulation in liver of the mutant mice and in their extracted primary hepatocytes, and increased transcription of genes related to hepatic fatty acid transport and synthesis in the mutant compared to the control groups. In mutant mice and cells, the protein levels of nuclear HIF-2α and its target perilipin-2 (PLIN2), a lipid droplet-related gene, were also elevated. Decreased lipophagy was observed in mutant groups. Our study defines a subpopulation of dyslipidemia that is caused by this HIF-2α mutation. This may have implications for personalized treatment.


Subject(s)
Dyslipidemias , Liver Neoplasms , Animals , Humans , Mice , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Dyslipidemias/genetics , Lipids , Mutation
10.
Eur Radiol ; 33(5): 3592-3603, 2023 May.
Article in English | MEDLINE | ID: mdl-36884087

ABSTRACT

OBJECTIVES: To estimate the potential of preoperative MR imaging features and clinical parameters in the risk stratification of patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm without microvascular invasion (MVI) after hepatectomy. METHODS: The study enrolled 166 patients with histopathological confirmed MVI-negative HCC retrospectively. The MR imaging features were evaluated by two radiologists independently. The risk factors associated with recurrence-free survival (RFS) were identified by univariate Cox regression analysis and the least absolute shrinkage and selection operator Cox regression analysis. A predictive nomogram was developed based on these risk factors, and the performance was tested in the validation cohort. The RFS was analyzed by using the Kaplan-Meier survival curves and log-rank test. RESULTS: Among the 166 patients with solitary MVI-negative HCC, 86 patients presented with postoperative recurrence. Multivariate Cox regression analysis indicated that cirrhosis, tumor size, hepatitis, albumin, arterial phase hyperenhancement (APHE), washout, and mosaic architecture were risk factors associated with poor RFS and then incorporated into the nomogram. The nomogram achieved good performance with C-index values of 0.713 and 0.707 in the development and validation cohorts, respectively. Furthermore, patients were stratified into high- and low-risk subgroups, and significant prognostic differences were found between the different subgroups in both cohorts (p < 0.001 and p = 0.024, respectively). CONCLUSION: The nomogram incorporated preoperative MR imaging features, and clinical parameters can be a simple and reliable tool for predicting RFS and achieving risk stratification in patients with solitary MVI-negative HCC. KEY POINTS: • Application of preoperative MR imaging features and clinical parameters can effectively predict RFS in patients with solitary MVI-negative HCC. • Risk factors including cirrhosis, tumor size, hepatitis, albumin, APHE, washout, and mosaic architecture were associated with worse prognosis in patients with solitary MVI-negative HCC. • Based on the nomogram incorporating these risk factors, the MVI-negative HCC patients could be stratified into two subgroups with significant different prognoses.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Prognosis , Liver Neoplasms/pathology , Retrospective Studies , Neoplasm Invasiveness/pathology , Liver Cirrhosis , Magnetic Resonance Imaging , Risk Assessment
11.
Article in English | MEDLINE | ID: mdl-37944979

ABSTRACT

Meta-analysis was used to analyze the efficacy of conventional western medicine plus Buyanghuanwu Decoction in the treatment of convalescent patients with stroke, and to observe its influence on the neurological function and condition of patients. According to the research direction and set keywords, the research literature was retrieved from Wanfang Medical Science, CNKI, VIP, PubMed and other domestic and foreign literature databases. A total of 13 articles with 1023 patients were included in this meta-analysis, with a large sample size. Outcome measures of the meta-analysis included efficacy, National Institutes of Health Stroke Scale (NIHSS) score, Barthel Index Rating Scale (BI) score, C-reactive protein (CRP) and homocysteine (Hcy) score. Compared with western medicine group, the increase of BI score and the decrease of NIHSS score, CRP and Hcy in combined medicine group were greater (P < .05). Conventional Western medicine combined with Buyang Huanwu Decoction can improve the rehabilitation effect, living ability and neurological function of patients with stroke, and reducing the inflammatory response, it is beneficial to create favorable conditions for patients' rehabilitation and improve prognosis, which is worthy of clinical application. The effect of this protocol on long-term survival of patients can be further analyzed in the future.

12.
Hum Mutat ; 43(12): 1921-1944, 2022 12.
Article in English | MEDLINE | ID: mdl-35979650

ABSTRACT

Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.


Subject(s)
Genes, BRCA2 , RNA Splice Sites , Animals , Humans , Mice , Alternative Splicing , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , RNA Splicing , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
Cancer Cell Int ; 22(1): 166, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35488263

ABSTRACT

Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME) with diverse functions such as extracellular matrix (ECM) remodeling, modulation of metabolism and angiogenesis, and crosstalk with both cancer cells and infiltrating immune cells by production of growth factors, cytokines, and chemokines. Within the TME milieu, CAFs exhibit morphological and functional transitions with relatively specific markers and hold tremendous potential to facilitate tumorigenesis, development, and resistance towards multiple therapeutic strategies including chemotherapy, radiotherapy, targeted therapy, anti-angiogenesis therapy, immunotherapy, and endocrine therapy. Accordingly, CAFs themselves and the downstream effectors and/or signaling pathways are potential targets for optimizing the sensitivity of anti-cancer therapies. This review aims to provide a detailed landscape of the role that CAFs play in conferring therapeutic resistance in different cancers and the underlying mechanisms. The translational and therapeutic perspectives of CAFs in the individualized treatment of malignant tumors are also discussed.

14.
Pharmacol Res ; 179: 106229, 2022 05.
Article in English | MEDLINE | ID: mdl-35470065

ABSTRACT

Acute liver injury (ALI) is characterized by massive hepatocyte necrosis and subsequent recruitment of myeloid cells to liver. Mesenchymal stem cells (MSCs) have therapeutic potential for ALI through their immunoregulation on macrophages, but the mechanism is not completely clear due to the heterogeneity and controversy of liver macrophages. Here, we detected the survival rate, biochemical indexes, histopathology, and inflammatory chemokine levels to assess the efficacy of MSC treatment on CCl4-induced ALI of C57BL/6 mice. Furthermore, flow cytometry and single-cell RNA sequencing (scRNA-Seq) were used to precisely distinguish macrophage populations and reveal the immunoregulation of MSCs. MSC treatment could effectively alleviate ALI and mitigate the recruitment of mononuclear phagocytes. Flow cytometry and scRNA-Seq analyses collectively indicated that there were monocytes with high Ly6C expression and heterogeneous monocyte-derived macrophages (MoMF) with low Ly6C expression in liver. Ly6Chi pro-inflammatory monocytes and Ly6Clo MoMF with powerful phagocytosis dominated during the acute injury period. MSC treatment promoted the transition from Ly6Chi to Ly6Clo population, inhibit the proinflammatory function of monocytes and promote the lysosomal function of MoMF. Furthermore, MSCs attenuated the recruitment of neutrophils by reducing the expression of CXCL2 of MoMF. MoMF with high expression of arginase 1 appeared during the recovery period, and MSCs could increase their expression of arginase 1, which may promote liver repair. To sum up, we demonstrated the characteristics of distinct MoMF during different periods of ALI and revealed their functional changes after MSC treatment, providing immunotherapeutic targets for MSC treatment of ALI.


Subject(s)
Mesenchymal Stem Cells , Single-Cell Analysis , Animals , Arginase/metabolism , Arginase/pharmacology , Homeostasis , Liver , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL
15.
J Clin Lab Anal ; 36(9): e24642, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36082465

ABSTRACT

BACKGROUND: Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is an autoimmune disease often accompanied by rapidly progressive renal failure, and the genetic background is still unknown. Our study was performed to test whether autophagy-related 16 like 1 (ATG16L1) rs4663402 and rs4663396 single nucleotide polymorphisms (SNPs) were associated with AAV in the Chinese Guangxi population. METHODS: One hundred seventy seven unrelated AAV patients and 216 healthy controls were included in this case-control study. Multiplex polymerase chain reaction combined with high-throughput sequencing was used for typing, and SNPStats and SHEsis were used for association analysis, pairwise linkage disequilibrium, and haplotype analysis. RESULTS: rs4663402 and rs4663396 were in Hardy-Weinberg equilibrium in AAV and control groups. The frequencies of rs4663402 AA, AT, and TT genotypes were 82.5%, 16.9%, and 0.6%, respectively, in patients with AAV, and 83.5%, 16.2%, and 0.5%, respectively, in controls. The frequencies of rs4663396 CC, CT, and TT genotypes were 63.8%, 33.9%, and 2.3%, respectively, in patients with AAV, and 69.2%, 26.6%, and 4.2%, respectively, in controls. Haplotype analysis revealed two SNPs in a single haplotype block (D' = 1.0). Our logistic regression adjusted for sex and age showed no association between rs4663402 and rs4663396 and the risk for AAV in genetic models (p > 0.05). However, ATG16L1 rs4663396 CC and CT + TT genotypes exhibited statistically significant differences in the incidence of arthralgia (p = 0.03). CONCLUSIONS: Our results indicated that ATG16L1 rs4663402 and rs4663396 polymorphisms were not associated with AAV in the Chinese Guangxi population. ATG16L1 rs4663396 CT + TT genotype may be associated with arthralgia.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Autophagy-Related Proteins , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/epidemiology , Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/genetics , Arthralgia , Autophagy-Related Proteins/genetics , Case-Control Studies , China/epidemiology , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide
16.
Molecules ; 27(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296584

ABSTRACT

Graphite anodes are well established for commercial use in lithium-ion battery systems. However, the limited capacity of graphite limits the further development of lithium-ion batteries. Hard carbon obtained from biomass is a highly promising anode material, with the advantage of enriched microcrystalline structure characteristics for better lithium storage. Tannin, a secondary product of metabolism during plant growth, has a rich source on earth. But the mechanism of hard carbon obtained from its derivation in lithium-ion batteries has been little studied. This paper successfully applied the hard carbon obtained from tannin as anode and illustrated the relationship between its structure and lithium storage performance. Meanwhile, to further enhance the performance, graphene oxide is skillfully compounded. The contact with the electrolyte and the charge transfer capability are effectively enhanced, then the capacity of PVP-HC is 255.5 mAh g-1 after 200 cycles at a current density of 400 mA g-1, with a capacity retention rate of 91.25%. The present work lays the foundation and opens up ideas for the application of biomass-derived hard carbon in lithium anodes.


Subject(s)
Graphite , Lithium , Lithium/chemistry , Graphite/chemistry , Carbon/chemistry , Tannins , Electrodes , Ions/chemistry , Electrolytes
17.
Hum Mutat ; 42(3): 223-236, 2021 03.
Article in English | MEDLINE | ID: mdl-33300245

ABSTRACT

Germline pathogenic variants in TP53 are associated with Li-Fraumeni syndrome, a cancer predisposition disorder inherited in an autosomal dominant pattern associated with a high risk of malignancy, including early-onset breast cancers, sarcomas, adrenocortical carcinomas, and brain tumors. Intense cancer surveillance for individuals with TP53 germline pathogenic variants is associated with reduced cancer-related mortality. Accurate and consistent classification of germline variants across clinical and research laboratories is important to ensure appropriate cancer surveillance recommendations. Here, we describe the work performed by the Clinical Genome Resource TP53 Variant Curation Expert Panel (ClinGen TP53 VCEP) focused on specifying the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines for germline variant classification to the TP53 gene. Specifications were developed for 20 ACMG/AMP criteria, while nine were deemed not applicable. The original strength level for the 10 criteria was also adjusted due to current evidence. Use of TP53-specific guidelines and sharing of clinical data among experts and clinical laboratories led to a decrease in variants of uncertain significance from 28% to 12% compared with the original guidelines. The ClinGen TP53 VCEP recommends the use of these TP53-specific ACMG/AMP guidelines as the standard strategy for TP53 germline variant classification.


Subject(s)
Genetic Variation , Li-Fraumeni Syndrome , Tumor Suppressor Protein p53 , Genetic Testing , Germ Cells , Humans , Li-Fraumeni Syndrome/diagnosis , Li-Fraumeni Syndrome/genetics , Tumor Suppressor Protein p53/genetics , United States
18.
FASEB J ; 34(8): 10146-10167, 2020 08.
Article in English | MEDLINE | ID: mdl-32536017

ABSTRACT

Rhodopsin mutation and misfolding is a common cause of autosomal dominant retinitis pigmentosa (RP). Using a luciferase reporter assay, we undertook a small-molecule high-throughput screening (HTS) of 68, 979 compounds and identified nine compounds that selectively reduced the misfolded P23H rhodopsin without an effect on the wild type (WT) rhodopsin protein. Further, we found five of these compounds, including methotrexate (MTX), promoted P23H rhodopsin degradation that also cleared out other misfolded rhodopsin mutant proteins. We showed MTX increased P23H rhodopsin degradation via the lysosomal but not the proteasomal pathway. Importantly, one intravitreal injection (IVI) of 25 pmol MTX increased electroretinogram (ERG) response and rhodopsin level in the retinae of RhoP23H/+ knock-in mice at 1 month of age. Additionally, four weekly IVIs increased the photoreceptor cell number in the retinae of RhoP23H/+ mice compared to vehicle control. Our study indicates a therapeutic potential of repurposing MTX for the treatment of rhodopsin-associated RP.


Subject(s)
Retinitis Pigmentosa/metabolism , Rhodopsin/metabolism , Animals , Cell Line , Electroretinography/methods , Female , HEK293 Cells , Humans , Male , Mice , Mutant Proteins/metabolism , Mutation/genetics , NIH 3T3 Cells , Photoreceptor Cells/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Folding , Retina/metabolism , Retinitis Pigmentosa/genetics , Rhodopsin/genetics
19.
Traffic ; 19(2): 122-137, 2018 02.
Article in English | MEDLINE | ID: mdl-29112302

ABSTRACT

Iron is essential for most living organisms. The iron-regulated transporter1 (IRT1) plays a major role in iron uptake in roots, and its trafficking from endoplasmic reticulum (ER) to plasma membrane (PM) is tightly coordinated with changes in iron environment. However, studies on the IRT1 response are limited. Here, we report that Malus xiaojinesis IRT1 (MxIRT1) associates with detergent-resistant membranes (DRMs, a biochemical counterpart of PM microdomains), whereas the PM microdomains are known platforms for signal transduction in the PM. Depending on the shift of MxIRT1 from microdomains to homogeneous regions in PM, MxIRT1-mediated iron absorption is activated by the cholesterol recognition/interaction amino acid consensus (CRAC) motif of MxIRT1. MxIRT1 initially associates with DRMs in ER via its transmembrane domain 1 (TMD1), and thus begins DRMs-dependent intracellular trafficking. Subsequently, MxIRT1 is sequestered in COPII vesicles via the ER export signal sequence in MxIRT1. These studies suggest that iron homeostasis is influenced by the CRAC motif and TMD1 domain due to their determination of MxIRT1-DRMs association.


Subject(s)
Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Cholesterol/metabolism , Detergents , Malus , Protein Sorting Signals/physiology
20.
J Cell Physiol ; 235(10): 6779-6793, 2020 10.
Article in English | MEDLINE | ID: mdl-31990045

ABSTRACT

The placenta and umbilical cord are pre-eminent candidate sources of mesenchymal stem cells (MSCs). However, placenta-derived MSCs (P-MSCs) showed greater proliferation capacity than umbilical cord-derived MSCs (UC-MSCs) in our study. We investigated the drivers of this proliferation difference and elucidated the mechanisms of proliferation regulation. Proteomic profiling and Gene Ontology (GO) functional enrichment were conducted to identify candidate proteins that may influence proliferation. Using lentiviral or small interfering RNA infection, we established overexpression and knockdown models and observed changes in cell proliferation to examine whether a relationship exists between the candidate proteins and proliferation capacity. Real-time quantitative polymerase chain reaction, western blot analysis, and immunofluorescence assays were conducted to elucidate the mechanisms underlying proliferation. Six candidate proteins were selected based on the results of proteomic profiling and GO functional enrichment. Through further validation, yes-associated protein 1 (YAP1) and ß-catenin were confirmed to affect MSCs proliferation rates. YAP1 and ß-catenin showed increased nuclear colocalization during cell expansion. YAP1 overexpression significantly enhanced proliferation capacity and upregulated the expression of both ß-catenin and the transcriptional targets of Wnt signaling, CCND1, and c-MYC, whereas silencing ß-catenin attenuated this influence. We found that YAP1 directly interacts with ß-catenin in the nucleus to form a transcriptional YAP/ß-catenin/TCF4 complex. Our study revealed that YAP1 and ß-catenin caused the different proliferation capacities of P-MSCs and UC-MSCs. Mechanism analysis showed that YAP1 stabilized the nuclear ß-catenin protein, and also triggered the Wnt/ß-catenin pathway, promoting proliferation.


Subject(s)
Cell Proliferation/physiology , Mesenchymal Stem Cells/physiology , Placenta/physiology , Umbilical Cord/physiology , Cell Nucleus/metabolism , Cell Nucleus/physiology , Cells, Cultured , Female , Humans , Mesenchymal Stem Cells/metabolism , Placenta/metabolism , Pregnancy , Proteomics/methods , Transcription Factors/metabolism , Umbilical Cord/metabolism , Up-Regulation/physiology , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL