Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters

Publication year range
1.
Cell ; 179(4): 813-827, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31675495

ABSTRACT

Cellular senescence is a cell state implicated in various physiological processes and a wide spectrum of age-related diseases. Recently, interest in therapeutically targeting senescence to improve healthy aging and age-related disease, otherwise known as senotherapy, has been growing rapidly. Thus, the accurate detection of senescent cells, especially in vivo, is essential. Here, we present a consensus from the International Cell Senescence Association (ICSA), defining and discussing key cellular and molecular features of senescence and offering recommendations on how to use them as biomarkers. We also present a resource tool to facilitate the identification of genes linked with senescence, SeneQuest (available at http://Senequest.net). Lastly, we propose an algorithm to accurately assess and quantify senescence, both in cultured cells and in vivo.


Subject(s)
Aging/genetics , Biomarkers , Cellular Senescence/genetics , Genetic Diseases, Inborn/genetics , Cell Cycle Checkpoints/genetics , Chromatin/genetics , Gene Expression Regulation/genetics , Genetic Diseases, Inborn/therapy , Humans
2.
Mol Cell ; 81(18): 3848-3865.e19, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34547241

ABSTRACT

Metabolic rewiring and redox balance play pivotal roles in cancer. Cellular senescence is a barrier for tumorigenesis circumvented in cancer cells by poorly understood mechanisms. We report a multi-enzymatic complex that reprograms NAD metabolism by transferring reducing equivalents from NADH to NADP+. This hydride transfer complex (HTC) is assembled by malate dehydrogenase 1, malic enzyme 1, and cytosolic pyruvate carboxylase. HTC is found in phase-separated bodies in the cytosol of cancer or hypoxic cells and can be assembled in vitro with recombinant proteins. HTC is repressed in senescent cells but induced by p53 inactivation. HTC enzymes are highly expressed in mouse and human prostate cancer models, and their inactivation triggers senescence. Exogenous expression of HTC is sufficient to bypass senescence, rescue cells from complex I inhibitors, and cooperate with oncogenic RAS to transform primary cells. Altogether, we provide evidence for a new multi-enzymatic complex that reprograms metabolism and overcomes cellular senescence.


Subject(s)
Cellular Senescence/physiology , NAD/metabolism , Aging/metabolism , Aging/physiology , Animals , Cell Line, Tumor , Cellular Senescence/genetics , Cytosol , Glucose/metabolism , Humans , Hydrogen/chemistry , Hydrogen/metabolism , Malate Dehydrogenase/metabolism , Male , Mice , Mice, Inbred NOD , Mice, Transgenic , NAD/physiology , Oxidation-Reduction , Pyruvate Carboxylase/metabolism , Pyruvic Acid/metabolism
3.
Nucleic Acids Res ; 50(14): 8331-8348, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35871297

ABSTRACT

SUMO proteins are important regulators of many key cellular functions in part through their ability to form interactions with other proteins containing SUMO interacting motifs (SIMs). One characteristic feature of all SUMO proteins is the presence of a highly divergent intrinsically disordered region at their N-terminus. In this study, we examine the role of this N-terminal region of SUMO proteins in SUMO-SIM interactions required for the formation of nuclear bodies by the promyelocytic leukemia (PML) protein (PML-NBs). We demonstrate that the N-terminal region of SUMO1 functions in a paralog specific manner as an auto-inhibition domain by blocking its binding to the phosphorylated SIMs of PML and Daxx. Interestingly, we find that this auto-inhibition in SUMO1 is relieved by zinc, and structurally show that zinc stabilizes the complex between SUMO1 and a phospho-mimetic form of the SIM of PML. In addition, we demonstrate that increasing cellular zinc levels enhances PML-NB formation in senescent cells. Taken together, these results provide important insights into a paralog specific function of SUMO1, and suggest that zinc levels could play a crucial role in regulating SUMO1-SIM interactions required for PML-NB formation and function.


Subject(s)
Nuclear Bodies , Promyelocytic Leukemia Protein , SUMO-1 Protein , Zinc , Amino Acid Motifs , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Transcription Factors/metabolism , Zinc/chemistry
4.
Molecules ; 29(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39202851

ABSTRACT

AUTAC-Biguanide is a hybrid compound designed to target mitochondria, inducing their degradation by mitophagy. This study unveils the potential of biguanides as cancer cell-targeting agents, emphasizing AUTAC-Biguanide's superior antiproliferative properties compared to metformin and its selectivity for cancer cells. The mechanism behind this heightened effect includes the ability of AUTAC-Biguanide to trigger mitophagy. By providing a comprehensive analysis of these findings, this study adds valuable insights to the field of mitochondrial-targeting anticancer agents.


Subject(s)
Antineoplastic Agents , Biguanides , Cell Proliferation , Mitochondria , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Biguanides/pharmacology , Biguanides/chemistry , Cell Proliferation/drug effects , Cell Line, Tumor , Metformin/pharmacology , Metformin/chemistry , Mitophagy/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
5.
Semin Cancer Biol ; 81: 48-53, 2022 06.
Article in English | MEDLINE | ID: mdl-33359514

ABSTRACT

Senescence is a tumor suppressor response that prevents the proliferation of mutated cells and alert the immune system for their elimination. However, this program is not perfect and with time additional genetic and epigenetic changes can impair tumor suppression and promote cancer progression both in cell autonomous and non-cell autonomous manners. A polyploid barrier is implemented in senescent cells to further prevent cell expansion but polyploid cells can generate highly malignant tumor cells via de-polyploidization. The nuclear lamina can act as an additional fail safe to prevent cancer in these cells and drugs able to stabilize the nuclear lamina may help to treat cancers by preventing senescence escape.


Subject(s)
Cellular Senescence , Neoplasms , Cell Cycle , Cell Proliferation , Cellular Senescence/genetics , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Polyploidy
6.
Rheumatology (Oxford) ; 61(3): 1265-1275, 2022 03 02.
Article in English | MEDLINE | ID: mdl-34115840

ABSTRACT

OBJECTIVE: SSc is an autoimmune connective tissue disorder characterized by inflammation and fibrosis. Although constitutive activation of fibroblasts is proposed to be responsible for the fibrotic and inflammatory features of the disease, the underlying mechanism remains elusive, and effective therapeutic targets are still lacking. The aim of this study was to evaluate the role of oxidative stress-induced senescence and its contribution to the pro-fibrotic and pro-inflammatory phenotypes of fibroblasts from SSc patients. METHODS: Dermal fibroblasts were isolated from SSc (n = 13) and healthy (n = 10) donors. Fibroblasts' intracellular and mitochondrial reactive oxygen species (ROS) were determined by flow cytometry. Mitochondrial function was measured by Seahorse XF24 analyser. Fibrotic and inflammatory gene expressions were assessed by qPCR and key pro-inflammatory components of the fibroblasts' secretome (IL-6 and IL-8) were quantified by ELISA. RESULTS: Compared with healthy fibroblasts, SSc fibroblasts displayed higher levels of both intracellular and mitochondrial ROS. Oxidative stress in SSc fibroblasts induced the expression of fibrotic genes and activated the TGF-ß-activated kinase 1 (TAK1)-IκB kinase ß (IKKß)-IFN regulatory factor 5 (IRF5) inflammatory signalling cascade. These cellular responses paralleled the presence of a DNA damage response, a senescence-associated secretory phenotype and a fibrotic response. Treatment of SSc fibroblasts with ROS scavengers reduced their pro-inflammatory secretome production and fibrotic gene expression. CONCLUSIONS: Oxidative stress-induced cellular senescence in SSc fibroblasts underlies their pro-inflammatory and pro-fibrotic phenotypes. Targeting redox imbalance of SSc fibroblasts enhances their in vitro functions and could be of relevance for SSc therapy.


Subject(s)
Aging/metabolism , Fibroblasts/metabolism , Inflammation/metabolism , Oxidative Stress , Scleroderma, Systemic/metabolism , Skin Diseases/metabolism , Humans , Phenotype
7.
Bioessays ; 41(3): e1800183, 2019 03.
Article in English | MEDLINE | ID: mdl-30706966

ABSTRACT

Ribosome biogenesis includes the making and processing of ribosomal RNAs, the biosynthesis of ribosomal proteins from their mRNAs in the cytosol and their transport to the nucleolus to assemble pre-ribosomal particles. Several stresses including cellular senescence reduce nucleolar rRNA synthesis and maturation increasing the availability of ribosome-free ribosomal proteins. Several ribosomal proteins can activate the p53 tumor suppressor pathway but cells without p53 can still arrest their proliferation in response to an imbalance between ribosomal proteins and mature rRNA production. Recent results on senescence-associated ribogenesis defects (SARD) show that the ribosomal protein S14 (RPS14 or uS11) can act as a CDK4/6 inhibitor linking ribosome biogenesis defects to the main engine of cell cycle progression. This work offers new insights into the regulation of the cell cycle and suggests novel avenues to design anticancer drugs.


Subject(s)
Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Cycle/physiology , Cellular Senescence , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Gene Expression , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , RNA, Ribosomal/metabolism , Ribosomes/metabolism , Signal Transduction/drug effects
8.
Genes Dev ; 27(8): 900-15, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23599344

ABSTRACT

Constitutive activation of growth factor signaling pathways paradoxically triggers a cell cycle arrest known as cellular senescence. In primary cells expressing oncogenic ras, this mechanism effectively prevents cell transformation. Surprisingly, attenuation of ERK/MAP kinase signaling by genetic inactivation of Erk2, RNAi-mediated knockdown of ERK1 or ERK2, or MEK inhibitors prevented the activation of the senescence mechanism, allowing oncogenic ras to transform primary cells. Mechanistically, ERK-mediated senescence involved the proteasome-dependent degradation of proteins required for cell cycle progression, mitochondrial functions, cell migration, RNA metabolism, and cell signaling. This senescence-associated protein degradation (SAPD) was observed not only in cells expressing ectopic ras, but also in cells that senesced due to short telomeres. Individual RNAi-mediated inactivation of SAPD targets was sufficient to restore senescence in cells transformed by oncogenic ras or trigger senescence in normal cells. Conversely, the anti-senescence viral oncoproteins E1A, E6, and E7 prevented SAPD. In human prostate neoplasms, high levels of phosphorylated ERK were found in benign lesions, correlating with other senescence markers and low levels of STAT3, one of the SAPD targets. We thus identified a mechanism that links aberrant activation of growth signaling pathways and short telomeres to protein degradation and cellular senescence.


Subject(s)
Cellular Senescence/genetics , MAP Kinase Signaling System/physiology , Proteolysis , Animals , Cell Line , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Female , Fibroblasts/cytology , Fibroblasts/enzymology , Gene Knockdown Techniques , Humans , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/metabolism , Proteasome Endopeptidase Complex/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , ras Proteins/metabolism
9.
Am J Pathol ; 189(11): 2340-2356, 2019 11.
Article in English | MEDLINE | ID: mdl-31430465

ABSTRACT

Retinopathy of prematurity (ROP) is characterized by an initial retinal avascularization, followed by pathologic neovascularization. Recently, choroidal thinning has also been detected in children formerly diagnosed with ROP; a similar sustained choroidal thinning is observed in ROP models. But the mechanism underlying the lack of choroidal revascularization remains unclear and was investigated in an oxygen-induced retinopathy (OIR) model. In OIR, evidence of senescence was detected, preceded by oxidative stress in the choroid and the retinal pigment epithelium. This was associated with a global reduction of proangiogenic factors, including insulin-like growth factor 1 receptor (Igf1R). Coincidentally, tumor suppressor p53 was highly expressed in the OIR retinae. Curtailing p53 activity resulted in reversal of senescence, normalization of Igf1r expression, and preservation of choroidal integrity. OIR-induced down-regulation of Igf1r was mediated at least partly by miR-let-7b as i) let-7b expression was augmented throughout and beyond the period of oxygen exposure, ii) let-7b directly targeted Igf1r mRNA, and iii) p53 knock-down blunted let-7b expression, restored Igf1r expression, and elicited choroidal revascularization. Finally, restoration of Igf1r expression rescued choroid thickness. Altogether, this study uncovers a significant mechanism for defective choroidal revascularization in OIR, revealing a new role for p53/let-7b/IGF-1R axis in the retina. Future investigations on this (and connected) pathway could further our understanding of other degenerative choroidopathies, such as geographic atrophy.


Subject(s)
Choroid/blood supply , Choroid/drug effects , MicroRNAs/physiology , Neovascularization, Physiologic/drug effects , Oxygen/adverse effects , Retinopathy of Prematurity/genetics , Retinopathy of Prematurity/pathology , Tumor Suppressor Protein p53/physiology , Animals , Animals, Newborn , Cells, Cultured , Choroid/metabolism , Choroid/pathology , Disease Models, Animal , Down-Regulation/drug effects , Down-Regulation/genetics , HEK293 Cells , Humans , Neovascularization, Physiologic/genetics , Oxygen/pharmacology , Rats , Rats, Long-Evans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Retinopathy of Prematurity/physiopathology , Signal Transduction/drug effects , Signal Transduction/genetics
10.
Nucleic Acids Res ; 46(16): 8181-8196, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30239883

ABSTRACT

MicroRNAs (miRNAs) are ribonucleic acids (RNAs) of ∼21 nucleotides that interfere with the translation of messenger RNAs (mRNAs) and play significant roles in development and diseases. In bilaterian animals, the specificity of miRNA targeting is determined by sequence complementarity involving the seed. However, the role of the remaining nucleotides (non-seed) is only vaguely defined, impacting negatively on our ability to efficiently use miRNAs exogenously to control gene expression. Here, using reporter assays, we deciphered the role of the base pairs formed between the non-seed region and target mRNA. We used molecular modeling to reveal that this mechanism corresponds to the formation of base pairs mediated by ordered motions of the miRNA-induced silencing complex. Subsequently, we developed an algorithm based on this distinctive recognition to predict from sequence the levels of mRNA downregulation with high accuracy (r2 > 0.5, P-value < 10-12). Overall, our discovery improves the design of miRNA-guide sequences used to simultaneously downregulate the expression of multiple predetermined target genes.


Subject(s)
Argonaute Proteins/genetics , MicroRNAs/genetics , Nucleotides/genetics , RNA, Messenger/genetics , Gene Expression Regulation/genetics , Gene Silencing , Humans , Models, Molecular , Nucleotides/chemistry , Protein Conformation
11.
Cytokine ; 117: 15-22, 2019 05.
Article in English | MEDLINE | ID: mdl-30776684

ABSTRACT

The senescence-associated secretory phenotype (SASP) defines the ability of senescent cells to express and secrete a variety of extracellular modulators that includes cytokines, chemokines, proteases, growth factors and bioactive lipids. The role of the SASP depends on the context. The SASP reinforces the senescent cell cycle arrest, stimulates the immune-mediated clearance of potentially tumorigenic cells, limits fibrosis and promotes wound healing and tissue regeneration. On the other hand, the SASP can mediate chronic inflammation and stimulate the growth and survival of tumor cells. The regulation of the SASP occurs at multiple levels including chromatin remodelling, activation of specific transcription factors such as C/EBP and NF-κB, control of mRNA translation and intracellular trafficking. Several SASP modulators have already been identified setting the stage for future research on their clinical applications.


Subject(s)
Cellular Senescence , Cellular Reprogramming , Cellular Senescence/genetics , Epigenesis, Genetic , Humans , Lipids/analysis , NF-kappa B/metabolism , Neoplasms/pathology
12.
Genes Dev ; 25(1): 41-50, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21205865

ABSTRACT

The tumor suppressor PML (promyelocytic leukemia protein) regulates cellular senescence and terminal differentiation, two processes that implicate a permanent exit from the cell cycle. Here, we show that the mechanism by which PML induces a permanent cell cycle exit and activates p53 and senescence involves a recruitment of E2F transcription factors bound to their promoters and the retinoblastoma (Rb) proteins to PML nuclear bodies enriched in heterochromatin proteins and protein phosphatase 1α. Blocking the functions of the Rb protein family or adding back E2Fs to PML-expressing cells can rescue their defects in E2F-dependent gene expression and cell proliferation, inhibiting the senescent phenotype. In benign prostatic hyperplasia, a neoplastic disease that displays features of senescence, PML was found to be up-regulated and forming nuclear bodies. In contrast, PML bodies were rarely visualized in prostate cancers. The newly defined PML/Rb/E2F pathway may help to distinguish benign tumors from cancers, and suggest E2F target genes as potential targets to induce senescence in human tumors.


Subject(s)
Cell Nucleus/metabolism , Cellular Senescence/physiology , E2F Transcription Factors/metabolism , Gene Expression Regulation , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism , Cell Line, Tumor , Humans , Male , Promyelocytic Leukemia Protein , Prostatic Hyperplasia/metabolism , Protein Transport
13.
Bioorg Med Chem ; 26(20): 5547-5554, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30309670

ABSTRACT

Lamin A contributes to the structure of nuclei in all mammalian cells and plays an important role in cell division and migration. Mature lamin A is derived from a farnesylated precursor protein, known as prelamin A, which undergoes post-translational cleavage catalyzed by the zinc metalloprotease STE24 (ZPMSTE24). Accumulation of farnesylated prelamin A in the nuclear envelope compromises cell division, impairs mitosis and induces an increased expression of inflammatory gene products. ZMPSTE24 has been proposed as a potential therapeutic target in oncology. A library of peptidomimetic compounds were synthesized and screened for their ability to induce accumulation of prelamin A in cancer cells and block cell migration in pancreatic ductal adenocarcinoma cells. The results of this study suggest that inhibitors of lamin A maturation may interfere with cell migration, the biological process required for cancer metastasis.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Lamin Type A/metabolism , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Antineoplastic Agents/chemical synthesis , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Humans , Membrane Proteins/metabolism , Metalloendopeptidases/metabolism , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/prevention & control , Peptidomimetics/chemical synthesis , Phosphinic Acids/chemical synthesis , Phosphinic Acids/chemistry , Phosphinic Acids/pharmacology
14.
BMC Cancer ; 17(1): 157, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28235401

ABSTRACT

BACKGROUND: Suppressor of cytokine signaling 1 (SOCS1) is considered a tumor suppressor due to frequent epigenetic and micro-RNA-mediated repression of its gene expression in diverse cancers. In prostate cancer (PCa), elevated expression of miR-30d that targets SOCS1 mRNA is associated with increased risk of disease recurrence. SOCS1 can mediate its tumor suppressor functions by diverse mechanisms such as inhibiting the JAK-STAT signaling pathway, promoting the tumor suppressor functions of p53, attenuating MET receptor tyrosine kinase signaling and blocking the oncogenic potential of the cell cycle inhibitor p21CIP1 (p21). Here, we studied the expression of SOCS1 and the downstream targets of its putative tumor suppressor functions (p53, MET and p21) in human PCa specimens to evaluate their significance as markers of disease prognosis. METHODS: Tissue microarrays were constructed of 78 archived prostatectomy specimens that were grouped according to the recommendations of the International Society of Urological Pathology (ISUP) based on the Gleason patterns. SOCS1, p53, MET and p21 protein expression were evaluated by immunohistochemical staining alongside the common prostate cancer-related markers Ki67, prostein and androgen receptor. Statistical correlations between the staining intensities of these markers and ISUP grade groups, local invasion or lymph node metastasis were evaluated. RESULTS: SOCS1 showed diffuse staining in the prostatic epithelium. SOCS1 staining intensity correlated inversely with the ISUP grade groups (ρ = -0.4687, p <0.0001) and Ki67 (ρ = -0.2444, p = 0.031), and positively with prostein (ρ = 0.3511, p = 0.0016). Changes in SOCS1 levels did not significantly associate with those of p53, MET or p21. However, p21 positively correlated with androgen receptor expression (ρ = -0.1388, p = 0.0003). A subset of patients with regional lymph node metastasis, although small in number, showed reduced SOCS1 expression and increased expression of MET and p21. CONCLUSIONS: Our findings suggest that evaluating SOCS1 and p21 protein expression in prostatectomy specimens may have a prognostic value in identifying the aggressive disease. Hence, prospective studies with larger numbers of metastatic PCa specimens incorporating clinical correlates such as disease-free and overall survival are warranted.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein/genetics , Genes, Tumor Suppressor , Humans , Male , Prognosis , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism
15.
Mol Cell ; 36(5): 754-67, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-20005840

ABSTRACT

SOCS1 is lost in many human tumors, but its tumor suppression activities are not well understood. We report that SOCS1 is required for transcriptional activity, DNA binding, and serine 15 phosphorylation of p53 in the context of STAT5 signaling. In agreement, inactivation of SOCS1 disabled p53-dependent senescence in response to oncogenic STAT5A and radiation-induced apoptosis in T cells. In addition, SOCS1 was sufficient to induce p53-dependent senescence in fibroblasts. The mechanism of activation of p53 by SOCS1 involved a direct interaction between the SH2 domain of SOCS1 and the N-terminal transactivation domain of p53, while the C-terminal domain of SOCS1 containing the SOCS Box mediated interaction with the DNA damage-regulated kinases ATM/ATR. Also, SOCS1 colocalized with ATM at DNA damage foci induced by oncogenic STAT5A. Collectively, these results add another component to the p53 and DNA damage networks and reveal a mechanism by which SOCS1 functions as a tumor suppressor.


Subject(s)
Cellular Senescence , Suppressor of Cytokine Signaling Proteins/physiology , Tumor Suppressor Protein p53/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Nucleus/metabolism , DNA Damage , DNA-Binding Proteins/metabolism , Humans , Mice , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , RNA Interference , STAT5 Transcription Factor/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/analysis , Suppressor of Cytokine Signaling Proteins/metabolism , Tumor Suppressor Proteins/metabolism
16.
Cytokine ; 82: 80-6, 2016 06.
Article in English | MEDLINE | ID: mdl-26841929

ABSTRACT

Normal cell proliferation is controlled by a balance between signals that promote or halt cell proliferation. Micro RNAs are emerging as key elements in providing fine signal balance in different physiological situations. Here we report that STAT5 signaling induces the miRNAs miR-19 and miR-155, which potentially antagonize the tumor suppressor axis composed by the STAT5 target gene SOCS1 (suppressor of cytokine signaling-1) and its downstream effector p53. MiRNA sponges against miR-19 or miR-155 inhibit the functions of these miRNAs and potentiate the induction of SOCS1 and p53 in mouse leukemia cells and in human myeloma cells. Adding a catalytic RNA motif of the hammerhead type within miRNA sponges against miR-155 leads to decreased miR-155 levels and increased their ability of inhibiting cell growth and cell migration in myeloma cells. The results indicate that antagonizing miRNA activity can reactivate tumor suppressor pathways downstream cytokine stimulation in tumor cells.


Subject(s)
Leukemia/metabolism , MicroRNAs/metabolism , Multiple Myeloma/metabolism , RNA, Catalytic/biosynthesis , RNA, Neoplasm/metabolism , Suppressor of Cytokine Signaling 1 Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Humans , Leukemia/genetics , Mice , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Multiple Myeloma/genetics , RAW 264.7 Cells , RNA, Catalytic/genetics , RNA, Neoplasm/antagonists & inhibitors , RNA, Neoplasm/genetics , Suppressor of Cytokine Signaling 1 Protein/genetics , Tumor Suppressor Protein p53/genetics
17.
Cytokine ; 82: 70-9, 2016 06.
Article in English | MEDLINE | ID: mdl-26876578

ABSTRACT

Here we report that the STAT5A transcription factor is a direct p53 transcriptional target gene. STAT5A is well expressed in p53 wild type cells but not in p53-null cells. Inhibition of p53 reduces STAT5A expression. DNA damaging agents such as doxorubicin also induced STAT5A expression in a p53 dependent manner. Two p53 binding sites were mapped in the STAT5A gene and named PBS1 and PBS2; these sites were sufficient to confer p53 responsiveness in a luciferase reporter gene. Chromatin immunoprecipitation experiments revealed that PBS2 has constitutive p53 bound to it, while p53 binding to PBS1 required DNA damage. In normal human breast lobules, weak p53 staining correlated with regions of intense STAT5A staining. Interestingly, in a cohort of triple negative breast tumor tissues there was little correlation between regions of p53 and STAT5A staining, likely reflecting a high frequency of p53 mutations that stabilize the protein in these tumors. We thus reveal an unexpected connection between cytokine signaling and p53.


Subject(s)
Breast Neoplasms/metabolism , DNA Damage , Mutation , Response Elements , STAT5 Transcription Factor/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Humans , MCF-7 Cells , STAT5 Transcription Factor/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics
18.
RNA ; 18(3): 519-29, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22286970

ABSTRACT

Translation of the full-length messenger RNA (mRNA) of the human immunodeficiency virus type 1 (HIV-1) generates the precursor of the viral enzymes via a programmed -1 ribosomal frameshift. Here, using dual-luciferase reporters, we investigated whether the highly structured 5' untranslated region (UTR) of this mRNA, which interferes with translation initiation, can modulate HIV-1 frameshift efficiency. We showed that, when the 5' UTR of HIV-1 mRNA occupies the 5' end of the reporter mRNA, HIV-1 frameshift efficiency is increased about fourfold in Jurkat T-cells, compared with a control dual-luciferase reporter with a short unstructured 5' UTR. This increase was related to an interference with cap-dependent translation initiation by the TAR-Poly(A) region at the 5' end of the messenger. HIV-1 mRNA 5' UTR also contains an internal ribosome entry site (IRES), but we showed that, when the cap-dependent initiation mode is available, the IRES is not used or is weakly used. However, when the ribosomes have to use the IRES to translate the dual-luciferase reporter, the frameshift efficiency is comparable to that of the control dual-luciferase reporter. The decrease in cap-dependent initiation and the accompanying increase in frameshift efficiency caused by the 5' UTR of HIV-1 mRNA is antagonized, in a dose-dependent way, by the Tat viral protein. Tat also stimulates the IRES-dependent initiation and decreases the corresponding frameshift efficiency. A model is presented that accounts for the variations in frameshift efficiency depending on the 5' UTR and the presence of Tat, and it is proposed that a range of frameshift efficiencies is compatible with the virus replication.


Subject(s)
5' Untranslated Regions/genetics , Frameshifting, Ribosomal/genetics , Gene Products, tat/metabolism , HIV-1/genetics , RNA, Messenger/chemistry , RNA, Viral/chemistry , Gene Expression Regulation, Viral , Gene Order , Genes, Reporter , Genetic Vectors , HEK293 Cells , HIV-1/enzymology , HIV-1/metabolism , Humans , Jurkat Cells
19.
Autophagy ; 20(9): 1948-1967, 2024 09.
Article in English | MEDLINE | ID: mdl-38726830

ABSTRACT

The Atg8-family proteins (MAP1LC3/LC3A, LC3B, LC3C, GABARAP, GABARAPL1 and GABARAPL2) play a pivotal role in macroautophagy/autophagy through their ability to help form autophagosomes. Although autophagosomes form in the cytoplasm, nuclear levels of the Atg8-family proteins are significant. Recently, the nuclear/cytoplasmic shuttling of LC3B was shown to require deacetylation of two Lys residues (K49 and K51 in LC3B), which are conserved in Atg8-family proteins. To exit the nucleus, deacetylated LC3B must bind TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2) through interaction with the LC3-interacting region (LIR) of TP53INP2 (TP53INP2LIR). To examine their selectivity for TP53INP2 and the role of the conserved Lys residues in Atg8-family proteins, we prepared the six human Atg8-family proteins and acetylated variants of LC3A and GABARAP for biophysical and structural characterization of their interactions with the TP53INP2LIR. Isothermal titration calorimetry (ITC) experiments demonstrate that this LIR binds preferentially to GABARAP subfamily proteins, and that only acetylation of the second Lys residue reduces binding to GABARAP and LC3A. Crystal structures of complexes with GABARAP and LC3A (acetylated and deacetylated) define a ß-sheet in the TP53INP2LIR that determines the GABARAP selectivity and establishes the importance of acetylation at the second Lys. The in vitro results were confirmed in cells using acetyl-mimetic variants of GABARAP and LC3A to examine nuclear/cytoplasmic shuttling and colocalization with TP53INP2. Together, the results demonstrate that TP53INP2 shows selectivity to the GABARAP subfamily and acetylation at the second Lys of GABARAP and LC3A disrupts key interactions with TP53INP2 required for their nuclear/cytoplasmic shuttling.


Subject(s)
Autophagy-Related Protein 8 Family , Autophagy , Microtubule-Associated Proteins , Protein Binding , Acetylation , Humans , Autophagy/physiology , Autophagy-Related Protein 8 Family/metabolism , Microtubule-Associated Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Crystallography, X-Ray , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/chemistry , Nuclear Proteins
20.
Cell Rep ; 43(4): 114044, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38568812

ABSTRACT

We identify a senescence restriction point (SeRP) as a critical event for cells to commit to senescence. The SeRP integrates the intensity and duration of oncogenic stress, keeps a memory of previous stresses, and combines oncogenic signals acting on different pathways by modulating chromatin accessibility. Chromatin regions opened upon commitment to senescence are enriched in nucleolar-associated domains, which are gene-poor regions enriched in repeated sequences. Once committed to senescence, cells no longer depend on the initial stress signal and exhibit a characteristic transcriptome regulated by a transcription factor network that includes ETV4, RUNX1, OCT1, and MAFB. Consistent with a tumor suppressor role for this network, the levels of ETV4 and RUNX1 are very high in benign lesions of the pancreas but decrease dramatically in pancreatic ductal adenocarcinomas. The discovery of senescence commitment and its chromatin-linked regulation suggests potential strategies for reinstating tumor suppression in human cancers.


Subject(s)
Cellular Senescence , Chromatin , Humans , Chromatin/metabolism , Cellular Senescence/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Signal Transduction , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Transcription Factors/metabolism , Mice , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Oncogenes
SELECTION OF CITATIONS
SEARCH DETAIL