Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Surg Oncol ; 129(3): 556-567, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37974474

ABSTRACT

BACKGROUND: The mutation status of rat sarcoma viral oncogene homolog (RAS) has prognostic significance and serves as a key predictive biomarker for the effectiveness of antiepidermal growth factor receptor (EGFR) therapy. However, there remains a lack of effective models for predicting RAS mutation status in colorectal liver metastases (CRLMs). This study aimed to construct and validate a diagnostic model for predicting RAS mutation status among patients undergoing hepatic resection for CRLMs. METHODS: A diagnostic multivariate prediction model was developed and validated in patients with CRLMs who had undergone hepatectomy between 2014 and 2020. Patients from Institution A were assigned to the model development group (i.e., Development Cohort), while patients from Institutions B and C were assigned to the external validation groups (i.e., Validation Cohort_1 and Validation Cohort_2). The presence of CRLMs was determined by examination of surgical specimens. RAS mutation status was determined by genetic testing. The final predictors, identified by a group of oncologists and radiologists, included several key clinical, demographic, and radiographic characteristics derived from magnetic resonance images. Multiple imputation was performed to estimate the values of missing non-outcome data. A penalized logistic regression model using the adaptive least absolute shrinkage and selection operator penalty was implemented to select appropriate variables for the development of the model. A single nomogram was constructed from the model. The performance of the prediction model, discrimination, and calibration were estimated and reported by the area under the receiver operating characteristic curve (AUC) and calibration plots. Internal validation with a bootstrapping procedure and external validation of the nomogram were assessed. Finally, decision curve analyses were used to characterize the clinical outcomes of the Development and Validation Cohorts. RESULTS: A total of 173 patients were enrolled in this study between January 2014 and May 2020. Of the 173 patients, 117 patients from Institution A were assigned to the Model Development group, while 56 patients (33 from Institution B and 23 from Institution C) were assigned to the Model Validation groups. Forty-six (39.3%) patients harbored RAS mutations in the Development Cohort compared to 14 (42.4%) in Validation Cohort_1 and 8 (34.8%) in Validation Cohort_2. The final model contained the following predictor variables: time of occurrence of CRLMs, location of primary lesion, type of intratumoral necrosis, and early enhancement of liver parenchyma. The diagnostic model based on clinical and MRI data demonstrated satisfactory predictive performance in distinguishing between mutated and wild-type RAS, with AUCs of 0.742 (95% confidence interval [CI]: 0.651─0.834), 0.741 (95% CI: 0.649─0.836), 0.703 (95% CI: 0.514─0.892), and 0.708 (95% CI: 0.452─0.964) in the Development Cohort, bootstrapping internal validation, external Validation Cohort_1 and Validation Cohort_2, respectively. The Hosmer-Lemeshow goodness-of-fit values for the Development Cohort, Validation Cohort_1 and Validation Cohort_2 were 2.868 (p = 0.942), 4.616 (p = 0.465), and 6.297 (p = 0.391), respectively. CONCLUSIONS: Integrating clinical, demographic, and radiographic modalities with a magnetic resonance imaging-based approach may accurately predict the RAS mutation status of CRLMs, thereby aiding in triage and possibly reducing the time taken to perform diagnostic and life-saving procedures. Our diagnostic multivariate prediction model may serve as a foundation for prognostic stratification and therapeutic decision-making.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/genetics , Magnetic Resonance Imaging , Mutation , Nomograms , Colorectal Neoplasms/genetics , Retrospective Studies
2.
World J Surg Oncol ; 21(1): 51, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36803518

ABSTRACT

BACKGROUND: The study aimed to explore the value of CT findings and inflammatory indicators in differentiating benign and malignant gallbladder polypoid lesions before surgery. METHODS: The study comprised a total of 113 pathologically confirmed gallbladder polypoid lesions with a maximum diameter ≥ 1 cm (68 benign and 45 malignant), all of which were enhanced CT-scanned within 1 month before surgery. The CT findings and inflammatory indicators of the patients were analyzed by univariate and multivariate logistic regression analysis to identify independent predictors of gallbladder polypoid lesions, and then a nomogram distinguishing benign and malignant gallbladder polypoid lesions was developed by combining these characteristics. The receiver operating characteristic (ROC) curve and decision curve were plotted to assess the performance of the nomogram. RESULTS: Base status of the lesion (p < 0.001), plain CT value (p < 0.001), neutrophil-lymphocyte ratio (NLR) (p = 0.041), and monocyte-lymphocyte ratio (MLR) (p = 0.022) were independent predictors of malignant polypoid lesions of the gallbladder. The nomogram model established by incorporating the above factors had good performance in differentiating and predicting benign and malignant gallbladder polypoid lesions (AUC = 0.964), with sensitivity and specificity of 82.4% and 97.8%, respectively. The DCA demonstrated the important clinical utility of our nomogram. CONCLUSION: CT findings combined with inflammatory indicators can effectively differentiate benign and malignant gallbladder polypoid lesions before surgery, which is valuable for clinical decision-making.


Subject(s)
Gallbladder Neoplasms , Polyps , Humans , Gallbladder Neoplasms/diagnostic imaging , Gallbladder Neoplasms/surgery , Gallbladder Neoplasms/pathology , Polyps/diagnostic imaging , Polyps/surgery , Sensitivity and Specificity , Tomography, X-Ray Computed , Retrospective Studies
3.
Front Oncol ; 12: 992301, 2022.
Article in English | MEDLINE | ID: mdl-36110937

ABSTRACT

Purpose: The present study aimed to develop and validate a preoperative model based on gadobenate-enhanced magnetic resonance imaging (MRI) for predicting microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) size of ≤5 cm. In order to provide preoperative guidance for clinicians to optimize treatment options. Methods: 164 patients with pathologically confirmed HCC and preoperative gadobenate-enhanced MRI from July 2016 to December 2020 were retrospectively included. Univariate and multivariate logistic regression (forward LR) analyses were used to determine the predictors of MVI and the model was established. Four-fold cross validation was used to verify the model, which was visualized by nomograms. The predictive performance of the model was evaluated based on discrimination, calibration, and clinical utility. Results: Elevated alpha-fetoprotein (HR 1.849, 95% CI: 1.193, 2.867, P=0.006), atypical enhancement pattern (HR 3.441, 95% CI: 1.523, 7.772, P=0.003), peritumoral hypointensity on HBP (HR 7.822, 95% CI: 3.317, 18.445, P<0.001), and HBP hypointensity (HR 3.258, 95% CI: 1.381, 7.687, P=0.007) were independent risk factors to MVI and constituted the HBP model. The mean area under the curve (AUC), sensitivity, specificity, and accuracy values for the HBP model were as follows: 0.830 (95% CI: 0.784, 0.876), 0.71, 0.78, 0.81 in training set; 0.826 (95% CI:0.765, 0.887), 0.8, 0.7, 0.79 in test set. The decision curve analysis (DCA) curve showed that the HBP model achieved great clinical benefits. Conclusion: In conclusion, the HBP imaging features of Gd-BOPTA-enhanced MRI play an important role in predicting MVI for HCC. A preoperative model, mainly based on HBP imaging features of gadobenate-enhanced MRI, was able to excellently predict the MVI for HCC size of ≤5cm. The model may help clinicians preoperatively assess the risk of MVI in HCC patients so as to guide clinicians to optimize treatment options.

4.
Front Oncol ; 12: 986713, 2022.
Article in English | MEDLINE | ID: mdl-36505850

ABSTRACT

Purpose: The present study aimed to determine the reliable imaging features to distinguish atypical hepatocellular carcinoma (HCC) with peripheral rim-like enhancement from intrahepatic mass-forming cholangiocarcinoma (IMCC) on contrast-enhanced magnetic resonance imaging (MRI). Methods: A total of 168 patients (130 male, 57.10 ± 10.53 years) pathological confirmed HCC or IMCC who underwent contrast-enhanced MRI between July 2019 and February 2022 were retrospectively included. Univariate and multivariate logistic regression analyses were used to determine independent differential factors for distinguishing HCC from IMCC, and the model was established. Bootstrap resampling 1000 times was used to verify the model, which was visualized by nomograms. The predictive performance of the model was evaluated based on discrimination, calibration, and clinical utility. Results: Radiological capsule (OR 0.024, 95% CI: 0.006, 0.095, P<0.001), heterogeneous signal intensity (SI) on T1WI (OR 0.009, 95%CI: 0.001,0.056, P<0.001) were independent differential factors for predicting HCC over IMCC. A lobulated contour (OR 11.732, 95%CI: 2.928,47.007, P = 0.001), target sign on DP (OR 14.269, 95%CI: 2.849,82.106, P = 0.007), bile duct dilatation (OR 12.856, 95%CI: 2.013, P = 0.001) were independent differential factors for predicting IMCCs over HCCs. The independent differential factors constituted a model to distinguish atypical HCCs and IMCCs. The area under receiver operating characteristic (ROC) curve, sensitivity, and specificity values of the model were 0.964(0.940,0.987), 0.88, and 0.906, indicating that the model had an excellent differential diagnostic performance. The decision curve analysis (DCA) curve showed that the model obtained a better net clinical benefit. Conclusion: The present study identified reliable imaging features for distinguishing atypical HCCs with peripheral rim-like enhancement from IMCCs on contrast-enhanced MRI. Our findings may help radiologists provide clinicians with more accurate preoperative imaging diagnoses to select appropriate treatment options.

5.
J Oncol ; 2022: 4691172, 2022.
Article in English | MEDLINE | ID: mdl-36157231

ABSTRACT

Background: The distinction between combined hepatocellular-cholangiocarcinoma (cHCC-CC) and hepatocellular carcinoma (HCC) before the operation has an important clinical significance for optimizing the treatment plan and predicting the prognosis of patients. Magnetic resonance imaging (MRI) has been widely used in the preoperative diagnosis and evaluation of primary liver malignant tumors. Purpose: The aim is to study the value of preoperative clinical data and enhanced MRI in the differential diagnosis of HCC and cHCC-CC and obtain independent risk factors for predicting cHCC-CC. Study type. Retrospective. Population. The clinical and imaging data of 157 HCC and 59 cHCC-CC patients confirmed by pathology were collected. Field Strength/Sequence. 1.5T; cross-sectional T1WI (gradient double echo sequence); cross-sectional T2WI (fast spin echo sequence, fat suppression); enhancement (3D LAVA technology). Assessment. The differences between the HCC and cHCC-CC patients were compared. Statistic Tests. Using the t-test, chi-square test, and logistic regression analysis, P < 0.05 was considered statistically significant. Result: 1. CHCC-CC was more likely to show multiple lesions than HCC (28.81% vs. 10.83%, P = 0.001) and more prone to microvascular invasion (MVI) (36.31% vs. 61.02%, P < 0.001). However, HCC had a higher incidence of liver cirrhosis than cHCC-CC (50.85% vs. 72.61%, P = 0.003). 2. The incidence of nonsmooth margin was higher in the cHCC-CC group (84.75% vs. 52.23%, P < 0.001). The incidence of peritumor enhancement in the arterial phase was higher in the cHCC-CC group (11.46% vs. 62.71%, P < 0.001) 3. According to the multivariate analysis, arterial peritumor enhancement (OR = 8.833,95%CI:4.033,19.346, P < 0.001) was an independent risk factor for cHCC-CC (P < 0.001)). It had high sensitivity (62.71%) and specificity (88.54%) in the diagnosis of cHCC-CC. Date Conclusions. Liver cirrhosis and the imaging findings of GD-DTPA-enhanced MRI are helpful for the differential diagnosis of HCC and cHCC-CC. In addition, the imaging sign of peritumoral enhancement in the arterial phase has high sensitivity and specificity for the diagnosis of cHCC-CC.

SELECTION OF CITATIONS
SEARCH DETAIL