Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 427
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genomics ; 116(1): 110762, 2024 01.
Article in English | MEDLINE | ID: mdl-38104669

ABSTRACT

Monoubiquitination of FANCD2 is a central step in the activation of the Fanconi anemia (FA) pathway after DNA damage. Defects in the FA pathway centered around FANCD2 not only lead to genomic instability but also induce tumorigenesis. At present, few studies have investigated FANCD2 in tumors, and no pan-cancer research on FANCD2 has been conducted. We conducted a comprehensive analysis of the role of FANCD2 in cancer using public databases and other published studies. Moreover, we evaluated the role of FANCD2 in the proliferation, migration and invasion of lung adenocarcinoma cells through in vitro and in vivo experiments, and explored the role of FANCD2 in cisplatin chemoresistance. We investigated the regulatory effect of FANCD2 on the cell cycle of lung adenocarcinoma cells by flow cytometry, and verified this effect by western blotting. FANCD2 expression is elevated in most TCGA tumors and shows a strong positive correlation with poor prognosis in tumor patients. In addition, FANCD2 expression shows strong correlations with immune infiltration, immune checkpoints, the tumor mutation burden (TMB), and microsatellite instability (MSI), which are immune-related features, suggesting that it may be a potential target of tumor immunotherapy. We further found that FANCD2 significantly promotes the proliferation, invasion, and migration abilities of lung adenocarcinoma cells and that its ability to promote cancer cell proliferation may be achieved by modulating the cell cycle. The findings indicate that FANCD2 is a potential biomarker and therapeutic target in cancer treatment by analyzing the oncogenic role of FANCD2 in different tumors.


Subject(s)
Carcinogenesis , Fanconi Anemia Complementation Group D2 Protein , Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Carcinogenesis/genetics , DNA Damage , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group D2 Protein/genetics , Fanconi Anemia Complementation Group D2 Protein/metabolism , Neoplasms/genetics , Neoplasms/pathology
2.
Nano Lett ; 24(28): 8770-8777, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968171

ABSTRACT

Oxygen-mediated triplet-triplet annihilation upconversion (TTA-UC) quenching limits the application of such organic upconversion materials. Here, we report that the photooxidation of organic amines is an effective and versatile strategy to suppress oxygen-mediated upconversion quenching in both organic solvents and aqueous solutions. The strategy is based on the dual role of organic amines in photooxidation, i.e., as singlet oxygen scavengers and electron donors. Under photoexcitation, the photosensitizer sensitizes oxygen to produce singlet oxygen for the oxidation of alkylamine, reducing the oxygen concentration. However, photoinduced electron transfer among photosensitizers, organic amines, and oxygen leads to the production of superoxide anions that suppress TTA-UC. To observe oxygen-tolerating TTA-UC, we find that alkyl secondary amines can balance the production of singlet oxygen and superoxide anions. We then utilize polyethyleneimine (PEI) to synthesize amphiphilic polymers to encapsulate TTA-UC pairs for the formation of water-dispersible, ultrasmall, and multicolor-emitting TTA-UC nanoparticles.

3.
Brain Behav Immun ; 115: 143-156, 2024 01.
Article in English | MEDLINE | ID: mdl-37848095

ABSTRACT

Growing evidence suggests that neurovascular dysfunction characterized by blood-brain barrier (BBB) breakdown underlies the development of psychiatric disorders, such as major depressive disorder (MDD). Tight junction (TJ) proteins are critical modulators of homeostasis and BBB integrity. TJ protein Claudin-5 is the most dominant BBB component and is downregulated in numerous depression models; however, the underlying mechanisms remain elusive. Here, we demonstrate a molecular basis of BBB breakdown that links stress and depression. We implemented an animal model of depression, chronic unpredictable mild stress (CUMS) in male C57BL/6 mice, and showed that hippocampal BBB breakdown was closely associated with stress vulnerability. Concomitantly, we found that dysregulated Cldn5 level coupled with repression of the histone methylation signature at its promoter contributed to stress-induced BBB dysfunction and depression. Moreover, histone methyltransferase enhancer of zeste homolog 2 (EZH2) knockdown improved Cldn5 expression and alleviated depression-like behaviors by suppressing the tri-methylation of lysine 27 on histone 3 (H3K27me3) in chronically stressed mice. Furthermore, the stress-induced excessive transfer of peripheral cytokine tumor necrosis factor-α (TNF-α) into the hippocampus was prevented by Claudin-5 overexpression and EZH2 knockdown. Interestingly, antidepressant treatment could inhibit H3K27me3 deposition at the Cldn5 promoter, reversing the loss of the encoded protein and BBB damage. Considered together, these findings reveal the importance of the hippocampal EZH2-Claudin-5 axis in regulating neurovascular function and MDD development, providing potential therapeutic targets for this psychiatric illness.


Subject(s)
Blood-Brain Barrier , Depressive Disorder, Major , Humans , Male , Mice , Animals , Blood-Brain Barrier/metabolism , Tumor Necrosis Factor-alpha/metabolism , Histones/metabolism , Claudin-5/genetics , Claudin-5/metabolism , Depression/metabolism , Depressive Disorder, Major/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Mice, Inbred C57BL
4.
BMC Infect Dis ; 24(1): 256, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395754

ABSTRACT

BACKGROUND: Occupational blood and body fluid exposure (OBEs) is a highly concerning global health problem in health facilities. Improper or inadequate post-exposure practices increase the risk of infection with bloodborne pathogens. Understanding risk factors for OBEs and evaluating the post-exposure practices will contribute to healthcare workers' (HCWs) well-being. METHODS: This study retrospectively synthesized and reviewed the 10-year data (from 2010 to 2020) on OBEs in a tertiary teaching hospital. RESULTS: A total of 519 HCWs have reported OBEs, increasing yearly from 2010 to 2020. Of these, most were nurses (247 [47.2%]), female (390 [75.1%]), at 23-27 years old (207 [39.9%]). The hepatitis B was the primary bloodborne pathogen exposed to HCWs, with 285 (54.9%) cases, internal medicine was the main exposure site (161 [31.0%]), and sharp injury was the main exposure route (439 [84.6%]). Data analysis shows that there are significant differences between exposure route, exposed pathogens, and exposure site among the different occupational categories (X2 = 14.5, 43.7, 94.3, all P < 0.001). 3.3% of HCWs did not take any post-exposure practices. For percutaneous exposure, 4.7% did not rinse the wound, 3.3% did not squeeze out the wound, and 2.3% did not disinfect the wound. In the case of mucosal exposure, 90.4% clean the exposure area immediately. CONCLUSIONS: The data from the past decade underscores the seriousness of current situation of OBEs in Chinese tertiary hospital, particularly among young HCWs, and with hepatitis B as the predominant blood-borne pathogen. This study also identifies HCWs may take incorrect post-exposure practices. It's crucial in the future to discuss the effectiveness of main groups targeted for focused specialty-specific guidance for the prevention of such accidents, meanwhile, to include blood-borne disease immunity testing in mandatory health check-ups. Additionally, focus on optimizing post-exposure practices, offering significant steps toward prevention of such incidents and reducing infection risks should also be considered in future studies.


Subject(s)
Body Fluids , Hepatitis B , Occupational Exposure , Humans , Female , Young Adult , Adult , Tertiary Care Centers , Retrospective Studies , Health Personnel , Blood-Borne Pathogens , Hepatitis B/epidemiology , Hepatitis B/prevention & control , Hospitals, Teaching , Occupational Exposure/adverse effects , China/epidemiology
5.
Arch Insect Biochem Physiol ; 115(4): e22114, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38659314

ABSTRACT

The insect cuticle plays a key role in maintaining the insect's physiological function and behavior. Herein, the yellow-y protein is required to produce black melanin, and is expressed in a pattern that correlates with the distribution of this pigment. However, yellow-y can also have other functions, for instance, in insect behavior, but not much is known. In this study, we have studied the yellow-y gene in one important model and pest species, namely the German cockroach (Blattella germanica), which is to our knowledge the first time reported. In essence, we identified the yellow-y gene (BgY-y) and characterized its function by using RNA interference (RNAi). Silencing of BgY-y gene led to different developmental abnormalities (body weight and wings) in both genders. Specifically, there was an abundant decrease in melanin, turning the body color in pale yellow and the cuticle softer and more transparent. Interestingly, we also observed that the knockdown of BgY-y impaired the male cockroaches to display a weaker response to female-emitted contact sex pheromones, and also that the oviposition ability was weakened in the RNAi females. This study comprehensively analyzed the biological functions of the yellow-y gene in German cockroaches from the perspectives of development, body color, courtship behavior and oviposition, and as a consequence, this may opens new avenues to explore it as a novel pest control gene.


Subject(s)
Blattellidae , Insect Proteins , Oviposition , Pigmentation , RNA Interference , Animals , Blattellidae/genetics , Blattellidae/physiology , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Male , Pigmentation/genetics , Courtship , Melanins/metabolism , Sexual Behavior, Animal
6.
Curr Genomics ; 25(2): 88-104, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38751598

ABSTRACT

Objectives: This study aims to assess the prognostic implications of gene signature of the tertiary lymphoid structures (TLSs) in head and neck squamous cell carcinoma (HNSCC) and scrutinize the influence of TLS on immune infiltration. Methods: Patients with HNSCC from the Cancer Genome Atlas were categorized into high/low TLS signature groups based on the predetermined TLS signature threshold. The association of the TLS signature with the immune microenvironment, driver gene mutation status, and tumor mutational load was systematically analyzed. Validation was conducted using independent datasets (GSE41613 and GSE102349). Results: Patients with a high TLS signature score exhibited better prognosis compared to those with a low TLS signature score. The group with a high TLS signature score had significantly higher immune cell subpopulations compared to the group with a low TLS signature score. Moreover, the major immune cell subpopulations and immune circulation characteristics in the tumor immune microenvironment were positively correlated with the TLS signature. Mutational differences in driver genes were observed between the TLS signature high/low groups, primarily in the cell cycle and NRF2 signaling pathways. Patients with TP53 mutations and high TLS signature scores demonstrated a better prognosis compared to those with TP53 wild-type. In the independent cohort, the relationship between TLS signatures and patient prognosis and immune infiltration was also confirmed. Additionally, immune-related biological processes and signaling pathways were activated with elevated TLS signature. Conclusion: High TLS signature is a promising independent prognostic factor for HNSCC patients. Immunological analysis indicated a correlation between TLS and immune cell infiltration in HNSCC. These findings provide a theoretical basis for future applications of TLS signature in HNSCC prognosis and immunotherapy.

7.
Bull Entomol Res ; 114(2): 271-280, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623047

ABSTRACT

Genes involved in melanin production directly impact insect pigmentation and can affect diverse physiology and behaviours. The role these genes have on sex behaviour, however, is unclear. In the present study, the crucial melanin pigment gene black was functionally characterised in an urban pest, the German cockroach, Blattella germanica. RNAi knockdown of B. germanica black (Bgblack) had no effect on survival, but did result in black pigmentation of the thoraxes, abdomens, heads, wings, legs, antennae, and cerci due to cuticular accumulation of melanin. Sex-specific variation in the pigmentation pattern was apparent, with females exhibiting darker coloration on the abdomen and thorax than males. Bgblack knockdown also resulted in wing deformation and negatively impacted the contact sex pheromone-based courtship behaviour of males. This study provides evidence for black function in multiple aspects of B. germanica biology and opens new avenues of exploration for novel pest control strategies.


Subject(s)
Blattellidae , Melanins , Pigmentation , Animals , Blattellidae/genetics , Blattellidae/physiology , Male , Female , Pigmentation/genetics , Melanins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Sexual Behavior, Animal , RNA Interference
8.
Aging Clin Exp Res ; 36(1): 30, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334839

ABSTRACT

BACKGROUND: Widespread attention has been given to the detrimental effects of obesity on cognitive function. However, there is no evidence on the connection between low cognitive performance and the WWI (weight-adjusted waist index). This study looked into the connection between poor cognitive performance and the WWI in senior Americans. METHODS: A cross-sectional research study was carried out with information from the NHANES 2011-2014. With multivariate linear regression models, the pertinence between the WWI and low cognitive function in persons older than 60 years was examined. The nonlinear link was described using threshold effect analyses and fitted smoothed curves. Interaction tests and subgroup analysis were also conducted. RESULTS: The study had 2762 individuals in all, and subjects with higher WWI values were at greater risk for low cognitive function. In the completely adjusted model, the WWI was positively connected with low cognitive performance assessed by CERAD W-L (OR = 1.22, 95% CI 1.03-1.45, p = 0.0239), AFT (OR = 1.30, 95% CI 1.09-1.54, p = 0.0029), and DSST (OR = 1.59, 95% CI 1.30-1.94, p < 0.0001). The effect of each subgroup on the positive correlation between the WWI and low cognitive performance was not significant. The WWI and low cognitive performance as determined by CERAD W-L and AFT had a nonlinear connection (log-likelihood ratio < 0.05). CONCLUSION: Among older adults in the United States, the risk of low cognitive performance may be positively related to the WWI.


Subject(s)
Cognition , Obesity , Humans , Aged , Cross-Sectional Studies , Nutrition Surveys , Linear Models , Obesity/epidemiology
9.
J Transl Med ; 21(1): 470, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37454080

ABSTRACT

BACKGROUND: The tumor-adipose microenvironment (TAME) is characterized by the enrichment of adipocytes, and is considered a special ecosystem that supports cancer progression. However, the heterogeneity and diversity of adipocytes in TAME remains poorly understood. METHODS: We conducted a single-cell RNA sequencing analysis of adipocytes in mouse and human white adipose tissue (WAT). We analyzed several adipocyte subtypes to evaluate their relationship and potential as prognostic factors for overall survival (OS). The potential drugs are screened by using bioinformatics methods. The tumor-promoting effects of a typical adipocyte subtype in breast cancer are validated by performing in vitro functional assays and immunohistochemistry (IHC) in clinical samples. RESULTS: We profiled a comprehensive single-cell atlas of adipocyte in mouse and human WAT and described their characteristics, origins, development, functions and interactions with immune cells. Several cancer-associated adipocyte subtypes, namely DPP4+ adipocytes in visceral adipose and ADIPOQ+ adipocytes in subcutaneous adipose, are identified. We found that high levels of these subtypes are associated with unfavorable outcomes in four typical adipose-associated cancers. Some potential drugs including Trametinib, Selumetinib and Ulixertinib are discovered. Emphatically, knockdown of adiponectin receptor 1 (AdipoR1) and AdipoR2 impaired the proliferation and invasion of breast cancer cells. Patients with AdipoR2-high breast cancer display significantly shorter relapse-free survival (RFS) than those with AdipoR2-low breast cancer. CONCLUSION: Our results provide a novel understanding of TAME at the single-cell level. Based on our findings, several adipocyte subtypes have negative impact on prognosis. These cancer-associated adipocytes may serve as key prognostic predictor and potential targets for treatment in the future.


Subject(s)
Breast Neoplasms , Ecosystem , Humans , Mice , Animals , Female , Neoplasm Recurrence, Local , Adipocytes , Breast Neoplasms/genetics , Adipose Tissue, White , Obesity , Single-Cell Analysis , Adipose Tissue , Tumor Microenvironment
10.
Article in English | MEDLINE | ID: mdl-38141203

ABSTRACT

OBJECTIVES: Systemic lupus erythematosus (SLE) is a complex autoimmune disease with varying symptoms and multi-organ damage. Relapse-remission cycles often persist for many patients for years with the current treatment. Improved understanding of molecular changes caused by SLE flare and intensive treatment may result in more targeted therapies. METHODS: RNA-sequencing was performed on peripheral blood mononuclear cells (PBMCs) from 65 SLE patients in flare, collected both before (SLE1) and after (SLE2) in-hospital treatment, along with 15 healthy controls (HC). Differentially expressed genes (DEGs) were identified among the three groups. Enriched functions and key molecular signatures of the DEGs were analyzed and scored to elucidate the transcriptomic changes during treatment. RESULTS: Few upregulated genes in SLE1 vs HC were affected by treatment (SLE2 vs SLE1), mostly functional in interferon signalling (IFN), plasmablasts, and neutrophils. IFN and plasmablast signatures were repressed, but the neutrophil signature remained unchanged or enhanced by treatment. The IFN and neutrophil scores together stratified the SLE samples. IFN scores correlated well with leukopenia, while neutrophil scores reflected relative cell compositions but not cell counts. CONCLUSIONS: In-hospital treatment significantly relieved SLE symptoms with expression changes of a small subset of genes. Notably, IFN signature changes matched SLE flare and improvement, while enhanced neutrophil signature upon treatment suggested the involvement of low-density granulocytes (LDG) in disease development.

11.
Theor Appl Genet ; 136(6): 146, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37258797

ABSTRACT

KEY MESSAGE: QTgw.saas-5B was validated as a major thousand-grain weight-related QTL in a founder parent used for wheat breeding and then precisely mapped to a 0.6 cM interval. Increasing the thousand-grain weight (TGW) is considered to be one of the most important ways to improve yield, which is a core objective among wheat breeders. Chuanmai42, which is a wheat cultivar with high TGW and a high and stable yield, is a parent of more than 30 new varieties grown in southwestern China. In this study, a Chuanmai42-derived recombinant inbred line (RIL) population was used to dissect the genetic basis of TGW. A major QTL (QTgw.saas-5B) mapped to the Xgwm213-Xgwm540 interval on chromosome 5B of Chuanmai42 explained up to 20% of the phenotypic variation. Using 71 recombinants with a recombination in the QTgw.saas-5B interval identified from a secondary RIL population comprising 1818 lines constructed by crossing the QTgw.saas-5B near-isogenic line with the recurrent parent Chuannong16, QTgw.saas-5B was delimited to a 0.6 cM interval, corresponding to a 21.83 Mb physical interval in the Chinese Spring genome. These findings provide the foundation for QTgw.saas-5B cloning and its use in molecular marker-assisted breeding.


Subject(s)
Quantitative Trait Loci , Triticum , Chromosome Mapping , Triticum/genetics , Phenotype , Plant Breeding , Edible Grain/genetics , China , Chromosomes, Plant/genetics
12.
Microb Cell Fact ; 22(1): 163, 2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37635205

ABSTRACT

BACKGROUND: Global transcription machinery engineering (gTME) is an effective approach employed in strain engineering to rewire gene expression and reshape cellular metabolic fluxes at the transcriptional level. RESULTS: In this study, we utilized gTME to engineer the positive transcription factor, DegU, in the regulation network of major alkaline protease, AprE, in Bacillus pumilus. To validate its functionality when incorporated into the chromosome, we performed several experiments. First, three negative transcription factors, SinR, Hpr, and AbrB, were deleted to promote AprE synthesis. Second, several hyper-active DegU mutants, designated as DegU(hy), were selected using the fluorescence colorimetric method with the host of the Bacillus subtilis ΔdegSU mutant. Third, we integrated a screened degU(L113F) sequence into the chromosome of the Δhpr mutant of B. pumilus SCU11 to replace the original degU gene using a CRISPR/Cas9 system. Finally, based on transcriptomic and molecular dynamic analysis, we interpreted the possible mechanism of high-yielding and found that the strain produced alkaline proteases 2.7 times higher than that of the control strain (B. pumilus SCU11) in LB medium. CONCLUSION: Our findings serve as a proof-of-concept that tuning the global regulator is feasible and crucial for improving the production performance of B. pumilus. Additionally, our study established a paradigm for gene function research in strains that are difficult to handle.


Subject(s)
Bacillus pumilus , Peptide Hydrolases , Peptide Hydrolases/genetics , Transcription Factors/genetics , Bacillus pumilus/genetics , Gene Expression Regulation , Bacillus subtilis
13.
BMC Cardiovasc Disord ; 23(1): 293, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296380

ABSTRACT

BACKGROUND: In recent years, the incidence of diabetes mellitus has been increasing annually, and cardiovascular complications secondary to diabetes mellitus have become the leading cause of death in diabetic patients. Considering the high incidence of type 2 diabetes (T2DM) combined with cardiovascular disease (CVD), some new hypoglycemic agents with cardiovascular protective effects have attracted extensive attention. However, the specific role of these regimens in ventricular remodeling remains unknown. The purpose of this network meta-analysis was to compare the effects of sodium glucose cotransporter type 2 inhibitor (SGLT-2i), glucagon-like peptide 1 receptor agonist (GLP-1RA) and dipeptidyl peptidase-4 inhibitor (DPP-4i) on ventricular remodeling in patients with T2DM and/or CVD. METHODS: Articles published prior to 24 August 2022 were retrieved in four electronic databases: the Cochrane Library, Embase, PubMed, and Web of Science. This meta-analysis included randomized controlled trials (RCTs) and a small number of cohort studies. The differences in mean changes of left ventricular ultrasonic parameters between the treatment and control groups were compared. RESULTS: A total of 31 RCTs and 4 cohort studies involving 4322 patients were analyzed. GLP-1RA was more significantly associated with improvement in left ventricular end-systolic diameter (LVESD) [MD = -0.38 mm, 95% CI (-0.66, -0.10)] and LV mass index (LVMI) [MD = -1.07 g/m2, 95% CI (-1.71, -0.42)], but significantly decreased e' [MD = -0.43 cm/s 95% CI (-0.81, -0.04)]. DPP-4i was more strongly associated with improvement in e' [MD = 3.82 cm/s, 95% CI (2.92,4.7)] and E/e'[MD = -5.97 95% CI (-10.35, -1.59)], but significantly inhibited LV ejection fraction (LVEF) [MD = -0.89% 95% CI (-1.76, -0.03)]. SGLT-2i significantly improved LVMI [MD = -0.28 g/m2, 95% CI (-0.43, -0.12)] and LV end-diastolic diameter (LVEDD) [MD = -0.72 ml, 95% CI (-1.30, -0.14)] in the overall population, as well as E/e' and SBP in T2DM patients combined with CVD, without showing any negative effect on left ventricular function. CONCLUSION: The results of the network meta-analysis provided high certainty to suggest that SGLT-2i may be more effective in cardiac remodeling compared to GLP-1RA and DPP-4i. While GLP-1RA and DPP-4i may have a tendency to improve cardiac systolic and diastolic function respectively. SGLT-2i is the most recommended drug for reversing ventricular remodeling in this meta-analysis.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/pharmacology , Network Meta-Analysis , Protease Inhibitors/pharmacology , Ventricular Remodeling
14.
Exp Cell Res ; 418(1): 113249, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35691378

ABSTRACT

The well-documented tumor suppressor p53 is also a major stress response factor for its diverse regulation on cellular energetics. However, the effect of p53 on mitochondrial biogenesis, which plays a predominant role in response to the elevated energy demands, appears to be pleiotropic in various conditions and has not reached agreement. Mitochondrial ribosomal protein L12 (MRPL12), reported as a bi-functional protein for its roles in both mitochondrial ribosomes and transcriptional complexes, is a core regulatory component in mitochondrial biogenesis. Here we proved that MRPL12 is transcriptionally regulated by p53. Furthermore, the p53/MRPL12 regulation of mitochondria is part of the signaling pathway that maintains the basal mitochondrial content and positively coordinates the mitochondrial biogenesis and oxidative phosphorylation (OXPHOS) in response to metabolic perturbation. Since p53 serves as the'Guardian of the Genome', our findings may revealed a new mechanism underlying the conditions when more ATP is warranted to maintain the genome integrity and cell survival. Therefore the pharmacological intervention or metabolic modulation (e.g., through fasting or exercise) of the p53/MRPL12 pathway promises to be a therapeutic approach that can safeguard health.


Subject(s)
Organelle Biogenesis , Tumor Suppressor Protein p53 , Mitochondria/genetics , Mitochondria/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
Environ Res ; 239(Pt 2): 117363, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37838192

ABSTRACT

In this research, a novel biosensing platform is described based on graphene nano-sheets decorated with Ag nano-particles (GNSs@Ag NPs). The designed electrochemical aptasensor was employed to determine carcinoembryonic antigen (CEA), an important cancer biomarker. Inherently, aptasensing interfaces provide high sensitivity for CEA tumor marker because of the high specific surface area and excellent conductivity of the prepared GNSs@Ag NPs composite. The established assay demonstrated a wide linear range from 0.001 pg/mL to 10 pg/mL with a correlation coefficient of 0.9958 and low detection limit (DL) of 0.5 fg/mL based on S/N = 3 protocol. The derived biosensor illustrated acceptable selectivity towards common interfering species including HER2, VEGF, IgG, MUC1 and CFP10. In addition, the aptsensor showed good reproducibility and fast response time. The applicability of the suggested strategy in human serum samples was also examined and compared to the commercial enzyme-linked immunosorbent assay (ELISA). Based on the experimental data, it was found that the discussed sensing platform can be exerted in the monitoring of CEA in different cancers for early diagnosis.


Subject(s)
Graphite , Metal Nanoparticles , Neoplasms , Humans , Carcinoembryonic Antigen/analysis , Biomarkers, Tumor , Reproducibility of Results , Silver , Limit of Detection , Gold
16.
BMC Med Imaging ; 23(1): 41, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36964517

ABSTRACT

BACKGROUND: Although the morphological changes of sella turcica have been drawing increasing attention, the acquirement of linear parameters of sella turcica relies on manual measurement. Manual measurement is laborious, time-consuming, and may introduce subjective bias. This paper aims to develop and evaluate a deep learning-based model for automatic segmentation and measurement of sella turcica in cephalometric radiographs. METHODS: 1129 images were used to develop a deep learning-based segmentation network for automatic sella turcica segmentation. Besides, 50 images were used to test the generalization ability of the model. The performance of the segmented network was evaluated by the dice coefficient. Images in the test datasets were segmented by the trained segmentation network, and the segmentation results were saved in binary images. Then the extremum points and corner points were detected by calling the function in the OpenCV library to obtain the coordinates of the four landmarks of the sella turcica. Finally, the length, diameter, and depth of the sella turcica can be obtained by calculating the distance between the two points and the distance from the point to the straight line. Meanwhile, images were measured manually using Digimizer. Intraclass correlation coefficients (ICCs) and Bland-Altman plots were used to analyze the consistency between automatic and manual measurements to evaluate the reliability of the proposed methodology. RESULTS: The dice coefficient of the segmentation network is 92.84%. For the measurement of sella turcica, there is excellent agreement between the automatic measurement and the manual measurement. In Test1, the ICCs of length, diameter and depth are 0.954, 0.953, and 0.912, respectively. In Test2, ICCs of length, diameter and depth are 0.906, 0.921, and 0.915, respectively. In addition, Bland-Altman plots showed the excellent reliability of the automated measurement method, with the majority measurements differences falling within ± 1.96 SDs intervals around the mean difference and no bias was apparent. CONCLUSIONS: Our experimental results indicated that the proposed methodology could complete the automatic segmentation of the sella turcica efficiently, and reliably predict the length, diameter, and depth of the sella turcica. Moreover, the proposed method has generalization ability according to its excellent performance on Test2.


Subject(s)
Deep Learning , Sella Turcica , Humans , Sella Turcica/diagnostic imaging , Reproducibility of Results , X-Rays , Radiography
17.
Plant Dis ; 107(5): 1284-1298, 2023 May.
Article in English | MEDLINE | ID: mdl-36281021

ABSTRACT

Apple canker has decreased yields of the economically important apple (Malus domestica) crop in China in recent years. Pathogen identity is highly challenging and the disease is poorly understood. Specimens of 339 fungi were isolated from apple trees in the primary apple-producing region in the Tarim Basin during the current study. In total, nine species of Cytospora and five species of the family Botryosphaeriaceae were identified by morphological observation and multilocus phylogenetic analyses: internal transcribed spacer (ITS), actin, translation elongation factor (TEF), and ß-tubulin (TUB) gene regions for Cytospora and ITS, TEF, and TUB for Botryosphaeriaceae. Cytospora pyri from the Cytospora genus was the dominant species causing apple canker in the Tarim Basin. C. melnikii, C. tritici, C. euonymina, Diplodia seriata, and Botryosphaeria dothidea have been described as the cause of apple canker in China. Apple (Red Fuji) branches were utilized to assess the pathogenicity of 24 representative fungal isolates from the 14 species, and branches from seven distinct woody plants (Korla pear, walnut, Chinese date, Xinjiang poplar, sand jujube, Populus euphratica, and willow) were utilized to analyze the host range. The main pathogenic fungal species of apple canker around the Tarim Basin were identified and biological characteristics explored. Pathogen diversity and regional source diversity were assessed with host range and pathogenicity. The aim was to provide a theoretical foundation for the prevention and treatment of apple canker.


Subject(s)
Malus , Populus , Phylogeny , Plant Diseases/microbiology , Fruit/microbiology , China
18.
ORL J Otorhinolaryngol Relat Spec ; 85(3): 128-140, 2023.
Article in English | MEDLINE | ID: mdl-37019094

ABSTRACT

BACKGROUND: Chronic rhinosinusitis (CRS) is a common inflammatory disease in otolaryngology, mainly manifested as nasal congestion, nasal discharge, facial pain/pressure, and smell disorder. CRS with nasal polyps (CRSwNP), an important phenotype of CRS, has a high recurrence rate even after receiving corticosteroids and/or functional endoscopic sinus surgery. In recent years, clinicians have focused on the application of biological agents in CRSwNP. However, it has not reached a consensus on the timing and selection of biologics for the treatment of CRS so far. SUMMARY: We reviewed the previous studies of biologics in CRS and summarized the indications, contraindications, efficacy assessment, prognosis, and adverse effects of biologics. Also, we evaluated the treatment response and adverse reactions of dupilumab, omalizumab, and mepolizumab in the management of CRS and made recommendations. KEY MESSAGES: Dupilumab, omalizumab, and mepolizumab have been approved for the treatment of CRSwNP by the US Food and Drug Administration. Type 2 and eosinophilic inflammation, need for systemic steroids or contraindication to systemic steroids, significantly impaired quality of life, anosmia, and comorbid asthma are required for the use of biologics. Based on current evidence, dupilumab has the prominent advantage in improving quality of life and reducing the risk of comorbid asthma in CRSwNP among the approved monoclonal antibodies. Most patients tolerate biological agents well in general with few major or severe adverse effects. Biologics have provided more options for severe uncontrolled CRSwNP patients or patients who refuse to have surgery. In the future, more novel biologics will be assessed in high-quality clinical trials and applied clinically.


Subject(s)
Asthma , Biological Products , Nasal Polyps , Rhinitis , Sinusitis , Humans , Asthma/drug therapy , Biological Products/therapeutic use , Chronic Disease , Consensus , Nasal Polyps/complications , Nasal Polyps/drug therapy , Omalizumab/therapeutic use , Quality of Life , Rhinitis/complications , Rhinitis/drug therapy , Sinusitis/complications , Sinusitis/drug therapy , Steroids/therapeutic use
19.
Zhonghua Nan Ke Xue ; 29(6): 552-556, 2023 Jun.
Article in Zh | MEDLINE | ID: mdl-38602730

ABSTRACT

Sex-determining region Y-box transcription factor 9(SOX9)is essential for prostate development. The dysregulation of SOX9 not only affects the occurrence of Prostate cancer (PCa), but also plays a key role in castration-resistant prostate cancer (CRPC). However, the mechanism of SOX9 affecting the evolution of PCa is still unclear. This paper mainly reviews the molecular mechanism and signal pathway related to the occurrence and development of SOX9 and PCa. SOX9 gene may be an important new biomarker in the development of PCa,providing new ideas for clinical diagnosis and treatment.


Subject(s)
Prostatic Neoplasms , SOX9 Transcription Factor , Humans , Male , Prostatic Neoplasms/genetics , SOX9 Transcription Factor/genetics
20.
Zhonghua Nan Ke Xue ; 29(12): 1000-1005, 2023 Dec.
Article in Zh | MEDLINE | ID: mdl-38639952

ABSTRACT

OBJECTIVE: To improve the diagnostic yield of prostate biopsy, which we can achieve by puncture more sites and number of cores, another way to obtain more tissue is to take longer tissue strips. In this study, we evaluated the effect of strip length on cancer diagnosis by needle biopsy and derived a cutoff value of strip length to improve cancer detection. METHODS: The pathological reports of 754 patients with suspected prostate cancer who underwent transperineal prostate biopsy were retrospectively analyzed. The age, serum prostate specific antigen (PSA), prostate volume, Gleason score and tissue strip length were analyzed. The length of the tissue strip was compared between the biopsy positive patients and the biopsy negative patients, and the patients were divided into group A(biopsy positive group)and group B(biopsy negative group), respectively. Statistical analysis of tissue strip lengths was performed to determine cutoff values for biopsy length quality. RESULTS: A total of 10 556 tissue strips were obtained from 754 patients, and 45.1 % of the patients were pathologically diagnosed as prostate cancer. The median length of the tissue strip was 10.5 (9.5, 12.5) mm, the median age was 69 (64,75) years, the median PSA was 12.4 (8.6, 20.8) µg/L, and the median prostate volume was 44.8 (30.5, 64.4) ml. The median length of tissue strips in group A and group B was 11 (10,13) mm and 10 (9,12) mm, respectively. Receiver operating characteristic (ROC) curve analysis was performed on the length of tissue strips in all cases, and the cutoff value of quality assurance was 11.8mm, the area under curve (AUC) was 0.82, and the cut-off value of quality assurance was 11.8mm. Sensitivity 71.4%, specificity 73.8%(P<0.001). CONCLUSIONS: In transperineal prostate biopsy, the cancer detection rate of tissue strips may increase with length. The results of ROC analysis showed that 11.8 mm was used as the cut-off value for quality assurance.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Aged , Prostate/pathology , Prostate-Specific Antigen , Retrospective Studies , Biopsy , Prostatic Neoplasms/pathology , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL