Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nature ; 623(7988): 836-841, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968395

ABSTRACT

Timely repair of chromosomal double-strand breaks is required for genome integrity and cellular viability. The polymerase theta-mediated end joining pathway has an important role in resolving these breaks and is essential in cancers defective in other DNA repair pathways, thus making it an emerging therapeutic target1. It requires annealing of 2-6 nucleotides of complementary sequence, microhomologies, that are adjacent to the broken ends, followed by initiation of end-bridging DNA synthesis by polymerase θ. However, the other pathway steps remain inadequately defined, and the enzymes required for them are unknown. Here we demonstrate requirements for exonucleolytic digestion of unpaired 3' tails before polymerase θ can initiate synthesis, then a switch to a more accurate, processive and strand-displacing polymerase to complete repair. We show the replicative polymerase, polymerase δ, is required for both steps; its 3' to 5' exonuclease activity for flap trimming, then its polymerase activity for extension and completion of repair. The enzymatic steps that are essential and specific to this pathway are mediated by two separate, sequential engagements of the two polymerases. The requisite coupling of these steps together is likely to be facilitated by physical association of the two polymerases. This pairing of polymerase δ with a polymerase capable of end-bridging synthesis, polymerase θ, may help to explain why the normally high-fidelity polymerase δ participates in genome destabilizing processes such as mitotic DNA synthesis2 and microhomology-mediated break-induced replication3.


Subject(s)
DNA End-Joining Repair , DNA Polymerase III , DNA-Directed DNA Polymerase , DNA/biosynthesis , DNA/chemistry , DNA/metabolism , DNA Polymerase III/metabolism , DNA-Directed DNA Polymerase/metabolism , Genomic Instability , DNA Polymerase theta
2.
Mol Cell ; 78(5): 951-959.e6, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32359443

ABSTRACT

BRCA1 promotes the DNA end resection and RAD51 loading steps of homologous recombination (HR). Whether these functions can be uncoupled, and whether mutant proteins retaining partial activity can complement one another, is unclear and could affect the severity of BRCA1-associated Fanconi anemia (FA). Here we generated a Brca1CC mouse with a coiled-coil (CC) domain deletion. Brca1CC/CC mice are born at low frequencies, and post-natal mice have FA-like abnormalities, including bone marrow failure. Intercrossing with Brca1Δ11, which is homozygous lethal, generated Brca1CC/Δ11 mice at Mendelian frequencies that were indistinguishable from Brca1+/+ mice. Brca1CC and Brca1Δ11 proteins were individually responsible for counteracting 53BP1-RIF1-Shieldin activity and promoting RAD51 loading, respectively. Thus, Brca1CC and Brca1Δ11 alleles represent separation-of-function mutations that combine to provide a level of HR sufficient for normal development and hematopoiesis. Because BRCA1 activities can be genetically separated, compound heterozygosity for functional complementary mutations may protect individuals from FA.


Subject(s)
BRCA1 Protein/genetics , Homologous Recombination/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Animals , BRCA1 Protein/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Exons , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Mutation , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism
3.
Blood ; 141(19): 2372-2389, 2023 05 11.
Article in English | MEDLINE | ID: mdl-36580665

ABSTRACT

Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.


Subject(s)
BRCA1 Protein , DNA Damage , Leukemia , Animals , Mice , BRCA2 Protein , DNA/metabolism , Leukemia/enzymology , Leukemia/genetics , DNA Polymerase theta
4.
Mol Cell ; 63(4): 662-673, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27453047

ABSTRACT

DNA polymerase theta (Pol θ)-mediated end joining (TMEJ) has been implicated in the repair of chromosome breaks, but its cellular mechanism and role relative to canonical repair pathways are poorly understood. We show that it accounts for most repairs associated with microhomologies and is made efficient by coupling a microhomology search to removal of non-homologous tails and microhomology-primed synthesis across broken ends. In contrast to non-homologous end joining (NHEJ), TMEJ efficiently repairs end structures expected after aborted homology-directed repair (5' to 3' resected ends) or replication fork collapse. It typically does not compete with canonical repair pathways but, in NHEJ-deficient cells, is engaged more frequently and protects against translocation. Cell viability is also severely impaired upon combined deficiency in Pol θ and a factor that antagonizes end resection (Ku or 53BP1). TMEJ thus helps to sustain cell viability and genome stability by rescuing chromosome break repair when resection is misregulated or NHEJ is compromised.


Subject(s)
Chromosome Breakage , DNA End-Joining Repair , DNA-Directed DNA Polymerase/metabolism , Genomic Instability , Animals , CRISPR-Cas Systems , Cell Line, Transformed , DNA-Directed DNA Polymerase/deficiency , DNA-Directed DNA Polymerase/genetics , Genotype , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Mice, Knockout , Phenotype , Time Factors , DNA Polymerase theta
5.
Nucleic Acids Res ; 49(9): 5095-5105, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33963863

ABSTRACT

Genome integrity and genome engineering require efficient repair of DNA double-strand breaks (DSBs) by non-homologous end joining (NHEJ), homologous recombination (HR), or alternative end-joining pathways. Here we describe two complementary methods for marker-free quantification of DSB repair pathway utilization at Cas9-targeted chromosomal DSBs in mammalian cells. The first assay features the analysis of amplicon next-generation sequencing data using ScarMapper, an iterative break-associated alignment algorithm to classify individual repair products based on deletion size, microhomology usage, and insertions. The second assay uses repair pathway-specific droplet digital PCR assays ('PathSig-dPCR') for absolute quantification of signature DSB repair outcomes. We show that ScarMapper and PathSig-dPCR enable comprehensive assessment of repair pathway utilization in different cell models, after a variety of experimental perturbations. We use these assays to measure the differential impact of DNA end resection on NHEJ, HR and polymerase theta-mediated end joining (TMEJ) repair. These approaches are adaptable to any cellular model system and genomic locus where Cas9-mediated targeting is feasible. Thus, ScarMapper and PathSig-dPCR allow for systematic fate mapping of a targeted DSB with facile and accurate quantification of DSB repair pathway choice at endogenous chromosomal loci.


Subject(s)
CRISPR-Associated Protein 9 , DNA Breaks, Double-Stranded , DNA Repair , Algorithms , Animals , Cell Line , DNA End-Joining Repair , DNA-Activated Protein Kinase/antagonists & inhibitors , Genetic Loci , High-Throughput Nucleotide Sequencing , Mice , Polymerase Chain Reaction , Recombinational DNA Repair
6.
Proc Natl Acad Sci U S A ; 117(15): 8476-8485, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32234782

ABSTRACT

DNA polymerase theta mediates an end joining pathway (TMEJ) that repairs chromosome breaks. It requires resection of broken ends to generate long, 3' single-stranded DNA tails, annealing of complementary sequence segments (microhomologies) in these tails, followed by microhomology-primed synthesis sufficient to resolve broken ends. The means by which microhomologies are identified is thus a critical step in this pathway, but is not understood. Here we show microhomologies are identified by a scanning mechanism initiated from the 3' terminus and favoring bidirectional progression into flanking DNA, typically to a maximum of 15 nucleotides into each flank. Polymerase theta is frequently insufficiently processive to complete repair of breaks in microhomology-poor, AT-rich regions. Aborted synthesis leads to one or more additional rounds of microhomology search, annealing, and synthesis; this promotes complete repair in part because earlier rounds of synthesis generate microhomologies de novo that are sufficiently long that synthesis is more processive. Aborted rounds of synthesis are evident in characteristic genomic scars as insertions of 3 to 30 bp of sequence that is identical to flanking DNA ("templated" insertions). Templated insertions are present at higher levels in breast cancer genomes from patients with germline BRCA1/2 mutations, consistent with an addiction to TMEJ in these cancers. Our work thus describes the mechanism for microhomology identification and shows how it both mitigates limitations implicit in the microhomology requirement and generates distinctive genomic scars associated with pathogenic genome instability.


Subject(s)
Breast Neoplasms/genetics , Chromosome Breakage , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA-Directed DNA Polymerase/physiology , Genome, Human , Genomic Instability , Animals , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Germ-Line Mutation , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , DNA Polymerase theta
7.
J Biol Chem ; 290(46): 27545-56, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26420486

ABSTRACT

The Fanconi anemia protein PALB2, also known as FANCN, protects genome integrity by regulating DNA repair and cell cycle checkpoints. Exactly how PALB2 functions may be temporally coupled with detection and signaling of DNA damage is not known. Intriguingly, we found that PALB2 is transformed into a hyperphosphorylated state in response to ionizing radiation (IR). IR treatment specifically triggered PALB2 phosphorylation at Ser-157 and Ser-376 in manners that required the master DNA damage response kinase Ataxia telangiectasia mutated, revealing potential mechanistic links between PALB2 and the Ataxia telangiectasia mutated-dependent DNA damage responses. Consistently, dysregulated PALB2 phosphorylation resulted in sustained activation of DDRs. Full-blown PALB2 phosphorylation also required the breast and ovarian susceptible gene product BRCA1, highlighting important roles of the BRCA1-PALB2 interaction in orchestrating cellular responses to genotoxic stress. In summary, our phosphorylation analysis of tumor suppressor protein PALB2 uncovers new layers of regulatory mechanisms in the maintenance of genome stability and tumor suppression.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Damage , Nuclear Proteins/metabolism , Tumor Suppressor Proteins/metabolism , BRCA1 Protein/metabolism , DNA Repair , Fanconi Anemia Complementation Group N Protein , Female , HEK293 Cells , HeLa Cells , Humans , Nuclear Proteins/genetics , Phosphorylation , Radiation, Ionizing , Serine/genetics , Serine/metabolism , Signal Transduction , Tumor Suppressor Proteins/genetics
8.
J Biol Chem ; 287(33): 27715-22, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22733822

ABSTRACT

Ubiquitin signals emanating from DNA double-strand breaks (DSBs) trigger the ordered assembly of DNA damage mediator and repair proteins. This highly orchestrated process is accomplished, in part, through the concerted action of the RNF8 and RNF168 E3 ligases, which have emerged as core signaling intermediates that promote DSB-associated ubiquitylation events. In this study, we report the identification of RNF169 as a negative regulator of the DNA damage signaling cascade. We found that RNF169 interacted with ubiquitin structures and relocalized to DSBs in an RNF8/RNF168-dependent manner. Moreover, ectopic expression of RNF169 attenuated ubiquitin signaling and compromised 53BP1 accumulation at DNA damage sites, suggesting that RNF169 antagonizes RNF168 functions at DSBs. Our study unveils RNF169 as a component in DNA damage signal transduction and adds to the complexity of regulatory ubiquitylation in genome stability maintenance.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Binding Proteins/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitination , Cell Line , DNA-Binding Proteins/genetics , Genomic Instability/genetics , Humans , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics
9.
Nat Commun ; 14(1): 7714, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001070

ABSTRACT

Homologous recombination (HR)-deficiency induces a dependency on DNA polymerase theta (Polθ/Polq)-mediated end joining, and Polθ inhibitors (Polθi) are in development for cancer therapy. BRCA1 and BRCA2 deficient cells are thought to be synthetic lethal with Polθ, but whether distinct HR gene mutations give rise to equivalent Polθ-dependence, and the events that drive lethality, are unclear. In this study, we utilized mouse models with separate Brca1 functional defects to mechanistically define Brca1-Polθ synthetic lethality. Surprisingly, homozygous Brca1 mutant, Polq-/- cells were viable, but grew slowly and had chromosomal instability. Brca1 mutant cells proficient in DNA end resection were significantly more dependent on Polθ for viability; here, treatment with Polθi elevated RPA foci, which persisted through mitosis. In an isogenic system, BRCA1 null cells were defective, but PALB2 and BRCA2 mutant cells exhibited active resection, and consequently stronger sensitivity to Polθi. Thus, DNA end resection is a critical determinant of Polθi sensitivity in HR-deficient cells, and should be considered when selecting patients for clinical studies.


Subject(s)
BRCA1 Protein , Genes, BRCA2 , Mice , Animals , Humans , BRCA1 Protein/genetics , Mutation , Synthetic Lethal Mutations , DNA
10.
Semin Radiat Oncol ; 32(1): 29-41, 2022 01.
Article in English | MEDLINE | ID: mdl-34861993

ABSTRACT

Many cancer therapies, including radiotherapy, induce DSBs as the major driving mechanism for inducing cancer cell death. Thus, modulating DSB repair has immense potential for radiosensitization, although such interventions must be carefully designed to be tumor selective to ensure that normal tissue toxicities are not also increased. Here, we review mechanisms of error-prone DSB repair through a highly efficient process called end joining. There are two major pathways of end-joining repair: non-homologous end joining (NHEJ) and alternative end joining (a-EJ), both of which can be selectively upregulated in cancer and thus represent attractive therapeutic targets for radiosensitization. These EJ pathways each have therapeutically targetable pioneer factors - DNA-dependent protein kinase catalytic subunit (DNA-PKcs) for NHEJ and DNA Polymerase Theta (Pol θ) for a-EJ. We summarize the current status of therapeutic targeting of NHEJ and a-EJ to enhance the effects of radiotherapy - focusing on challenges that must be overcome and opportunities that require further exploration. By leveraging preclinical insights into mechanisms of altered DSB repair programs in cancer, selective radiosensitization through NHEJ and/or a-EJ targeting remains a highly attractive avenue for ongoing and future clinical investigation.


Subject(s)
DNA Breaks, Double-Stranded , Neoplasms , DNA End-Joining Repair , DNA Repair , Humans , Neoplasms/genetics , Neoplasms/radiotherapy , Radiation Tolerance
11.
Nat Commun ; 13(1): 4547, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927262

ABSTRACT

The DNA polymerase theta (Polθ)-mediated end joining (TMEJ) pathway for repair of chromosomal double strand breaks (DSBs) is essential in cells deficient in other DSB repair pathways, including hereditary breast cancers defective in homologous recombination. Strand-break activated poly(ADP) ribose polymerase 1 (PARP1) has been implicated in TMEJ, but the modest specificity of existing TMEJ assays means the extent of effect and the mechanism behind it remain unclear. We describe here a series of TMEJ assays with improved specificity and show ablation of PARP activity reduces TMEJ activity 2-4-fold. The reduction in TMEJ is attributable to a reduction in the 5' to 3' resection of DSB ends that is essential for engagement of this pathway and is compensated by increased repair by the nonhomologous-end joining pathway. This limited role for PARP activity in TMEJ helps better rationalize the combined employment of inhibitors of PARP and Polθ in cancer therapy.


Subject(s)
Poly(ADP-ribose) Polymerases , Ribose , Adenosine Diphosphate , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA Repair , DNA-Directed DNA Polymerase , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , DNA Polymerase theta
12.
NAR Cancer ; 2(4): zcaa038, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33385162

ABSTRACT

TP53 deficiency in cancer is associated with poor patient outcomes and resistance to DNA damaging therapies. However, the mechanisms underlying treatment resistance in p53-deficient cells remain poorly characterized. Using live cell imaging of DNA double-strand breaks (DSBs) and cell cycle state transitions, we show that p53-deficient cells exhibit accelerated repair of radiomimetic-induced DSBs arising in S phase. Low-dose DNA-dependent protein kinase (DNA-PK) inhibition increases the S-phase DSB burden in p53-deficient cells, resulting in elevated rates of mitotic catastrophe. However, a subset of p53-deficient cells exhibits intrinsic resistance to radiomimetic-induced DSBs despite DNA-PK inhibition. We show that p53-deficient cells under DNA-PK inhibition utilize DNA polymerase theta (Pol θ)-mediated end joining repair to promote their viability in response to therapy-induced DSBs. Pol θ inhibition selectively increases S-phase DSB burden after radiomimetic therapy and promotes prolonged G2 arrest. Dual inhibition of DNA-PK and Pol θ restores radiation sensitivity in p53-deficient cells as well as in p53-mutant breast cancer cell lines. Thus, combination targeting of DNA-PK- and Pol θ-dependent end joining repair represents a promising strategy for overcoming resistance to DNA damaging therapies in p53-deficient cancers.

13.
Nat Commun ; 10(1): 4286, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537809

ABSTRACT

Polymerase theta (Pol θ, gene name Polq) is a widely conserved DNA polymerase that mediates a microhomology-mediated, error-prone, double strand break (DSB) repair pathway, referred to as Theta Mediated End Joining (TMEJ). Cells with homologous recombination deficiency are reliant on TMEJ for DSB repair. It is unknown whether deficiencies in other components of the DNA damage response (DDR) also result in Pol θ addiction. Here we use a CRISPR genetic screen to uncover 140 Polq synthetic lethal (PolqSL) genes, the majority of which were previously unknown. Functional analyses indicate that Pol θ/TMEJ addiction is associated with increased levels of replication-associated DSBs, regardless of the initial source of damage. We further demonstrate that approximately 30% of TCGA breast cancers have genetic alterations in PolqSL genes and exhibit genomic scars of Pol θ/TMEJ hyperactivity, thereby substantially expanding the subset of human cancers for which Pol θ inhibition represents a promising therapeutic strategy.


Subject(s)
Breast Neoplasms/genetics , DNA End-Joining Repair/genetics , DNA-Directed DNA Polymerase/genetics , Aminoquinolines/toxicity , Animals , CRISPR-Cas Systems/genetics , Cell Line , DNA Breaks, Double-Stranded , DNA-Directed DNA Polymerase/metabolism , HEK293 Cells , Humans , Mice , Mitomycin/toxicity , Picolinic Acids/toxicity , DNA Polymerase theta
14.
Cell Rep ; 24(13): 3513-3527.e7, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30257212

ABSTRACT

BRCA1 functions in homologous recombination (HR) both up- and downstream of DNA end resection. However, in cells with 53BP1 gene knockout (KO), BRCA1 is dispensable for the initiation of resection, but whether BRCA1 activity is entirely redundant after end resection is unclear. Here, we found that 53bp1 KO rescued the embryonic viability of a Brca1ΔC/ΔC mouse model that harbors a stop codon in the coiled-coil domain. However, Brca1ΔC/ΔC;53bp1-/- mice were susceptible to tumor formation, lacked Rad51 foci, and were sensitive to PARP inhibitor (PARPi) treatment, indicative of suboptimal HR. Furthermore, BRCA1 mutant cancer cell lines were dependent on truncated BRCA1 proteins that retained the ability to interact with PALB2 for 53BP1 KO induced RAD51 foci and PARPi resistance. Our data suggest that the overall efficiency of 53BP1 loss of function induced HR may be BRCA1 mutation dependent. In the setting of 53BP1 KO, hypomorphic BRCA1 proteins are active downstream of end resection, promoting RAD51 loading and PARPi resistance.


Subject(s)
BRCA1 Protein/genetics , Drug Resistance, Neoplasm , Homologous Recombination , Mammary Neoplasms, Experimental/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Tumor Suppressor p53-Binding Protein 1/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , BRCA1 Protein/metabolism , Fanconi Anemia Complementation Group N Protein/metabolism , Female , HEK293 Cells , Humans , Loss of Function Mutation , MCF-7 Cells , Mammary Neoplasms, Experimental/drug therapy , Mice , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism
15.
Biosens Bioelectron ; 23(3): 341-7, 2007 Oct 31.
Article in English | MEDLINE | ID: mdl-17583489

ABSTRACT

An ultrasensitive and highly specific electrochemical aptasensor for detection of thrombin based on gold nanoparticles and thiocyanuric acid is presented. For this proposed aptasensor, aptamerI was immobilized on the magnetic nanoparticles, aptamerII was labeled with gold nanoparticles. The magnetic nanoparticle was used for separation and collection, and gold nanoparticle offered excellent electrochemical signal transduction. Through the specific recognition for thrombin, a sandwich format of magnetic nanoparticle/thrombin/gold nanoparticle was fabricated, and the signal amplification was further implemented by forming network-like thiocyanuric acid/gold nanoparticles. A significant sensitivity enhancement had been obtained, and the detection limit was down to 7.82 aM. The presence of other proteins such as BSA and lysozyme did not affect the detection of thrombin, which indicates a high specificity of thrombin detection could be achieved. This electrochemical aptasensor is expected to have wide applications in protein monitoring and disease diagnosis.


Subject(s)
Biosensing Techniques/methods , Electrochemistry/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Thrombin/analysis , Magnetics , Sensitivity and Specificity , Triazines/chemistry
16.
Cell Discov ; 2: 16016, 2016.
Article in English | MEDLINE | ID: mdl-27462463

ABSTRACT

PCNA is a central scaffold that coordinately assembles replication and repair machineries at DNA replication forks for faithful genome duplication. Here, we describe TRAIP (RNF206) as a novel PCNA-interacting factor that has important roles during mammalian replicative stress responses. We show that TRAIP encodes a nucleolar protein that migrates to stalled replication forks, and that this is accomplished by its targeting of PCNA via an evolutionarily conserved PIP box on its C terminus. Accordingly, inactivation of TRAIP or its interaction with the PCNA clamp compromised replication fork recovery and progression, and leads to chromosome instability. Together, our findings establish TRAIP as a component of the mammalian replicative stress response network, and implicate the TRAIP-PCNA axis in recovery of stalled replication forks.

18.
Sci China Life Sci ; 55(3): 228-35, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22527519

ABSTRACT

The molecular mechanisms by which dense core vesicles (DCVs) translocate, tether, dock and prime are poorly understood. In this study, Caenorhabditis elegans was used as a model organism to study the function of Rab proteins and their effectors in DCV exocytosis. RAB-27/AEX-6, but not RAB-3, was found to be required for peptide release from neurons. By analyzing the movement of DCVs approaching the plasma membrane using total internal reflection fluorescence microscopy, we demonstrated that RAB-27/AEX-6 is involved in the tethering of DCVs and that its effector rabphilin/RBF-1 is required for the initial tethering and subsequent stabilization by docking.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Exocytosis , rab GTP-Binding Proteins/physiology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Biological Transport , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Cell Membrane/metabolism , Embryonic Stem Cells/cytology , Green Fluorescent Proteins/metabolism , Models, Biological , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Peptides/chemistry , Protein Binding , Secretory Vesicles/metabolism , Spectroscopy, Fourier Transform Infrared/methods , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism , rab27 GTP-Binding Proteins , Rabphilin-3A
SELECTION OF CITATIONS
SEARCH DETAIL