Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 671
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 77(4): 734-747.e7, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31812350

ABSTRACT

Mutation and prevalence of pathogenic viruses prompt the development of broad-spectrum antiviral strategies. Viperin is a potent antiviral protein that inhibits a broad range of viruses. Unexpectedly, we found that Viperin protein production in epithelium is defective in response to both viruses and interferons (IFNs). We further revealed that viruses and IFNs stimulate expression of the acetyltransferase HAT1, which induces Lys197-acetylation on Viperin. Viperin acetylation in turn recruits UBE4A that stimulates K6-linked polyubiquitination at Lys206 of Viperin, leading to Viperin protein degradation. Importantly, UBE4A deficiency restores Viperin protein production in epithelium. We then designed interfering peptides (IPs) to inhibit UBE4A binding with Viperin. We found that VIP-IP3 rescues Viperin protein production in epithelium and therefore enhances cellular antiviral activity. VIP-IP3 renders mice more resistant to viral infection. These findings could provide strategies for both enhancing host broad-spectrum antiviral response and improving the efficacy of IFN-based antiviral therapy.


Subject(s)
Epithelial Cells/metabolism , Epithelial Cells/virology , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Acetylation , Animals , Cell Line , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Humans , Interferons/pharmacology , Mice , Mice, Inbred C57BL , Oxidoreductases Acting on CH-CH Group Donors , Peptides/pharmacology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ubiquitination
2.
Plant Cell ; 36(5): 1963-1984, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38271284

ABSTRACT

Photoperiod is a crucial environmental cue for phenological responses, including growth cessation and winter dormancy in perennial woody plants. Two regulatory modules within the photoperiod pathway explain bud dormancy induction in poplar (Populus spp.): the circadian oscillator LATE ELONGATED HYPOCOTYL 2 (LHY2) and GIGANTEA-like genes (GIs) both regulate the key target for winter dormancy induction FLOWERING LOCUS T2 (FT2). However, modification of LHY2 and GIs cannot completely prevent growth cessation and bud set under short-day (SD) conditions, indicating that additional regulatory modules are likely involved. We identified PtoHY5a, an orthologs of the photomorphogenesis regulatory factor ELONGATED HYPOCOTYL 5 (HY5) in poplar (Populus tomentosa), that directly activates PtoFT2 expression and represses the circadian oscillation of LHY2, indirectly activating PtoFT2 expression. Thus, PtoHY5a suppresses SD-induced growth cessation and bud set. Accordingly, PtoHY5a knockout facilitates dormancy induction. PtoHY5a also inhibits bud-break in poplar by controlling gibberellic acid (GA) levels in apical buds. Additionally, PtoHY5a regulates the photoperiodic control of seasonal growth downstream of phytochrome PHYB2. Thus, PtoHY5a modulates seasonal growth in poplar by regulating the PtoPHYB2-PtoHY5a-PtoFT2 module to determine the onset of winter dormancy, and by fine-tuning GA levels to control bud-break.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins , Photoperiod , Plant Dormancy , Plant Proteins , Populus , Populus/genetics , Populus/growth & development , Populus/metabolism , Populus/physiology , Gibberellins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Dormancy/genetics , Flowers/genetics , Flowers/physiology , Flowers/growth & development
3.
PLoS Biol ; 20(3): e3001576, 2022 03.
Article in English | MEDLINE | ID: mdl-35320264

ABSTRACT

Mitochondria and the complex endomembrane system are hallmarks of eukaryotic cells. To date, it has been difficult to manipulate organelle structures within single live cells. We developed a FluidFM-based approach to extract, inject, and transplant organelles from and into living cells with subcellular spatial resolution. The technology combines atomic force microscopy, optical microscopy, and nanofluidics to achieve force and volume control with real-time inspection. We developed dedicated probes that allow minimally invasive entry into cells and optimized fluid flow to extract specific organelles. When extracting single or a defined number of mitochondria, their morphology transforms into a pearls-on-a-string phenotype due to locally applied fluidic forces. We show that the induced transition is calcium independent and results in isolated, intact mitochondria. Upon cell-to-cell transplantation, the transferred mitochondria fuse to the host cells mitochondrial network. Transplantation of healthy and drug-impaired mitochondria into primary keratinocytes allowed monitoring of mitochondrial subpopulation rescue. Fusion with the mitochondrial network of recipient cells occurred 20 minutes after transplantation and continued for over 16 hours. After transfer of mitochondria and cell propagation over generations, donor mitochondrial DNA (mtDNA) was replicated in recipient cells without the need for selection pressure. The approach opens new prospects for the study of organelle physiology and homeostasis, but also for therapy, mechanobiology, and synthetic biology.


Subject(s)
DNA, Mitochondrial , Mitochondria , Calcium , Homeostasis , Mitochondria/physiology , Organelles
4.
J Immunol ; 210(9): 1396-1407, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36971684

ABSTRACT

Posttranslational modifications expand the functions of immune-related proteins, especially during infections. The respiratory glycoprotein, hemocyanin, has been implicated in many other functions, but the role of phosphorylation modification in its functional diversity is not fully understood. In this study, we show that Penaeus vannamei hemocyanin (PvHMC) undergoes phosphorylation modification during bacterial infection. Dephosphorylation of PvHMC mediated by P. vannamei protein phosphatase 2A catalytic increases its in vitro antibacterial activity, whereas phosphorylation by P. vannamei casein kinase 2 catalytic subunit α decreases its oxygen-carrying capacity and attenuates its in vitro antibacterial activity. Mechanistically, we show that Thr517 is a critical phosphorylation modification site on PvHMC to modulate its functions, which when mutated attenuates the action of P. vannamei casein kinase 2 catalytic subunit α and P. vannamei protein phosphatase 2A catalytic, and hence abolishes the antibacterial activity of PvHMC. Our results reveal that phosphorylation of PvHMC modulates its antimicrobial functions in penaeid shrimp.


Subject(s)
Hemocyanins , Penaeidae , Animals , Hemocyanins/metabolism , Penaeidae/metabolism , Casein Kinase II/metabolism , Protein Phosphatase 2/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
5.
Hum Brain Mapp ; 45(11): e26808, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39126347

ABSTRACT

Numerous neuroimaging studies have identified significant individual variability in intertemporal choice, often attributed to three neural mechanisms: (1) increased reward circuit activity, (2) decreased cognitive control, and (3) prospection ability. These mechanisms that explain impulsivity, however, have been primarily studied in the gain domain. This study extends this investigation to the loss domain. We employed a hierarchical Bayesian drift-diffusion model (DDM) and the inter-subject representational similarity approach (IS-RSA) to investigate the potential computational neural substrates underlying impulsivity in loss domain across two experiments (n = 155). These experiments utilized a revised intertemporal task that independently manipulated the amounts of immediate and delayed-loss options. Behavioral results demonstrated positive correlations between the drift rate, measured by the DDM, and the impulsivity index K in Exp. 1 (n = 97) and were replicated in Exp. 2 (n = 58). Imaging analyses further revealed that the drift rate significantly mediated the relations between brain properties (e.g., prefrontal cortex activations and gray matter volume in the orbitofrontal cortex and precuneus) and K in Exp. 1. IS-RSA analyses indicated that variability in the drift rate also mediated the associations between inter-subject variations in activation patterns and individual differences in K. These findings suggest that individuals with similar impulsivity levels are likely to exhibit similar value processing patterns, providing a potential explanation for individual differences in impulsivity within a loss framework.


Subject(s)
Impulsive Behavior , Individuality , Magnetic Resonance Imaging , Humans , Impulsive Behavior/physiology , Male , Female , Young Adult , Adult , Brain Mapping , Brain/physiology , Brain/diagnostic imaging , Bayes Theorem , Delay Discounting/physiology
6.
J Transl Med ; 22(1): 809, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217342

ABSTRACT

BACKGROUND: This study investigates the molecular mechanisms of CC@AC&SF@PP NPs loaded with AC099850.3 siRNA and sorafenib (SF) for improving hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). METHODS: A dataset of 44 HBV-HCC patients and their survival information was selected from the TCGA database. Immune genes related to survival status were identified using the ImmPort database and WGCNA analysis. A prognostic risk model was constructed and analyzed using Lasso regression. Differential analysis was performed to screen key genes, and their significance and predictive accuracy for HBV-HCC were validated using Kaplan-Meier survival curves, ROC analysis, CIBERSORT analysis, and correlation analysis. The correlation between AC099850.3 and the gene expression matrix was calculated, followed by GO and KEGG enrichment analysis using AC099850.3 and its co-expressed genes. HepG2.2.15 cells were selected for in vitro validation, and lentivirus interference, cell cycle determination, CCK-8 experiments, colony formation assays, Transwell experiments, scratch experiments, and flow cytometry were performed to investigate the effects of key genes on HepG2.2.15 cells. A subcutaneous transplanted tumor model in mice was constructed to verify the inhibitory effect of key genes on HBV-HCC tumors. Subsequently, pH-triggered drug release NPs (CC@AC&SF@PP) were prepared, and their therapeutic effects on HBV-HCC in situ tumor mice were studied. RESULTS: A prognostic risk model (AC012313.9, MIR210HG, AC099850.3, AL645933.2, C6orf223, GDF10) was constructed through bioinformatics analysis, showing good sensitivity and specificity in diagnostic prediction. AC099850.3 was identified as a key gene, and enrichment analysis revealed its impact on cell cycle pathways. In vitro cell experiments demonstrated that AC099850.3 promotes HepG2.2.15 cell proliferation and invasion by regulating immune checkpoint CD276 expression and cell cycle progression. In vivo, subcutaneously transplanted tumor experiments showed that AC099850.3 promotes the growth of HBV-HCC tumors in nude mice. Furthermore, pH-triggered drug release NPs (CC@AC&SF@PP) loaded with AC099850.3 siRNA and SF were successfully prepared and delivered to the in situ HBV-HCC, enhancing the effectiveness of combined therapy for HBV-HCC. CONCLUSIONS: AC099850.3 accelerates the cell cycle progression and promotes the occurrence and development of HBV-HCC by upregulating immune checkpoint CD276 expression. CC@AC&SF@PP NPs loaded with AC099850.3 siRNA and SF improve the effectiveness of combined therapy for HBV-HCC.


Subject(s)
B7 Antigens , Carcinoma, Hepatocellular , Cell Proliferation , Hepatitis B virus , Liver Neoplasms , Neoplasm Invasiveness , Sorafenib , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/virology , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/virology , Cell Proliferation/drug effects , Animals , B7 Antigens/metabolism , B7 Antigens/genetics , Hep G2 Cells , Hepatitis B virus/drug effects , Mice, Nude , Mice , Chitosan/chemistry , Chitosan/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Male , Hepatitis B/drug therapy , Hepatitis B/virology , Mice, Inbred BALB C
7.
Hum Reprod ; 39(3): 448-453, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38148026

ABSTRACT

IVF is the backbone of infertility treatment, but due to its costs, it is not affordable for everyone. The cost of IVF is further escalated by interventions added to the routine treatment, which are claimed to boost pregnancy rates, so-called add-ons. Consequently, it is critical to offset the increased costs of an intervention against a potentially higher benefit. Here, we propose using a simplified framework considering the cost of a standard IVF procedure to create one live-born baby as a benchmark for the cost-effectiveness of other fertility treatments, add-ons inclusive. This framework is a simplified approach to a formal economic evaluation, enabling a rapid assessment of cost effectiveness in clinical settings. For a 30-year-old woman, assuming a 44.6% cumulative live birth rate and a cost of $12 000 per complete cycle, the cost to create one live-born baby would be ∼$27 000 (i.e. willingness to pay). Under this concept, the decision whether to accept or reject a new treatment depends from an economic perspective on the incremental cost per additional live birth from the new treatment/add-on, with the $27 000 per live-born baby as a reference threshold. This threshold can vary with women's age, and other factors such as the economic perspective and risk of side effects can play a role. If a new add-on or treatment costs >$27 000 per live birth, it might be more rational to invest in a new IVF cycle rather than spending on the add-on. With the increasing number of novel technologies in IVF and the lack of a rapid approach to evaluate their cost-effectiveness, this simplified framework will help with a more objective assessment of the cost-effectiveness of infertility treatments, including add-ons.


Subject(s)
Infertility , Adult , Female , Humans , Infant , Pregnancy , Birth Rate , Cost-Benefit Analysis , Fertility , Infertility/therapy
8.
Hum Reprod ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725195

ABSTRACT

STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.

9.
FASEB J ; 37(10): e23174, 2023 10.
Article in English | MEDLINE | ID: mdl-37668416

ABSTRACT

Sry-box9 (SOX9) maintains stem cell properties and plays crucial roles in many cancers. However, whether SOX9 is correlated with cervical cancer cell stemness and its detailed mechanism remains obscure. We studied the relationship between SOX9 and prognosis of cervical cancer through public database, and SOX9 was related to poor prognosis of cervical cancer. Elevated SOX9 expression enhanced the self-renewal properties and promotes tumorigenicity in cervical cancer. Overexpression of SOX9 could promote the expression of stem cell-related factors in cervical cancer cells and xenografts. Meanwhile, overexpression of SOX9 could also enhance the expressions of FZD10, ß-catenin, and c-Myc in cervical cancer cells and xenografts, while inhibiting the expression of DDK1. The activation of Wnt pathway by chir-99 021 raised the tumor spheroid ability of SOX9 knockdown HeLa cells. In addition, SOX9 could transcriptional inhibit DKK1 and activate FZD10 and MYC by binding to their promoters to affect the Wnt/ß-catenin pathway. These results demonstrated SOX9 regulated the self-renewal and tumorigenicity of cervical cancer through Wnt/ß-catenin pathway by directly transcriptional activation of FZD10, MYC and transcriptional inhibition of DKK1.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Up-Regulation , Transcriptional Activation , Wnt Signaling Pathway , beta Catenin/genetics , HeLa Cells , SOX9 Transcription Factor/genetics
10.
FASEB J ; 37(7): e23056, 2023 07.
Article in English | MEDLINE | ID: mdl-37342921

ABSTRACT

Revealing the key genes involved in polycystic ovary syndrome (PCOS) and elucidating its pathogenic mechanism is of extreme importance for the development of targeted clinical therapy for PCOS. Investigating disease by integrating several associated and interacting molecules in biological systems will make it possible to discover new pathogenic genes. In this study, an integrative disease-associated molecule network, combining protein-protein interactions and protein-metabolites interactions (PPMI) network was constructed based on the PCOS-associated genes and metabolites systematically collected. This new PPMI strategy identified several potential PCOS-associated genes, which have unreported in previous publications. Moreover, the systematic analysis of five benchmarks data sets indicated the DERL1 was identified as downregulated in PCOS granulosa cell and has good classification performance between PCOS patients and healthy controls. CCR2 and DVL3 were upregulated in PCOS adipose tissues and have good classification performance. The expression of novel gene FXR2 identified in this study is significantly increased in ovarian granulosa cells of PCOS patients compared with controls via quantitative analysis. Our study uncovers substantial differences in the PCOS-specific tissue and provides a plethora of information on dysregulated genes and metabolites that are linked to PCOS. This knowledgebase could have the potential to benefit the scientific and clinical community. In sum, the identification of novel gene associated with PCOS provides valuable insights into the underlying molecular mechanisms of PCOS and could potentially lead to the development of new diagnostic and therapeutic strategies.


Subject(s)
Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/metabolism , Granulosa Cells/metabolism
11.
Pharmacol Res ; 202: 107121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431091

ABSTRACT

Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. A dramatic decrease in estrogen levels in postmenopausal women leads to osteoclast overactivation, impaired bone homeostasis, and subsequent bone loss. Changes in the gut microbiome affect bone mineral density. However, the role of the gut microbiome in estrogen deficiency-induced bone loss and its underlying mechanism remain unknown. In this study, we found that the abundance of Clostridium sporogenes (C. spor.) and its derived metabolite, indole propionic acid (IPA), were decreased in ovariectomized (OVX) mice. In vitro assays suggested that IPA suppressed osteoclast differentiation and function. At the molecular level, IPA suppressed receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced pregnane X receptor (PXR) ubiquitination and degradation, leading to increased binding of remaining PXR with P65. In vivo daily IPA administration or repeated C. spor. colonization protected against OVX-induced bone loss. To protect live bacteria from the harsh gastric environment and delay the emptying of orally administered C. spor. from the intestine, a C. spor.-encapsulated silk fibroin (SF) hydrogel system was developed, which achieved bone protection in OVX mice comparable to that achieved with repeated germ transplantation or daily IPA administration. Overall, we found that gut C. spor.-derived IPA was involved in estrogen deficiency-induced osteoclast overactivation by regulating the PXR/P65 complex. The C. spor.-encapsulated SF hydrogel system is a promising tool for combating postmenopausal osteoporosis without the disadvantages of repeated germ transplantation.


Subject(s)
Bone Resorption , Clostridium , Osteoclasts , Propionates , Humans , Female , Mice , Animals , Osteoclasts/metabolism , Pregnane X Receptor/metabolism , Bone Resorption/metabolism , Osteogenesis , Estrogens/metabolism , Indoles/metabolism , Hydrogels , RANK Ligand/metabolism , Cell Differentiation
12.
Org Biomol Chem ; 22(34): 6928-6932, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39119751

ABSTRACT

A facile synthetic method for direct C(sp2)-H bond trifluoromethylation of 3-methylene-isoindolin-1-ones under visible-light-induced metal-free conditions is presented. This protocol features mild reaction conditions, broad substrate scope and excellent functional group tolerance, resulting in a range of structurally diverse trifluoromethylated products in good to excellent yields.

13.
Biomed Eng Online ; 23(1): 31, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468262

ABSTRACT

BACKGROUND: Ultrasound three-dimensional visualization, a cutting-edge technology in medical imaging, enhances diagnostic accuracy by providing a more comprehensive and readable portrayal of anatomical structures compared to traditional two-dimensional ultrasound. Crucial to this visualization is the segmentation of multiple targets. However, challenges like noise interference, inaccurate boundaries, and difficulties in segmenting small structures exist in the multi-target segmentation of ultrasound images. This study, using neck ultrasound images, concentrates on researching multi-target segmentation methods for the thyroid and surrounding tissues. METHOD: We improved the Unet++ to propose PA-Unet++ to enhance the multi-target segmentation accuracy of the thyroid and its surrounding tissues by addressing ultrasound noise interference. This involves integrating multi-scale feature information using a pyramid pooling module to facilitate segmentation of structures of various sizes. Additionally, an attention gate mechanism is applied to each decoding layer to progressively highlight target tissues and suppress the impact of background pixels. RESULTS: Video data obtained from 2D ultrasound thyroid serial scans served as the dataset for this paper.4600 images containing 23,000 annotated regions were divided into training and test sets at a ratio of 9:1, the results showed that: compared with the results of U-net++, the Dice of our model increased from 78.78% to 81.88% (+ 3.10%), the mIOU increased from 73.44% to 80.35% (+ 6.91%), and the PA index increased from 92.95% to 94.79% (+ 1.84%). CONCLUSIONS: Accurate segmentation is fundamental for various clinical applications, including disease diagnosis, treatment planning, and monitoring. This study will have a positive impact on the improvement of 3D visualization capabilities and clinical decision-making and research in the context of ultrasound image.


Subject(s)
Imaging, Three-Dimensional , Thyroid Gland , Thyroid Gland/diagnostic imaging , Research Design , Technology , Image Processing, Computer-Assisted
14.
Environ Res ; 252(Pt 4): 119093, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723991

ABSTRACT

Regulating the microalgal initial adhesion in biofilm formation is a key approach to address the challenges of attached microalgae cultivation. As a type of phytohormone, Indole-3-acetic acid (IAA) can promote the growth and metabolism of microalgae. However, limited knowledge has been acquired of how IAA can change the initial adhesion of microalgae in biofilm formation. This study focused on investigating the initial adhesion of microalgae under different IAA concentrations exposure in biofilm formation. The results showed that IAA showed obvious hormesis-like effects on the initial adhesion ability of microalgae biofilm. Under exposure to the low concentration (0.1 mg/L) of IAA, the initial adhesion quantity of microalgae on the surface of the carrier reached the highest value of 7.2 g/m2. However, exposure to the excessively high concentration (10 mg/L) of IAA led to a decrease in the initial adhesion capability of microalgal biofilms. The enhanced adhesion of microalgal biofilms due to IAA was attributed to the upregulation of genes related to the Calvin Cycle, which promoted the synthesis of hydrophobic amino acids, leading to increased protein secretion and altering the surface electron donor characteristics of microalgal biofilms. This, in turn, reduced the energy barrier between the carriers and microalgae. The research findings would provide crucial support for the application of IAA in regulating the operation of microalgal biofilm systems.


Subject(s)
Biofilms , Indoleacetic Acids , Microalgae , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Microalgae/drug effects , Microalgae/physiology , Plant Growth Regulators/pharmacology
15.
J Stroke Cerebrovasc Dis ; 33(11): 107829, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901472

ABSTRACT

BACKGROUND: Cerebral small vessel disease (CSVD) includes vascular disorders characterized by heterogeneous pathomechanisms and different neuropathological clinical manifestations. Cognitive dysfunction in CSVD is associated with reductions in structural covariance networks (SCNs). A majority of research conducted on SCNs focused on group-level analysis. However, it is crucial to investigate the individualized variations in order to gain a better understanding of heterogeneous disorders such as CSVD. Therefore, this study aimed to utilize individualized differential structural covariance network (IDSCN) analysis to detect individualized structural covariance aberration. METHODS: A total of 35 healthy controls and 33 CSVD patients with cognitive impairment participated in this investigation. Using the regional gray matter volume in their T1 images, the IDSCN was constructed for each participant. Finally, the differential structural covariance edges between the two groups were determined by comparing their IDSCN using paired-sample t-tests. On the basis of these differential edges, the two subtypes of cognitively impaired CSVD patients were identified. RESULTS: The findings revealed that the differential structural covariance edges in CSVD patients with cognitive impairment showed a highly heterogeneous distribution, with the edges primarily cross-distributed between the occipital lobe (specifically inferior occipital gyrus and cuneus), temporal lobe (specifically superior temporal gyrus), and the cerebellum. To varying degrees, the inferior frontal gyrus and the superior parietal gyrus were also distributed. Subsequently, a correlation analysis was performed between the resulting differential edges and the cognitive scale scores. A significant negative association was observed between the cognitive scores and the differential edges distributed in the inferior frontal gyrus and inferior occipital gyrus, the superior temporal gyrus and inferior occipital gyrus, and within the temporal lobe. Particularly in the cognitive domain of attention, the two subtypes separated by differential edges exhibited differences in cognitive scale scores [Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA)]. The differential edges of the subtype 1, characterized by lower cognitive level, were mainly cross-distributed in the limbic lobe (specifically the cingulate gyrus and hippocampus), the parietal lobe (including the superior parietal gyrus and precuneus), and the cerebellum. In contrast, the differential edges of the subtype 2 with a relatively high level of cognition were distributed between the cuneus and the cerebellum. CONCLUSIONS: The differential structural covariance was investigated between the healthy controls and the CSVD patients with cognitive impairment, showing that differential structural covariance existed between the two groups. The edge distributions in certain parts of the brain, such as cerebellum and occipital and temporal lobes, verified this. Significant associations were seen between cognitive scale scores and some of those differential edges .The two subtypes that differed in both differential edges and cognitive levels were also identified. The differential edges of subtype 1 with relatively lower cognitive levels were more distributed in the cingulate gyrus, hippocampus, superior parietal gyrus, and precuneus. This could potentially offer significant benefits in terms of accurate diagnosis and targeted treatment of heterogeneous disorders such as CSVD.

16.
J Stroke Cerebrovasc Dis ; 33(8): 107773, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763326

ABSTRACT

OBJECTIVES: Remnant cholesterol (RC) is thought to be an important pathogenic risk factor for atherosclerosis, however, the relationship between RC and acute ischemic stroke (AIS) is still unclear. This study aimed to determine whether fasting blood RC level is an independent risk factor for AIS. MATERIALS AND METHODS: A retrospective analysis was performed on 650 patients with AIS and 598 healthy controls during the same time period. The association between RC and AIS was investigated using binary logistic regression, and the relationship between RC and AIS risk was demonstrated using Restricted Cubic Splines (RCS). RESULTS: RC was significantly higher in the AIS group compared with control group, and was an independent risk factor for AIS when the covariates were not adjusted;After adjusting some covariates, RC was still an independent risk factor for AIS. The RCS analysis found the risk was non-linear: when RC concentration was less than 0.69 mol/L, the risk of AIS increased with the elevation of RC, and when RC concentration was more than or equal to 0.69 mol/L, the risk of AIS was insignificant with the elevation of RC. Correlation analysis revealed that RC was associated with diabetes and fasting glucose. Further analysis revealed that the incidence of AIS in diabetic patients increased significantly with the increase of RC, and RCS analysis revealed that the risk of AIS in diabetic patients increased with the increase of RC when RC was more than 1.15 mol/L. CONCLUSIONS: This study confirms RC as an independent risk factor for AIS, which highlights a distinct non-linear association between RC levels and AIS risk. These findings suggest the need for targeted AIS risk assessment strategies, especially in diabetic patients, and underscore the relevance of RC as a biomarker in AIS risk stratification.


Subject(s)
Biomarkers , Blood Glucose , Cholesterol , Ischemic Stroke , Up-Regulation , Humans , Female , Male , Retrospective Studies , Middle Aged , Ischemic Stroke/blood , Ischemic Stroke/epidemiology , Ischemic Stroke/diagnosis , Aged , Risk Factors , Biomarkers/blood , Cholesterol/blood , Risk Assessment , Blood Glucose/metabolism , Incidence , Diabetes Mellitus/blood , Diabetes Mellitus/epidemiology , Diabetes Mellitus/diagnosis , Prognosis
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(2): 250-254, 2024 Feb 10.
Article in Zh | MEDLINE | ID: mdl-38311569

ABSTRACT

OBJECTIVE: To explore the genetic basis for a fetus featuring oligodactyly. METHODS: A fetus with hand deformity identified by ultrasound at the Maternal and Child Health Care Hospital of Hubei Province on October 20, 2018 was selected as the study subject. Clinical information and ultrasonographic finding of the pregnant woman were collected. Following elected abortion, umbilical cord and peripheral venous blood samples of the couple were collected for the extraction of genomic DNA. Copy number variation sequencing (CNV-seq) and trio-whole exome sequencing (trio-WES) were carried out. Candidate variants were verified by Sanger sequencing. RESULTS: Ultrasonographic examination at 30+2 weeks of gestation revealed that the fetus had small right hand with absence of 2nd-5th fingers, whilst its left hand had appeared to be normal. By CNV-seq, no pathogenic or likely pathogenic copy number variation (CNV) (≥ 100 Kb) was detected in the fetus. Trio-WES revealed that the fetus had harbored a novel heterozygous c.3298G>A (p.Val1100Met) variant of the SMC3 gene. The variant has not been recorded in the population databases, and was predicted to be deleterious by several bioinformatic software and evolutionarily conserved based on multiple sequence alignment analysis. Sanger sequencing showed that neither parent has carried the same variant. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted to be likely pathogenic (PS2+PM2_Supporting+PP3). CONCLUSION: The fetus was diagnosed with Cornelia de Lange syndrome, for which the novel heterozygous c.3298G>A variant of the SMC3 gene may be accountable.


Subject(s)
De Lange Syndrome , Female , Humans , Pregnancy , Cell Cycle Proteins/genetics , Chondroitin Sulfate Proteoglycans , Chromosomal Proteins, Non-Histone , Computational Biology , De Lange Syndrome/genetics , DNA Copy Number Variations , Fetus , Mutation , Umbilical Cord
18.
Angew Chem Int Ed Engl ; 63(32): e202407923, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38738617

ABSTRACT

Although catenated cages have been widely constructed due to their unique and elegant topological structures, cyclic catenanes formed by the connection of multiple catenane units have been rarely reported. Herein, based on the orthogonal metal-coordination-driven self-assembly, we prepare a series of heterometallic [2]catenanes and cyclic bis[2]catenanes, whose structures are clearly evidenced by single-crystal X-ray analysis. Owing to the multiple positively charged nature, as well as the potential synergistic effect of the Cu(I) and Pt(II) metal ions, the cyclic bis[2]catenanes display broad-spectrum antibacterial activity. This work not only provides an efficient strategy for the construction of heterometallic [2]catenanes and cyclic bis[2]catenanes but also explores their applications as superior antibacterial agents, which will promote the construction of advanced supramolecular structures for biomedical applications.

19.
Biol Reprod ; 109(1): 83-96, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37115805

ABSTRACT

The aim of this study was to determine the impact of glycyrrhizin, an inhibitor of high mobility group box 1, on glucose metabolic disorders and ovarian dysfunction in mice with polycystic ovary syndrome. We generated a polycystic ovary syndrome mouse model by using dehydroepiandrosterone plus high-fat diet. Glycyrrhizin (100 mg/kg) was intraperitoneally injected into the polycystic ovary syndrome mice and the effects on body weight, glucose tolerance, insulin sensitivity, estrous cycle, hormone profiles, ovarian pathology, glucolipid metabolism, and some molecular mechanisms were investigated. Increased number of cystic follicles, hormonal disorders, impaired glucose tolerance, and decreased insulin sensitivity in the polycystic ovary syndrome mice were reverted by glycyrrhizin. The increased high mobility group box 1 levels in the serum and ovarian tissues of the polycystic ovary syndrome mice were also reduced by glycyrrhizin. Furthermore, increased expressions of toll-like receptor 9, myeloid differentiation factor 88, and nuclear factor kappa B as well as reduced expressions of insulin receptor, phosphorylated protein kinase B, and glucose transporter type 4 were restored by glycyrrhizin in the polycystic ovary syndrome mice. Glycyrrhizin could suppress the polycystic ovary syndrome-induced upregulation of high mobility group box 1, several inflammatory marker genes, and the toll-like receptor 9/myeloid differentiation factor 88/nuclear factor kappa B pathways, while inhibiting the insulin receptor/phosphorylated protein kinase B/glucose transporter type 4 pathways. Hence, glycyrrhizin is a promising therapeutic agent against polycystic ovary syndrome.


Subject(s)
Insulin Resistance , Polycystic Ovary Syndrome , Female , Humans , Mice , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Insulin/metabolism , Glycyrrhizic Acid/adverse effects , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/therapeutic use , NF-kappa B/metabolism , Glucose Transporter Type 4 , Myeloid Differentiation Factor 88/metabolism , Insulin/metabolism , Glucose/adverse effects
20.
Bioinformatics ; 38(7): 1823-1829, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35025988

ABSTRACT

MOTIVATION: Recombination is a fundamental process in molecular evolution, and the identification of recombinant sequences is thus of major interest. However, current methods for detecting recombinants are primarily designed for aligned sequences. Thus, they struggle with analyses of highly diverse genes, such as the var genes of the malaria parasite Plasmodium falciparum, which are known to diversify primarily through recombination. RESULTS: We introduce an algorithm to detect recent recombinant sequences from a dataset without a full multiple alignment. Our algorithm can handle thousands of gene-length sequences without the need for a reference panel. We demonstrate the accuracy of our algorithm through extensive numerical simulations; in particular, it maintains its effectiveness in the presence of insertions and deletions. We apply our algorithm to a dataset of 17 335 DBLα types in var genes from Ghana, observing that sequences belonging to the same ups group or domain subclass recombine amongst themselves more frequently, and that non-recombinant DBLα types are more conserved than recombinant ones. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://github.com/qianfeng2/detREC_program. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genetic Variation , Protozoan Proteins , Protozoan Proteins/genetics , Plasmodium falciparum/genetics , Software , Evolution, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL