Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Stem Cell Rev Rep ; 18(8): 2662-2682, 2022 12.
Article in English | MEDLINE | ID: mdl-35587330

ABSTRACT

Stem cell therapy holds great promise for the treatment of spinal cord injury (SCI), which can reverse neurodegeneration and promote tissue regeneration via its pluripotency and ability to secrete neurotrophic factors. Although various stem cell-based approaches have shown certain therapeutic effects when applied to the treatment of SCI, their clinical efficacies have been disappointing. Thus, it is an urgent need to further enhance the neurological benefits of stem cells through bioengineering strategies including genetic engineering. In this review, we summarize the progress of stem cell therapy for SCI and the prospect of genetically modified stem cells, focusing on the genome editing tools and functional molecules involved in SCI repair, trying to provide a deeper understanding of genetically modified stem cell therapy and more applicable clinical strategies for SCI repair.


Subject(s)
Spinal Cord Injuries , Humans , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Stem Cell Transplantation , Nerve Growth Factors
2.
Cell Biosci ; 12(1): 105, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35831878

ABSTRACT

BACKGROUND: Human mesenchymal stromal cells (MSCs) have been widely advocated to clinical use. Human skin dermis-derived fibroblasts shared similar cellular morphology and biological characteristics to MSCs, while it still keeps elusive whether fibroblasts are functionally equivalent to MSCs for therapeutic use. METHODS: We isolated various fibroblasts derived from human foreskins (HFFs) and human double-fold eyelids (HDF) and MSCs derived from human umbilical cords (UC-MSCs), and then comprehensively investigated their similarities and differences in morphology, surface markers, immunoregulation, multilineage differentiation, transcriptome sequencing, and metabolomics, and therapeutic efficacies in treating 2,4,6-Trinitrobenzenesulfonic acid (TNBS) induced colitis and carbontetrachloride (CCL4) induced liver fibrosis. RESULTS: Fibroblasts and UC-MSCs shared similar surface markers, strong multilineage differentiation capacity, ability of inhibiting Th1/Th17 differentiation and promoting Treg differentiation in vitro, great similarities in mRNA expression profile and metabolites, and nearly equivalent therapeutic efficacy on TNBS-induced colitis and CCL4-induced hepatic fibrosis. CONCLUSION: Human skin dermis-derived fibroblasts were a kind of functional MSCs with functionally equivalent therapeutic efficacy in treating specific complications, indicating fibroblasts potentially had the same lineage hierarchy of origin as MSCs and had a remarkable potential as an alternative to MSCs in the treatment of a variety of diseases.

3.
Stem Cell Res Ther ; 13(1): 259, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35715850

ABSTRACT

OBJECTIVES: Obesity is a chronic process and could activate various inflammatory responses, which in turn aggravates obesity and related metabolic syndrome. Here we explored whether long-term inhibition of inflammation could successfully alleviate high-fat diet (HFD)-induced obesity. METHODS: We constructed stable overexpressing interleukin 10 (IL10) human umbilical cord-derived mesenchymal stromal cells (HUCMSCs) which repeatedly were applied to obesity mice with HFD feeding to obtain a long-term anti-inflammation based on the prominent anti-inflammation effects of IL10 and immunomodulatery effects of HUCMSCs. Then we monitored the features of obesity including body weight, serum ALT, AST, and lipids. In addition, glucose homeostasis was determined by glucose tolerance and insulin sensitivity tests. The infiltrated macrophages in adipose tissues and hepatic lipid accumulation were detected, and the expressions of adipogenesis and inflammatory genes in adipose tissues were examined by real-time (RT) PCR and western blot analysis. RESULTS: Compared with HUCMSCs, IL10-HUCMSCs treatment had much better anti-obesity effects including body weight reduction, less hepatic lipids accumulation, lower amount and size of adipocyte, greater glucose tolerance, less systemic insulin resistance, and less adipose tissue inflammation in HFD feeding mice. Finally, IL10-HUCMSCs could decrease the activation of MAPK JNK of adipose tissue induced by HFD. The inhibition of MAPK JNK signal pathway by a small chemical molecule SP600125 in 3T3-L1 cells, a preadipocyte line, reduced the differentiation of adipocytes and lipid droplet accumulation. CONCLUSION: A lasting anti-inflammation based on gene modified stem cell therapy is an effective strategy in preventing diet-induced obesity and obesity-related metabolic syndrome.


Subject(s)
Insulin Resistance , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Metabolic Syndrome , 3T3-L1 Cells , Adipose Tissue/metabolism , Animals , Body Weight , Diet, High-Fat/adverse effects , Glucose/metabolism , Humans , Inflammation/metabolism , Inflammation/therapy , Interleukin-10/genetics , Interleukin-10/metabolism , Lipids , Mesenchymal Stem Cells/metabolism , Metabolic Syndrome/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/therapy , Umbilical Cord
4.
Stem Cells Dev ; 28(3): 196-211, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30484393

ABSTRACT

Human Wharton's jelly stem cells (hWJSCs) isolated from the human umbilical cord are a unique population of mesenchymal stem cells (MSCs) with significant clinical utility. Their broad differentiation potential, high rate of proliferation, ready availability from discarded cords, and prolonged maintenance of stemness properties in culture make them an attractive alternative source of MSCs with therapeutic value compared with human bone marrow MSCs (hBMMSCs). We aimed to characterize the differences in gene expression profiles between these two stem cell types using single-cell RNA sequencing (scRNA-Seq) to determine which pathways are involved in conferring hWJSCs with their unique properties. We identified 436 significantly differentially expressed genes between the two cell types, playing roles in processes, including immunomodulation, angiogenesis, wound healing, apoptosis, antitumor activity, and chemotaxis. Expression of immune molecules is particularly high in hWJSCs compared with hBMMSCs. These differences in gene expression may help to explain many of the advantages that hWJSCs have over hBMMSCs for clinical application. Although cell surface protein marker expression indicates that isolated hWJSCs and hBMMSCs are both homogenous populations, using scRNA-Seq we can clearly identify extreme variability in expression levels between individual cells within a certain cell type. If the cells are examined as bulk populations, it is not possible to appreciate that a single cell may be making a major unique contribution to the apparent overall expression level. We demonstrated how the fine tuning of expression within hWJSCs and hBMMSCs may be achieved by expression of molecules with opposing function between two cells. We hypothesize that a greater understanding of these differences in gene expression between the two cell types may aid in the development of new therapies using hWJSCs.


Subject(s)
Bone Marrow Cells/metabolism , Mesenchymal Stem Cells/metabolism , Single-Cell Analysis , Transcriptome , Cells, Cultured , Gene Expression Profiling , Humans , Wharton Jelly/cytology
SELECTION OF CITATIONS
SEARCH DETAIL