Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2705-2710, 2022 Oct.
Article in Zh | MEDLINE | ID: mdl-36384605

ABSTRACT

The reactive nitrogen deposition in subtropical region of China has been increasing annually, which affects biogeochemical processes in forest soils. In this study, three treatments were established, including control (no N addition, CK), low nitrogen deposition (40 kg·hm-2·a-1, LN), and high nitrogen deposition (80 kg·hm-2·a-1, HN) to study the response of denitrifying functional genes and potential N2O emissions to simulated nitrogen deposition in the soils of a natural Castanopsis carlesii forest. Results showed that HN significantly decreased soil potential N2O emission, while 8-year nitrogen deposition did not affect the abundances of nirS, nirK, nosZ Ⅰ and nosZ Ⅱ. However, the abundance of nosZ Ⅰwas significantly higher than nosZ Ⅱ in all the treatments, indicating that nosZ Ⅰ dominated over nosZ Ⅱ in the acidic soils. HN significantly decreased the ratio of (nirK+nirS)/(nosZ Ⅰ+nosZ Ⅱ), which was positively correlated with soil pH. The results suggested that long-term high nitrogen deposition reduced soil pH and the abundance ratio of (nirK+nirS)/(nosZ Ⅰ+nosZ Ⅱ), which subsequently reduced the potential N2O emission.


Subject(s)
Nitrous Oxide , Soil , Nitrous Oxide/analysis , Nitrogen , Soil Microbiology , Denitrification , Forests
2.
Pest Manag Sci ; 78(5): 1815-1823, 2022 May.
Article in English | MEDLINE | ID: mdl-35043538

ABSTRACT

BACKGROUND: Extensive research has been conducted on insect chitinases. However, little is known about the function of chitinase in the regulation of the surface structure of the peritrophic matrix (PM) in larval midguts. The aim of this study was to analyze the effect of HaCHT4 on the chitin content and surface structure of the PM during larval growth and development of Helicoverpa armigera. RESULTS: The expression level of HaCHT4 was lower and the chitin content was higher in the early stages of fourth to sixth instar larvae, but they were reversed in the corresponding late stages. The correlation coefficient between the expression level of HaCHT4 and the chitin content was -0.585 (P < 0.05), with a higher negative correlation of -0.934 for the fourth instar (P < 0.01). Scanning electron microscopy (SEM) showed that the surface structure of PM was multi-laminated with small pores in the early stages of fourth to sixth instar larvae, and more and bigger pores in the late stages. Low expression of HaCHT4 caused by RNA interference (RNAi) resulted in the increase of chitin content in the PM, and the surface structure of PM became multilayered with smaller pore size in the late stage of fourth instar larvae. Also, induction of HaCHT4 by application of 2-tridecanone (2-TD), decreased the chitin content of PM, caused larger pores to form and lots of food bolus to attach to the PM surface, and also increased the larval susceptibility to chlorantraniliprole. CONCLUSION: These results provided strong evidence that HaCHT4 plays an important role by regulating the chitin content of the PM and its surface structure, thereby affecting the sensitivity of H. armigera to chlorantraniliprole.


Subject(s)
Chitinases , Moths , Animals , Chitin , Chitin Synthase/genetics , Chitinases/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Larva
3.
Ying Yong Sheng Tai Xue Bao ; 33(6): 1622-1628, 2022 Jun.
Article in Zh | MEDLINE | ID: mdl-35729141

ABSTRACT

Subtropical region of China is one of the global hotspots receiving nitrogen deposition. Nitrogen deposition could affect the abundance and community structure of ammonia oxidizers including ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and complete ammonia oxidizer (comammox Nitrospira), with consequences on soil nutrient cycling that are driven by microorganisms. There is limited understanding for the newly discovered comammox Nitrospira in the subtropical forest soils. Here, we investigated the effect of simulated N deposition on abundances of soil ammonia oxidizers in the Castanopsis fargesii Nature Reserve in Xinkou Town, Sanming City, Fujian Province, China. Soil samples were collected from the field plots which received long-term nitrogen deposition with different dosages, including: CK, no additional treatment; LN, low nitrogen deposition treatment, dosage of 40 kg N·hm-2·a-1; and HN, high nitrogen deposition treatment, dosage of 80 kg N·hm-2·a-1. After 8-year treatment, simulated N deposition decreased soil pH and organic matter content, and increased nitrate content. We failed to amplify the amoA gene of AOB in the tested soils. High nitrogen deposition increased the abundance of AOA, but did not affect the abundance of comammox Nitrospira clade A and clade B. The ratio of comammox Nitrospira to AOA decreased with N addition, indicating that N addition weakened the role of comammox Nitrospira in nitrification in the subtropical forest soils. However, there were strong non-specific amplifications for both comammox Nitrospira clades A and B, highlighting the demand for the development of high coverage and specificity primers for comammox Nitrospira investigations in the future. The abundance of comammox Nitrospira clade A was positively correlated with total nitrogen (TN) and NH4+ concentration, while that of clade B was positively associated with soil organic carbon (SOC), TN and NH4+ Concentration. Overall, our findings demonstrated that simulated N deposition increased the relative importance of AOA in nitrification in the natural Castanopsis carlesii forest soil. These findings could provide theoretical support in coping with global change and N deposition in these regions.


Subject(s)
Ammonia , Soil , Archaea/genetics , Bacteria/genetics , Carbon , Forests , Nitrification , Nitrogen , Oxidation-Reduction , Phylogeny , Soil/chemistry , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL