Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 818
Filter
Add more filters

Publication year range
1.
J Virol ; 98(9): e0078424, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39194214

ABSTRACT

Porcine respiratory and reproductive syndrome (PRRS) is one of the most devastating infectious diseases of pigs, causing reproductive failures in sows and severe respiratory symptoms in piglets and growing pigs. MicroRNAs (miRNAs) are reported to play an essential role in virus-host interactions. In this study, we demonstrated that miR-451 enhanced type I interferon (IFN-I) production through targeting proteasome subunit ß8 (PSMB8), therefore restricting PRRS virus (PRRSV) replication. We showed that the expression of PSMB8 was upregulated by PRRSV infection, and knockdown of PSMB8 inhibited PRRSV replication by promoting IFN-I production. Moreover, we demonstrated that PSMB8 interacted with the regulatory domain of IRF3 to mediate K48-linked polyubiquitination and degradation of IRF3. Also, importantly, we showed that PSMB8, as a target gene of miR-451, negatively regulated IFN-I production by promoting IRF3 degradation, which is a previously unknown mechanism for PSMB8 to modulate innate immune responses. IMPORTANCE: Porcine respiratory and reproductive syndrome virus (PRRSV), as a huge threat to the swine industry, is a causative agent that urgently needs to be solved. The dissecting of PRRSV pathogenesis and understanding of the host-pathogen interaction will provide insights into developing effective anti-PRRSV strategies. In this study, we showed that miR-451 dramatically inhibited PRRSV replication by targeting proteasome subunit ß8 (PSMB8), a subunit of the immunoproteasome. Mutation of PSMB8 is often related to autoinflammatory diseases due to the elevated IFN production. We revealed that PSMB8 downregulated IFN production by promoting IRF3 degradation. In addition, we showed that PRRSV infection upregulated PSMB8 expression. Taken together, our findings reveal that miR-451 is a negative regulator of PRRSV replication, and PSMB8, a target gene of miR-451, negatively regulates IFN-I production by promoting IRF3 degradation, which is a previously unknown mechanism for PSMB8 to regulate innate immune responses.


Subject(s)
Interferon Regulatory Factor-3 , MicroRNAs , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Proteasome Endopeptidase Complex , Virus Replication , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Swine , MicroRNAs/genetics , MicroRNAs/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/immunology , Humans , Interferon Type I/metabolism , Ubiquitination , Immunity, Innate , Cell Line , HEK293 Cells , Host-Pathogen Interactions/genetics , Proteolysis
2.
J Am Chem Soc ; 146(40): 27443-27450, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39141483

ABSTRACT

Ferroelectricity in metal-free perovskites (MFPs) has emerged as an academic hotspot for their lightweight, eco-friendly processability, flexibility, and degradability, with considerable progress including large spontaneous polarization, high Curie temperature, large piezoelectric response, and tailoring coercive field. However, their equivalent polarization axes as a key indicator are far from enough, although multiaxial ferroelectrics are highly preferred for performance output and application flexibility that profit from as many equivalent polarization directions as possible with easier reorientation. Here, by implementing the synergistic overlap of regulating anionic geometries (from spherical I- to octahedral [PF6]- and to tetrahedral [ClO4]- or [BF4]-) and cationic asymmetric modification, we successfully designed multiaxial MFP ferroelectrics CMDABCO-NH4-X3 (CMDABCO = N-chloromethyl-N'-diazabicyclo[2.2.2]octonium; X = [ClO4]- or [BF4]-) with the lowest P1 symmetry. More impressively, systemic characterizations indicate that they possess 24 equivalent polarization axes (Aizu notations of 432F1 and m3̅mF1, respectively)─the maximum number achievable for ferroelectrics. Benefiting from the multiaxial feature, CMDABCO-NH4-[ClO4]3 has been demonstrated to have excellent piezoelectric sensing performance in its polycrystalline sample and prepared composite device. Our study provides a feasible strategy for designing multiaxial MFP ferroelectrics and highlights their great promise for use in microelectromechanical, sensing, and body-compatible devices.

3.
BMC Med ; 22(1): 407, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304842

ABSTRACT

BACKGROUND: Kidney transplantation is the optimal renal replacement therapy for children with end-stage renal disease; however, delayed graft function (DGF), a common post-operative complication, may negatively impact the long-term outcomes of both the graft and the pediatric recipient. However, there is limited research on DGF in pediatric kidney transplant recipients. This study aims to develop a predictive model for the risk of DGF occurrence after pediatric kidney transplantation by integrating donor and recipient characteristics and utilizing machine learning algorithms, ultimately providing guidance for clinical decision-making. METHODS: This single-center retrospective cohort study includes all recipients under 18 years of age who underwent single-donor kidney transplantation at our hospital between 2016 and 2023, along with their corresponding donors. Demographic, clinical, and laboratory examination data were collected from both donors and recipients. Univariate logistic regression models and differential analysis were employed to identify features associated with DGF. Subsequently, a risk score for predicting DGF occurrence (DGF-RS) was constructed based on machine learning combinations. Model performance was evaluated using the receiver operating characteristic curves, decision curve analysis (DCA), and other methods. RESULTS: The study included a total of 140 pediatric kidney transplant recipients, among whom 37 (26.4%) developed DGF. Univariate analysis revealed that high-density lipoprotein cholesterol (HDLC), donor after circulatory death (DCD), warm ischemia time (WIT), cold ischemia time (CIT), gender match, and donor creatinine were significantly associated with DGF (P < 0.05). Based on these six features, the random forest model (mtry = 5, 75%p) exhibited the best predictive performance among 97 machine learning models, with the area under the curve values reaching 0.983, 1, and 0.905 for the entire cohort, training set, and validation set, respectively. This model significantly outperformed single indicators. The DCA curve confirmed the clinical utility of this model. CONCLUSIONS: In this study, we developed a machine learning-based predictive model for DGF following pediatric kidney transplantation, termed DGF-RS, which integrates both donor and recipient characteristics. The model demonstrated excellent predictive accuracy and provides essential guidance for clinical decision-making. These findings contribute to our understanding of the pathogenesis of DGF.


Subject(s)
Delayed Graft Function , Kidney Transplantation , Machine Learning , Tissue Donors , Humans , Kidney Transplantation/adverse effects , Female , Male , Child , Retrospective Studies , Adolescent , Child, Preschool , Infant
4.
Small ; 20(38): e2402168, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38757427

ABSTRACT

A metal-free nanocarbon with an eggshell structure is synthesized from chitosan (CS) and natural spherical graphite (NSG) as a cathode electrocatalyst for clean zinc-air batteries and fuel cells. It is developed using CS-derived carbons as an eggshell, covering NSG cores. The synthesis involves the in situ growth of CS on NSG, followed by ammonia-assisted pyrolysis for carbonization. The resulting catalyst displays a curved structure and completely coated NSG, showing superior oxygen reduction reaction (ORR) performance. In 1 M NaOH, the ORR half-wave potential reached 0.93 V, surpassing the commercial Pt/C catalyst by 50 mV. Furthermore, a zinc-air battery featuring the catalyst achieves a peak power density of 167 mW cm-2 with excellent stability, outperforming the Pt/C. The improved performance of the eggshell carbons can be attributed to the distorted energy band of the active sites in the form of N-C moieties. More importantly, the curved thin eggshells induce built-in electric fields that can promote electron redistribution to generate atomic charge waves around the N-C moieties on the carbon shells. As a result, the high positively charged and stable C+ sites adjacent to N atoms optimize the adsorption strength of oxygen molecules, thereby facilitating performance.

5.
Small ; 20(31): e2311253, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38456580

ABSTRACT

A highly viable alternative to lithium-ion batteries for stationary electrochemical energy-storage systems is the potassium dual-ion hybrid capacitor (PIHC), especially toward fast-charging capability. However, the sluggish reaction kinetics of negative electrode materials seriously impedes their practical implementation. In this paper, a new negative electrode Bi@RPC (Nano-bismuth confined in nitrogen- and oxygen-doped carbon with rationally designed pores, evidenced by advanced characterization) is developed, leading to a remarkable electrochemical performance. PIHCs building with the active carbon YP50F positive electrode result in a high operation voltage (0.1-4 V), and remarkably well-retained energy density at a high-power density (11107 W kg-1 at 98 Wh kg-1). After 5000 cycles the proposed PHICs still show a superior capacity retention of 92.6%. Moreover, a reversible mechanism of "absorption-alloying" of the Bi@RPC nanocomposite is revealed by operando synchrotron X-ray diffraction and Raman spectroscopy. With the synergistic potassium ions storage mechanism arising from the presence of well-structured pores and nano-sized bismuth, the Bi@RPC electrode exhibits an astonishingly rapid kinetics and high energy density. The results demonstrate that PIHCs with Bi@RPC-based negative electrode is the promising option for simultaneously high-capacity and fast-charging energy storage devices.

6.
Small ; 20(16): e2306989, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38032164

ABSTRACT

Hybrid organic-inorganic perovskite (HOIP) ferroelectric materials have great potential for developing self-powered electronic transducers owing to their impressive piezoelectric performance, structural tunability and low processing temperatures. Nevertheless, their inherent brittle and low elastic moduli limit their application in electromechanical conversion. Integration of HOIP ferroelectrics and soft polymers is a promising solution. In this work, a hybrid organic-inorganic rare-earth double perovskite ferroelectric, [RM3HQ]2RbPr(NO3)6 (RM3HQ = (R)-N-methyl-3-hydroxylquinuclidinium) is presented, which possesses multiaxial nature, ferroelasticity and satisfactory piezoelectric properties, including piezoelectric charge coefficient (d33) of 102.3 pC N-1 and piezoelectric voltage coefficient (g33) of 680 × 10-3 V m N-1. The piezoelectric generators (PEG) based on composite films of [RM3HQ]2RbPr(NO3)6@polyurethane (PU) can generate an open-circuit voltage (Voc) of 30 V and short-circuit current (Isc) of 18 µA, representing one of the state-of-the-art PEGs to date. This work has promoted the exploration of new HOIP ferroelectrics and their development of applications in electromechanical conversion devices.

7.
Chemistry ; 30(13): e202303394, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38116992

ABSTRACT

The development of efficient and selective organic synthetic approaches for complex molecules has garnered significant attention due to the need for precise control over molecular structures and functions. Rotaxanes, a type of mechanically interlocked molecules (MIMs), have shown promising applications in various fields including sensing, catalysis, and material science. However, the highly selective synthesis of oligo[n]rotaxanes (mostly n≥3) through controlling host-guest complexation and supramolecular threading assembly process still remains an ongoing challenge. In particular, the utilization of two-dimensional (2D) macrocycles with structural shape-persistency for the synthesis of oligo[n]rotaxanes is rare. In this concept, research on cooperatively threaded host-guest complexation with hydrogen-bonded (H-bonded) aramide macrocycles and selective synthetic protocols of oligo[n]rotaxanes has been summarized. The high efficiency and selectivity in synthesis are ascribed to the synergistic interplay of multiple non-covalent bonding interactions such as hydrogen bonding and intermolecular π-π stacking of macrocycles within the unique supramolecular structure of threaded host-guest complexes. This review focuses on the latest progress in the concepts, synthesis, and properties of H-bonded aramide macrocycle-based oligorotaxanes, and presents an in-depth outlook on challenges in this emerging field.

8.
Fish Shellfish Immunol ; 154: 109931, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39343063

ABSTRACT

Hypoxic stress, triggered by a multitude of factors, has inflicted significant economic repercussions on the aquaculture of Eriocheir sinensis. In this research, we sequenced a collective of 60 samples from both hypoxia-sensitive and hypoxia-resistant groups utilizing streamlined genome sequencing techniques. Subsequently, we delved into population evolution, scrutinized the selective sweep within these populations, and performed a genome-wide association study (GWAS) focused on the hypoxia tolerance traits within the population, all through the lens of SNPs molecular markers. This comprehensive analysis aimed to uncover the SNPs and pinpoint the pertinent candidate genes that influence the hypoxia tolerance capabilities of E. sinensis. The selective sweep analysis revealed that genes harboring potential genetic variations within the two populations were predominantly enriched in areas such as signaling molecules and interactions, energy metabolism, glycolipid metabolism, and immune response. In the genome-wide association study focusing on hypoxia tolerance traits, we identified four SNPs significantly associated with hypoxia resistance. Furthermore, one potential candidate gene, Dscam2, which is believed to influence hypoxia tolerance, was discovered within a 50 kb vicinity of these SNPs. These identified SNPs can serve as molecular markers for screening hypoxia tolerance, offering valuable insights for the genetic improvement of E. sinensis.

9.
Inorg Chem ; 63(40): 18676-18688, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39312639

ABSTRACT

Palladium (Pd) capture from high-level liquid waste for subsequent photocatalytic applications is desirable for the development of nuclear energy and the reutilization of valuable resources. Herein, we approach our design with a unique porous organic polymer containing thiazolo[5,4-d]thiazole units (denoted as TzPOP-OH). It possesses two potential soft-hard (N-O and S-O) combined coordination sites for Pd(II) coordination and features strong donor-acceptor repeating units and high planarity of linkage enforced by hydrogen bonds for subsequent photocatalysis. Accordingly, TzPOP-OH with three hydroxyl groups on the linkage exhibits a high Pd(II) capacity of 369 mg g-1 at 3 M HNO3, considerably surpassing those of the controlled polymer TzPOP without hydroxyl groups and most other reported materials. Additionally, TzPOP-OH boasts other merits, including outstanding acid tolerance, extraordinary radiation stability, good reusability, and remarkable selectivity. After palladium adsorption, Pd@TzPOP-OH demonstrates impressive photodegradation efficiency to reduce the concentration of rhodamine B in contaminated urban water from 10 to less than 0.1 ppm. This work provides a feasible approach to designing materials with both suitable coordination microenvironments and semiconductor properties for metal separation and photocatalysis.

10.
BMC Gastroenterol ; 24(1): 29, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200441

ABSTRACT

BACKGROUND: The m6A modified demethylase FTO affects the progression of gastric cancer (GC), and the role mechanism of FTO in GC is still unclear. We, here, explored the role of FTO and unrevealed the mechanisms of its function in GC. METHODS: The expression and clinical prognosis of FTO in GC were examined via UALCAN and GEPIA online databases. Effect of FTO shRNA on GC cellular malignant phenotype were proved by CCK-8, Transwell, Wound healing assay and Flow cytometric assay. RNA-sequencing data of FTO depleted AGS cells were downloaded to analyze differentially expressed genes of FTO downstream. The GO and KEGG pathway enrichment were performed for the DEGs by DAVID. RT-qPCR and RIP-qPCR assay were applied to verify the MOXD1 mRNA and methylated mRNA in FTO shRNA group. The expression and clinical prognosis of MOXD1 in GC were explored via UALCAN, GEPIA and Kaplan-Meier plotter. The role and mechanism and of MOXD1 in GC cell lines were detected and analyzed. RESULTS: The expression of FTO was found to be elevated in GC tissues compared with normal tissues, and worse survival were strongly related to high expression of FTO in GC. FTO silencing suppressed the proliferation, migration and promoted apoptosis of GC cells. A total of 5856 DEGs were obtained in between NC and FTO depleted AGS cell groups, and involved in the cancer related pathways. Here, FTO targets MOXD1 mRNA and promotes its expression via m6A methylation. MOXD1 upregulation was associated to poor prognosis of GC. MOXD1 silencing suppressed the malignant phenotype of GC cells. MOXD1 activated cancer -related signaling pathway (MAPK, TGF-ß, NOTCH and JAK/STAT). CONCLUSIONS: Our study demonstrated that FTO silencing decreased MOXD1 expression to inhibit the progression of GC via m6A methylation modification. FTO/MOXD1 may be potential targets for the treatment and prognosis of GC.


Subject(s)
Stomach Neoplasms , Humans , Adenosine , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Phenotype , RNA, Messenger , RNA, Small Interfering , Stomach Neoplasms/genetics
11.
Nanotechnology ; 35(33)2024 May 30.
Article in English | MEDLINE | ID: mdl-38744256

ABSTRACT

Secondary battery as an efficient energy conversion device has been highly attractive for alleviating the energy crisis and environmental pollution. Hierarchical porous carbon (HPC) materials with multiple sizes pore channels are considered as promising materials for energy conversion and storage applications, due to their high specific surface area and excellent electrical conductivity. Although many reviews have reported on carbon materials for different fields, systematic summaries about HPC materials for lithium storage are still rare. In this review, we first summarize the main preparation methods of HPC materials, including hard template method, soft template method, and template-free method. The modification methods including porosity and morphology tuning, heteroatom doping, and multiphase composites are introduced systematically. Then, the recent advances in HPC materials on lithium storage are summarized. Finally, we outline the challenges and future perspectives for the application of HPC materials in lithium storage.

12.
COPD ; 21(1): 2363630, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38973373

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is preventable and requires early screening. The study aimed to examine the clinical values of long non-coding RNA (lncRNA) SNHG5 in COPD diagnosis and prognosis. Out of 160 COPD patients, 80 were in the stable stage and 80 were in the acute exacerbation of COPD stage (AECOPD). SNHG5 expression was detected via qRT-PCR. The survival analysis was conducted using Cox regression analysis and K-M curve. SNHG5 levels significantly reduced in both stable COPD and AECOPD groups compared with the control group, with AECOPD group recording the lowest values. SNHG5 levels were negatively correlated with GOLD stage. Serum SNHG5 can differentiate stable COPD patients from healthy individuals (AUC = 0.805), and can screen AECOPD from stable ones (AUC = 0.910). SNHG5 negatively influenced the release of inflammatory cytokines. For AECOPD patients, those with severe cough and wheezing dyspnea symptoms exhibited the lowest values of SNUG5. Among the 80 AECOPD patients, 16 cases died in the one-year follow-up, all of whom had low levels of SNHG5. SNHG5 levels independently influenced survival outcomes, patients with low SNHG5 levels had a poor prognosis. Thus, lncRNA SNHG5, which is downregulated in patients with COPD (especially AECOPD), can potentially protect against AECOPD and serve as a novel prognostic biomarker for AECOPD.


Subject(s)
Disease Progression , Pulmonary Disease, Chronic Obstructive , RNA, Long Noncoding , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/diagnosis , RNA, Long Noncoding/genetics , Male , Female , Middle Aged , Prognosis , Aged , Case-Control Studies , Cytokines/blood , Proportional Hazards Models , Severity of Illness Index , Cough/etiology , Dyspnea/etiology , Biomarkers/blood , Clinical Relevance
13.
Sensors (Basel) ; 24(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931713

ABSTRACT

The rapid advancements in Artificial Intelligence of Things (AIoT) are pivotal for the healthcare sector, especially as the world approaches an aging society which will be reached by 2050. This paper presents an innovative AIoT-enabled data fusion system implemented at the CMUH Respiratory Intensive Care Unit (RICU) to address the high incidence of medical errors in ICUs, which are among the top three causes of mortality in healthcare facilities. ICU patients are particularly vulnerable to medical errors due to the complexity of their conditions and the critical nature of their care. We introduce a four-layer AIoT architecture designed to manage and deliver both real-time and non-real-time medical data within the CMUH-RICU. Our system demonstrates the capability to handle 22 TB of medical data annually with an average delay of 1.72 ms and a bandwidth of 65.66 Mbps. Additionally, we ensure the uninterrupted operation of the CMUH-RICU with a three-node streaming cluster (called Kafka), provided a failed node is repaired within 9 h, assuming a one-year node lifespan. A case study is presented where the AI application of acute respiratory distress syndrome (ARDS), leveraging our AIoT data fusion approach, significantly improved the medical diagnosis rate from 52.2% to 93.3% and reduced mortality from 56.5% to 39.5%. The results underscore the potential of AIoT in enhancing patient outcomes and operational efficiency in the ICU setting.


Subject(s)
Artificial Intelligence , Intensive Care Units , Humans , Respiratory Distress Syndrome/therapy
14.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 471-478, 2024 Jun 18.
Article in Zh | MEDLINE | ID: mdl-38864133

ABSTRACT

OBJECTIVE: Telemedicine, as an information-based tool, is widely recognized as an effective solution for compensating for the imbalanced allocation of medical resources in China. This study specifi-cally aimed to analyze the impact of telemedicine functions on the operational efficiency of public hospitals, with a particular focus on their heterogeneous effects on hospitals of different levels. METHODS: A cross-sectional research design was used based on the 2022 Health Informatization Statistical Survey data, and 8 944 public hospitals were used as research objects to analyze the impact of telemedicine on hospital revenues and business capacity. Multivariate linear model, propensity score matching (PSM), and grouped regression methods were employed to evaluate the impact of telemedicine on hospital revenues, number of consultations, and the number of discharges. RESULTS: The descriptive results showed that telemedicine was available in 35.51% of public hospitals. The analysis also demonstrated that various factors, such as hospital level, academic category, area of the hospital, administrational level and number of beds all had a significant influence on the operation of the hospital. Moreover, the regression results showed that opening telemedicine could increase hospital revenues by 0.140 (P < 0.01), hospital consultations by 0.136 (P < 0.01), and the number of discharges by 0.316 (P < 0.01). After correcting for endogeneity using the propensity score matching, the results showed that the effect of opening telemedicine on hospital revenues, consultations, and the number of discharges was 0.191 (P < 0.01), 0.216 (P < 0.01), and 0.353 (P < 0.01), respectively. Further heterogeneity analysis was conducted to explore the differential effects of telemedicine on hospitals of different levels. Grouped regression showed that telemedicine had a positive impact on the income of secondary hospitals, with a coefficient of 0.088 (P < 0.05), and it had a more significant positive impact on hospital consultations in secondary hospitals, with a coefficient of 0.127 (P < 0.01). An even greater impact on the number of discharges in primary hospitals, with a coefficient of 1.203 (P < 0.01). Telemedicine, on the other hand, did not have a significant positive impact on the overall revenue and operational capacity of tertiary hospitals. CONCLUSION: Telemedicine had a significant promoting effect on hospital revenues, hospital consultations and the number of discharges, and this effect was differentiated between hospitals of different levels. Through the construction of telemedicine, primary hospitals were able to significantly improve their business capacity and revenue, which played a positive role in improving the operation of primary public hospitals.


Subject(s)
Hospitals, Public , Telemedicine , Hospitals, Public/statistics & numerical data , China , Telemedicine/economics , Cross-Sectional Studies , Humans , Propensity Score
15.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1113-1121, 2024 Feb.
Article in Zh | MEDLINE | ID: mdl-38621918

ABSTRACT

This study systematically collected, analyzed, and evaluated randomized controlled trial(RCT) in the treatment of diabetic foot ulcer(DFU). The aim as provide references for future studies and to enhance the application of clinical evidence. The RCT of DFU treated with Chinese Patent Medicine was obtained and analyzed using the AI-Clinical Evidence Database of Chinese Patent Medicine(AICED-CPM). The analysis was supplemented with data from CNKI, Wanfang, VIP, SinoMed, PubMed, EMbase, Cochrane Library, and Web of Science. A total of 275 RCTs meeting the requirements were retrieved, with only 7 of them having a sample size of 200 or more. These trials involved 66 different Chinese patent medicine including 25 oral medications, 24 Chinese herbal injections, and 17 external drugs. Among the 33 different intervention/control designs identified, the most common design was Chinese patent medicine + conventional treatment vs conventional treatment(86 cases, 31.27%). Out of the 275 articles included in the literature, 50 did not provide information on the specific course of treatment(18.18%). A total of 10 counting indicators(with a frequency of 426) and 36 measuring indicators(with a frequency of 962) were utilized. The methodological quality of the RCT for the treatment of DFU with Chinese patent medicine was found to be low, with deficiencies in blind methods, other bias factors, study registration, and sample size estimation. There were noticeable shortcomings in the reporting of allocation hiding and implementation bias(blind method application). More studies should prioritize trial registration, program design, and strict quality control during implementation to provide valuable data for clinical practice and serve as a reference for future investigations.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Diabetes Mellitus/drug therapy , Diabetic Foot/drug therapy , Drugs, Chinese Herbal/therapeutic use , Nonprescription Drugs/therapeutic use , Randomized Controlled Trials as Topic
16.
Angew Chem Int Ed Engl ; : e202414072, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152651

ABSTRACT

Biomolecular machines autonomously convert energy into functions, driving systems away from thermodynamic equilibrium. This energy conversion is achieved by leveraging complex, kinetically asymmetric chemical reaction networks that are challenging to characterize precisely. In contrast, all known synthetic molecular systems in which kinetic asymmetry has been quantified are well described by simple single-cycle networks. Here, we report on a unique light-driven [2]rotaxane that enables the autonomous operation of a synthetic molecular machine with a multi-cycle chemical reaction network. Unlike all prior systems, the present one exploits a photoactive macrocycle, which features a different photoreactivity depending on the binding sites at which it resides. Furthermore, E to Z isomerization reverses the relative affinity of the macrocycle for two binding sites on the axle, resulting in a multi-cycle network. Building on the most recent theoretical advancements, this work quantifies kinetic asymmetry in a multi-cycle network for the first time. Our findings represent the simplest rotaxane capable of autonomous shuttling developed so far and offer a general strategy to generate and quantify kinetic asymmetry beyond single-cycle systems.

17.
J Transl Med ; 21(1): 335, 2023 05 21.
Article in English | MEDLINE | ID: mdl-37211606

ABSTRACT

BACKGROUND: Interleukin-17A (IL-17A), a proinflammatory cytokine primarily secreted by Th17 cells, γδT cells and natural killer T (NKT) cells, performs essential roles in the microenvironment of certain inflammation-related tumours by regulating cancer growth and tumour elimination proved in previous literature. In this study, the mechanism of IL-17A that induces mitochondrial dysfunction promoted pyroptosis has been explored in colorectal cancer cells. METHOD: The records of 78 patients diagnosed with CRC were reviewed via the public database to evaluate clinicopathological parameters and prognosis associations of IL-17A expression. The colorectal cancer cells were treated with IL-17A, and the morphological characteristics of those cells were indicated by scanning electron microscope and transmission electron microscope. After IL-17A treatment, mitochondrial dysfunction was tested by mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). The expression of pyroptosis associated proteins including cleaved caspase-4, cleaved gasdermin-D (GSDMD), IL-1ß, receptor activator of nuclear NOD-like receptor family pyrin domain containing 3 (NLRP3), apoptosis-associated speck like protein containing a card (ASC), and factor-kappa B was measured through western blotting. RESULTS: Positive IL-17A protein expression was observed in CRC compared to the non-tumour tissue. IL-17A expression indicates a better differentiation, earlier stage, and better overall survival in CRC. IL-17A treatment could induce mitochondrial dysfunction and stimulate intracellular reactive oxygen species (ROS) production. Furthermore, IL-17A could promote pyroptosis of colorectal cancer cells and significantly increase the secretion of inflammatory factors. Nevertheless, the pyroptosis induced by IL-17A could be inhibited through the pre-treatment with Mito-TEMPO (a mitochondria-targeted superoxide dismutase mimetic with superoxide and alkyl radical scavenging properties) or Z-LEVD-FMK (caspase-4 inhibitor, fluoromethylketone). Additionally, after being treated with IL-17A, an increasing number of CD8 + T cells showed in mouse-derived allograft colon cancer models. CONCLUSION: IL-17A, as a cytokine mainly secreted by γδT cells in the colorectal tumour immune microenvironment, can regulate the tumour microenvironment in multiple ways. IL-17A could induce mitochondrial dysfunction and pyroptosis through the ROS/NLRP3/caspase-4/GSDMD pathway, and promote intracellular ROS accumulation. In addition, IL-17A can promote the secretion of inflammatory factors such as IL-1ß、IL-18 and immune antigens, and recruit CD8 + T cells to infiltrate tumours.


Subject(s)
Colorectal Neoplasms , NLR Family, Pyrin Domain-Containing 3 Protein , Mice , Animals , Reactive Oxygen Species/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Interleukin-17/metabolism , Mitochondria/metabolism , CD8-Positive T-Lymphocytes/metabolism , Colorectal Neoplasms/metabolism , Inflammasomes/metabolism , Tumor Microenvironment
18.
Int Arch Allergy Immunol ; 184(6): 529-538, 2023.
Article in English | MEDLINE | ID: mdl-37231897

ABSTRACT

Since the global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a symptom of the onset of SARS-CoV-2, olfactory dysfunction (OD), has attracted tremendous attention. OD is not only a negative factor for quality of life but also an independent hazard and early biomarker for various diseases, such as Parkinson's and Huntington's diseases. Therefore, early identification and treatment of OD in patients are critical. Many etiological factors are responsible for OD based on current opinions. Sniffin'Sticks are recommended to identify the initial position (central or peripheral) for OD when treating patients clinically. It is worth emphasizing that the olfactory region in nasal cavity is recognized as the primary and critical olfactory receptor. Many nasal diseases, such as those with traumatic, obstructive and inflammatory causes, can lead to OD. The key question is no refined diagnosis or treatment strategy for nasogenic OD currently. This study summarizes the differences in medical history, symptoms, auxiliary examination, treatment and prognosis of different types of nasogenic OD by analyzing the current studies. We propose using olfactory training after 4-6 weeks of initial treatment for nasogenic OD patients with no significant improvement in olfaction. We hope that our research can provide valuable clinical guidance by systematically summarizing the clinical characteristics of nasogenic OD.


Subject(s)
Olfaction Disorders , Olfaction Disorders/diagnosis , Olfaction Disorders/therapy , Humans , Nasal Cavity , Prognosis , Inflammation
19.
J Magn Reson Imaging ; 57(5): 1392-1403, 2023 05.
Article in English | MEDLINE | ID: mdl-36054564

ABSTRACT

BACKGROUND: Accurate diagnosis of axillary lymph node metastasis (ALNM) of breast cancer patients is important to guide local and systemic treatment. PURPOSE: To evaluate the diagnostic performance of different imaging modalities for ALNM in patients with breast cancer. STUDY TYPE: Systematic review and network meta-analysis (NMA). SUBJECTS: Sixty-one original articles with 8011 participants. FIELD STRENGTH: 1.5 T and 3.0 T. ASSESSMENT: We used the QUADAS-2 and QUADAS-C tools to assess the risk of bias in eligible studies. The identified articles assessed ultrasonography (US), MRI, mammography, ultrasound elastography (UE), PET, CT, PET/CT, scintimammography, and PET/MRI. STATISTICAL ANALYSIS: We used random-effects conventional meta-analyses and Bayesian network meta-analyses for data analyses. We used sensitivity and specificity, relative sensitivity and specificity, superiority index, and summary receiver operating characteristic curve (SROC) analysis to compare the diagnostic value of different imaging modalities. RESULTS: Sixty-one studies evaluated nine imaging modalities. At patient level, sensitivities of the nine imaging modalities ranged from 0.27 to 0.84 and specificities ranged from 0.84 to 0.95. Patient-based NMA showed that UE had the highest superiority index (5.95) with the highest relative sensitivity of 1.13 (95% confidence interval [CI]: 0.93-1.29) among all imaging methods when compared to US. At lymph node level, MRI had the highest superiority index (6.91) with highest relative sensitivity of 1.13 (95% CI: 1.01-1.23) and highest relative specificity of 1.11 (95% CI: 0.95-1.23) among all imaging methods when compared to US. SROCs also showed that UE and MRI had the largest area under the curve (AUC) at patient level and lymph node level of 0.92 and 0.94, respectively. DATA CONCLUSION: UE and MRI may be superior to other imaging modalities in the diagnosis of ALNM in breast cancer patients at the patient level and the lymph node level, respectively. Further studies are needed to provide high-quality evidence to validate our findings. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Breast Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Female , Positron Emission Tomography Computed Tomography/methods , Lymphatic Metastasis/pathology , Breast Neoplasms/pathology , Network Meta-Analysis , Bayes Theorem , Positron-Emission Tomography/methods , Sensitivity and Specificity , Magnetic Resonance Imaging/methods , Lymph Nodes/pathology , Diagnostic Tests, Routine
20.
Inorg Chem ; 62(23): 9168-9177, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37227426

ABSTRACT

Selective extraction of palladium from high-level liquid waste (HLLW) is desirable for the sustainable development of nuclear energy and resource recovery. In this work, three tridentate 2,6-bis-triazolyl-pyridine ligands (L-I, L-II, and L-III) bearing different alkyl side chains were synthesized and systematically studied for the complexation and extraction of palladium. Altering the alkyl side chains of the ligands led to pronounced differences in extraction performance. Among the three ligands, L-II decorated with two n-octyl groups exhibited the highest Pd(II) extraction efficiency at acidity levels of 1-5 M HNO3 and outstanding selectivity over 13 coexisting competing metal ions. Results from UV-vis titration experiments and theoretical calculations suggested that the differentiated extraction abilities of the ligands could be because of their different hydrophilicity rather than electron-donating effects. Slope analyses and electrospray ionization-high resolution mass spectrometry (ESI-HRMS) experiments revealed the formation of both L/Pd 1:1 and 2:1 species during the extraction process. These stoichiometries were further confirmed by job plots and NMR titration experiments. The ligands were found to aggregate slightly, especially at higher concentrations, which could result from multiple intermolecular hydrogen bonds as illustrated by X-ray crystallography. The configurations of PdL and PdL2 were further elucidated by analysis of single crystal structure and density-functional theory (DFT) calculations, respectively, where the first coordination sphere of Pd(II) was surrounded by four nitrogen or oxygen atoms in a quadrangular manner. This study provides an alternative method to separate palladium from HLLW and brings a new understanding of the coordination and complexation behaviors of Pd(II) with tridentate nitrogen ligands.

SELECTION OF CITATIONS
SEARCH DETAIL