Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
Add more filters

Publication year range
1.
Nature ; 597(7878): 698-702, 2021 09.
Article in English | MEDLINE | ID: mdl-34526714

ABSTRACT

The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide1. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including ß-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of ß-lactamases, the primary resistance mechanism associated with ß-lactam therapy in Gram-negative bacteria2,3. Although the target spectrum of an initial lead was successfully re-engineered to gain in vivo efficacy, its ability to permeate across bacterial outer membranes was insufficient for further development. Notably, the features that enhanced target potency were found to preclude compound uptake. An improved optimization strategy leveraged porin permeation properties concomitant with biochemical potency in the lead-optimization stage. This resulted in ETX0462, which has potent in vitro and in vivo activity against Pseudomonas aeruginosa plus all other Gram-negative ESKAPE pathogens, Stenotrophomonas maltophilia and biothreat pathogens. These attributes, along with a favourable preclinical safety profile, hold promise for the successful clinical development of the first novel Gram-negative chemotype to treat life-threatening antibiotic-resistant infections in more than 25 years.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Design , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Animals , Anti-Bacterial Agents/chemistry , Aza Compounds/chemistry , Aza Compounds/pharmacology , Cyclooctanes/chemistry , Cyclooctanes/pharmacology , Female , Mice , Mice, Inbred BALB C , Molecular Structure , Penicillin-Binding Proteins/antagonists & inhibitors , Pseudomonas aeruginosa/drug effects , beta-Lactamases
2.
Proc Natl Acad Sci U S A ; 120(14): e2219124120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36976762

ABSTRACT

DNA duplex stability arises from cooperative interactions between multiple adjacent nucleotides that favor base pairing and stacking when formed as a continuous stretch rather than individually. Lesions and nucleobase modifications alter this stability in complex manners that remain challenging to understand despite their centrality to biology. Here, we investigate how an abasic site destabilizes small DNA duplexes and reshapes base pairing dynamics and hybridization pathways using temperature-jump infrared spectroscopy and coarse-grained molecular dynamics simulations. We show how an abasic site splits the cooperativity in a short duplex into two segments, which destabilizes small duplexes as a whole and enables metastable half-dissociated configurations. Dynamically, it introduces an additional barrier to hybridization by constraining the hybridization mechanism to a step-wise process of nucleating and zipping a stretch on one side of the abasic site and then the other.


Subject(s)
DNA , Nucleotides , Base Pairing , Nucleic Acid Conformation , DNA/metabolism , Nucleic Acid Hybridization
3.
Proc Natl Acad Sci U S A ; 119(48): e2200018119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36409904

ABSTRACT

The hydrophobicity of proteins and similar surfaces, which display chemical heterogeneity at the nanoscale, drives countless aqueous interactions and assemblies. However, predicting how surface chemical patterning influences hydrophobicity remains a challenge. Here, we address this challenge by using molecular simulations and machine learning to characterize and model the hydrophobicity of a diverse library of patterned surfaces, spanning a wide range of sizes, shapes, and chemical compositions. We find that simple models, based only on polar content, are inaccurate, whereas complex neural network models are accurate but challenging to interpret. However, by systematically incorporating chemical correlations between surface groups into our models, we are able to construct a series of minimal models of hydrophobicity, which are both accurate and interpretable. Our models highlight that the number of proximal polar groups is a key determinant of hydrophobicity and that polar neighbors enhance hydrophobicity. Although our minimal models are trained on particular patch size and shape, their interpretability enables us to generalize them to rectangular patches of all shapes and sizes. We also demonstrate how our models can be used to predict hot-spot locations with the largest marginal contributions to hydrophobicity and to design chemical patterns that have a fixed polar content but vary widely in their hydrophobicity. Our data-driven models and the principles they furnish for modulating hydrophobicity could facilitate the design of novel materials and engineered proteins with stronger interactions or enhanced solubilities.


Subject(s)
Proteins , Water , Hydrophobic and Hydrophilic Interactions , Proteins/chemistry , Water/chemistry , Solubility
4.
Biophys J ; 123(17): 2716-2729, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38098231

ABSTRACT

The integrin heterodimer is a transmembrane protein critical for driving cellular process and is a therapeutic target in the treatment of multiple diseases linked to its malfunction. Activation of integrin involves conformational transitions between bent and extended states. Some of the conformations that are intermediate between bent and extended states of the heterodimer have been experimentally characterized, but the full activation pathways remain unresolved both experimentally due to their transient nature and computationally due to the challenges in simulating rare barrier crossing events in these large molecular systems. An understanding of the activation pathways can provide new fundamental understanding of the biophysical processes associated with the dynamic interconversions between bent and extended states and can unveil new putative therapeutic targets. In this work, we apply nonlinear manifold learning to coarse-grained molecular dynamics simulations of bent, extended, and two intermediate states of αIIbß3 integrin to learn a low-dimensional embedding of the configurational phase space. We then train deep generative models to learn an inverse mapping between the low-dimensional embedding and high-dimensional molecular space and use these models to interpolate the molecular configurations constituting the activation pathways between the experimentally characterized states. This work furnishes plausible predictions of integrin activation pathways and reports a generic and transferable multiscale technique to predict transition pathways for biomolecular systems.


Subject(s)
Integrin alpha2 , Integrin beta3 , Molecular Dynamics Simulation , Deep Learning , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/chemistry , Protein Multimerization , Integrin alpha2/chemistry , Integrin alpha2/metabolism , Integrin beta3/chemistry , Integrin beta3/metabolism
5.
Biophys J ; 123(2): 118-133, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38006207

ABSTRACT

Local perturbations to DNA base-pairing stability from lesions and chemical modifications can alter the stability and dynamics of an entire oligonucleotide. End effects may cause the position of a disruption within a short duplex to influence duplex stability and structural dynamics, yet this aspect of nucleic acid modifications is often overlooked. We investigate how the position of an abasic site (AP site) impacts the stability and dynamics of short DNA duplexes. Using a combination of steady-state and time-resolved spectroscopy and molecular dynamics simulations, we unravel an interplay between AP-site position and nucleobase sequence that controls energetic and dynamic disruption to the duplex. The duplex is disrupted into two segments by an entropic barrier for base-pairing on each side of the AP site. The barrier induces fraying of the short segment when an AP site is near the termini. Shifting the AP site inward promotes a transition from short-segment fraying to fully encompassing the barrier into the thermodynamics of hybridization, leading to further destabilization of the duplex. Nucleobase sequence determines the length scale for this transition by tuning the barrier height and base-pair stability of the short segment, and certain sequences enable out-of-register base-pairing to minimize the barrier height.


Subject(s)
DNA , Nucleic Acid Conformation , Base Pairing , Thermodynamics , DNA/genetics , DNA/chemistry , Entropy
6.
Chem Rev ; 122(24): 17397-17478, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36260695

ABSTRACT

Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.


Subject(s)
Peptides , Macromolecular Substances/chemistry
7.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33372152

ABSTRACT

Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.


Subject(s)
Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/physiology , Amino Acid Sequence/genetics , Animals , Anti-Infective Agents/metabolism , Antimicrobial Cationic Peptides/metabolism , Brain/immunology , Brain/metabolism , Cell Death/drug effects , Computer Simulation , Databases, Genetic , Inflammation/metabolism , Mice , Mice, Inbred BALB C , Neuropeptides/metabolism , Phylogeny , Signal Transduction/physiology
8.
Biophys J ; 122(16): 3323-3339, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37469144

ABSTRACT

Hybridization of short nucleic acid segments (<4 nt) to single-strand templates occurs as a critical intermediate in processes such as nonenzymatic nucleic acid replication and toehold-mediated strand displacement. These templates often contain adjacent duplex segments that stabilize base pairing with single-strand gaps or overhangs, but the thermodynamics and kinetics of hybridization in such contexts are poorly understood because of the experimental challenges of probing weak binding and rapid structural dynamics. Here we develop an approach to directly measure the thermodynamics and kinetics of DNA and RNA dinucleotide dehybridization using steady-state and temperature-jump infrared spectroscopy. Our results suggest that dinucleotide binding is stabilized through coaxial stacking interactions with the adjacent duplex segments as well as from potential noncanonical base-pairing configurations and structural dynamics of gap and overhang templates revealed using molecular dynamics simulations. We measure timescales for dissociation ranging from 0.2-40 µs depending on the template and temperature. Dinucleotide hybridization and dehybridization involve a significant free energy barrier with characteristics resembling that of canonical oligonucleotides. Together, our work provides an initial step for predicting the stability and kinetics of hybridization between short nucleic acid segments and various templates.


Subject(s)
DNA , Nucleic Acid Hybridization , RNA , Spectrum Analysis , DNA/chemistry , RNA/chemistry , Thermodynamics , Kinetics , Spectrum Analysis/methods , Molecular Dynamics Simulation
9.
J Am Chem Soc ; 145(30): 16374-16382, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37467432

ABSTRACT

Manifesting chemical differences in individual rare earth (RE) element complexes is challenging due to the similar sizes of the tripositive cations and the corelike 4f shell. We disclose a new strategy for differentiating between similarly sized Dy3+ and Y3+ ions through a tailored photochemical reaction of their isostructural complexes in which the f-electron states of Dy3+ act as an energy sink. Complexes RE(hfac)3(NMMO)2 (RE = Dy (2-Dy) and Y (2-Y), hfac = hexafluoroacetylacetonate, and NMMO = N-methylmorpholine-N-oxide) showed variable rates of oxygen atom transfer (OAT) to triphenylphosphine under ultraviolet (UV) irradiation, as monitored by 1H and 19F NMR spectroscopies. Ultrafast transient absorption spectroscopy (TAS) identified the excited state(s) responsible for the photochemical OAT reaction or lack thereof. Competing sensitization pathways leading to excited-state deactivation in 2-Dy through energy transfer to the 4f electron manifold ultimately slows the OAT reaction at this metal cation. The measured rate differences between the open-shell Dy3+ and closed-shell Y3+ complexes demonstrate that using established principles of 4f ion sensitization may deliver new, selective modalities for differentiating the RE elements that do not depend on cation size.

10.
Biomacromolecules ; 24(6): 2618-2632, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37141445

ABSTRACT

Peptoids (N-substituted glycines) are a group of highly controllable peptidomimetic polymers. Amphiphilic diblock peptoids have been engineered to assemble crystalline nanospheres, nanofibrils, nanosheets, and nanotubes with biochemical, biomedical, and bioengineering applications. The mechanical properties of peptoid nanoaggregates and their relationship to the emergent self-assembled morphologies have been relatively unexplored and are critical for the rational design of peptoid nanomaterials. In this work, we consider a family of amphiphilic diblock peptoids consisting of a prototypical tube-former (Nbrpm6Nc6, a NH2-capped hydrophobic block of six N-((4-bromophenyl)methyl)glycine residues conjugated to a polar NH3(CH2)5CO tail), a prototypical sheet-former (Nbrpe6Nc6, where the hydrophobic block comprises six N-((4-bromophenyl)ethyl)glycine residues), and an intermediate sequence that forms mixed structures ((NbrpeNbrpm)3Nc6). We combine all-atom molecular dynamics simulations and atomic force microscopy to determine the mechanical properties of the self-assembled 2D crystalline nanosheets and relate these properties to the observed self-assembled morphologies. We find good agreement between our computational predictions and experimental measurements of Young's modulus of crystalline nanosheets. A computational analysis of the bending modulus along the two axes of the planar crystalline nanosheets reveals bending to be more favorable along the axis in which the peptoids stack by interdigitation of the side chains compared to that in which they form columnar crystals with π-stacked side chains. We construct molecular models of nanotubes of the Nbrpm6Nc6 tube-forming peptoid and predict a stability optimum in good agreement with experimental measurements. A theoretical model of nanotube stability suggests that this optimum is a free energy minimum corresponding to a "Goldilocks" tube radius at which capillary wave fluctuations in the tube wall are minimized.


Subject(s)
Nanotubes , Peptoids , Peptoids/chemistry , Nanotubes/chemistry , N-substituted Glycines , Molecular Dynamics Simulation , Glycine
11.
Chem Rev ; 121(20): 12465-12547, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34702037

ABSTRACT

Heat is an abundant but often wasted source of energy. Thus, harvesting just a portion of this tremendous amount of energy holds significant promise for a more sustainable society. While traditional solid-state inorganic semiconductors have dominated the research stage on thermal-to-electrical energy conversion, carbon-based semiconductors have recently attracted a great deal of attention as potential thermoelectric materials for low-temperature energy harvesting, primarily driven by the high abundance of their atomic elements, ease of processing/manufacturing, and intrinsically low thermal conductivity. This quest for new materials has resulted in the discovery of several new kinds of thermoelectric materials and concepts capable of converting a heat flux into an electrical current by means of various types of particles transporting the electric charge: (i) electrons, (ii) ions, and (iii) redox molecules. This has contributed to expanding the applications envisaged for thermoelectric materials far beyond simple conversion of heat into electricity. This is the motivation behind this review. This work is divided in three sections. In the first section, we present the basic principle of the thermoelectric effects when the particles transporting the electric charge are electrons, ions, and redox molecules and describe the conceptual differences between the three thermodiffusion phenomena. In the second section, we review the efforts made on developing devices exploiting these three effects and give a thorough understanding of what limits their performance. In the third section, we review the state-of-the-art thermoelectric materials investigated so far and provide a comprehensive understanding of what limits charge and energy transport in each of these classes of materials.


Subject(s)
Electricity , Temperature
12.
J Phys Chem A ; 127(15): 3497-3517, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37036804

ABSTRACT

Molecular dynamics simulations of microscopic phenomena are limited by the short integration time steps which are required for numerical stability but which limit the practically achievable simulation time scales. Collective variable (CV) enhanced sampling techniques apply biases to predefined collective coordinates to promote barrier crossing, phase space exploration, and sampling of rare events. The efficacy of these techniques is contingent on the selection of good CVs correlated with the molecular motions governing the long-time dynamical evolution of the system. In this work, we introduce Girsanov Reweighting Enhanced Sampling Technique (GREST) as an adaptive sampling scheme that interleaves rounds of data-driven slow CV discovery and enhanced sampling along these coordinates. Since slow CVs are inherently dynamical quantities, a key ingredient in our approach is the use of both thermodynamic and dynamical Girsanov reweighting corrections for rigorous estimation of slow CVs from biased simulation data. We demonstrate our approach on a toy 1D 4-well potential, a simple biomolecular system alanine dipeptide, and the Trp-Leu-Ala-Leu-Leu (WLALL) pentapeptide. In each case GREST learns appropriate slow CVs and drives sampling of all thermally accessible metastable states starting from zero prior knowledge of the system. We make GREST accessible to the community via a publicly available open source Python package.

13.
J Phys Chem A ; 127(25): 5470-5490, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37314375

ABSTRACT

All atom molecular dynamics (MD) simulations offer a powerful tool for molecular modeling, but the short time steps required for numerical stability of the integrator place many interesting molecular events out of reach of unbiased simulations. The popular and powerful Markov state modeling (MSM) approach can extend these time scales by stitching together multiple short discontinuous trajectories into a single long-time kinetic model but necessitates a configurational coarse-graining of the phase space that entails a loss of spatial and temporal resolution and an exponential increase in complexity for multimolecular systems. Latent space simulators (LSS) present an alternative formalism that employs a dynamical, as opposed to configurational, coarse graining comprising three back-to-back learning problems to (i) identify the molecular system's slowest dynamical processes, (ii) propagate the microscopic system dynamics within this slow subspace, and (iii) generatively reconstruct the trajectory of the system within the molecular phase space. A trained LSS model can generate temporally and spatially continuous synthetic molecular trajectories at orders of magnitude lower cost than MD to improve sampling of rare transition events and metastable states to reduce statistical uncertainties in thermodynamic and kinetic observables. In this work, we extend the LSS formalism to short discontinuous training trajectories generated by distributed computing and to multimolecular systems without incurring exponential scaling in computational cost. First, we develop a distributed LSS model over thousands of short simulations of a 264-residue proteolysis-targeting chimera (PROTAC) complex to generate ultralong continuous trajectories that identify metastable states and collective variables to inform PROTAC therapeutic design and optimization. Second, we develop a multimolecular LSS architecture to generate physically realistic ultralong trajectories of DNA oligomers that can undergo both duplex hybridization and hairpin folding. These trajectories retain thermodynamic and kinetic characteristics of the training data while providing increased precision of folding populations and time scales across simulation temperature and ion concentration.

14.
J Clin Nurs ; 32(7-8): 1433-1442, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35460126

ABSTRACT

AIM AND OBJECTIVE: To explore the experience of healthcare transition from paediatric to adult health care for adults born with oesophageal atresia and tracheo-oesophageal fistula (OA/TOF) and parents. BACKGROUND: OA/TOF is a rare and chronic health condition that can require lifelong medical follow-up and management. There is evidence to suggest that transitioning from paediatric to adult health care can be problematic for people with rare and chronic conditions, including OA/TOF. The previous literature suggests that the experience of transitioning with a rare condition is more complex than transitioning with a common chronic condition. DESIGN: The current study was a qualitative, cross-sectional, survey-based study. METHODS: Data were collected through an online survey. Parents of children born with OA/TOF (n = 23) and adults born with OA/TOF (n = 16) were recruited through a UK-based OA/TOF patient charity. Data from six open-ended questions were analysed using a hybrid approach combining elements of inductive and deductive thematic analyses. Throughout the research process, the SRQR were followed. RESULTS: Five themes were constructed during the analysis, reflecting the experience of parents and adults transitioning from paediatric to adult health care: thrown into the unknown; a cultural shift; stepping back and stepping up; 'no transition as such'; and living with uncertainty. CONCLUSIONS: The findings suggested that a formalised, managed healthcare transition is not commonly experienced by people born with OA/TOF and parents. RELEVANCE TO CLINICAL PRACTICE: We recommend a formalised healthcare transition process in OA/TOF, including preparation for transition and having a named key worker to manage the multidisciplinary transition process. The results also highlighted the need for adults born with OA/TOF to have access to a specialist health service with knowledge and understanding of issues related to OA/TOF.


Subject(s)
Esophageal Atresia , Esophageal Fistula , Transition to Adult Care , Adult , Child , Humans , Cross-Sectional Studies , Parents , Delivery of Health Care
15.
Immunity ; 38(3): 606-17, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23521886

ABSTRACT

A prophylactic or therapeutic vaccine offers the best hope to curb the HIV-AIDS epidemic gripping sub-Saharan Africa, but it remains elusive. A major challenge is the extreme viral sequence variability among strains. Systematic means to guide immunogen design for highly variable pathogens like HIV are not available. Using computational models, we have developed an approach to translate available viral sequence data into quantitative landscapes of viral fitness as a function of the amino acid sequences of its constituent proteins. Predictions emerging from our computationally defined landscapes for the proteins of HIV-1 clade B Gag were positively tested against new in vitro fitness measurements and were consistent with previously defined in vitro measurements and clinical observations. These landscapes chart the peaks and valleys of viral fitness as protein sequences change and inform the design of immunogens and therapies that can target regions of the virus most vulnerable to selection pressure.


Subject(s)
AIDS Vaccines/immunology , Computational Biology/methods , Gene Products, gag/immunology , HIV Infections/immunology , HIV-1/immunology , AIDS Vaccines/administration & dosage , AIDS Vaccines/genetics , Algorithms , Amino Acid Sequence , Binding Sites/genetics , Drug Design , Epitopes/genetics , Epitopes/immunology , Gene Products, gag/genetics , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/genetics , HLA-B Antigens/immunology , Humans , Models, Genetic , Models, Immunological , Mutation , Reproducibility of Results , Sequence Homology, Amino Acid , T-Lymphocytes, Cytotoxic/immunology
16.
Langmuir ; 38(50): 15463-15475, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36475709

ABSTRACT

Supramolecular materials derived from the self-assembly of engineered molecules continue to garner tremendous scientific and technological interest. Recent innovations include the realization of nano- and mesoscale particles (0D), rods and fibrils (1D), sheets (2D), and even extended lattices (3D). Our research groups have focused attention over the past 15 years on one particular class of supramolecular materials derived from oligopeptides with embedded π-electron units, where the oligopeptides can be viewed as substituents or side chains to direct the assembly of the central π-electron cores. Upon assembly, the π-systems are driven into close cofacial architectures that facilitate a variety of energy migration processes within the nanomaterial volume, including exciton transport, voltage transmission, and photoinduced electron transfer. Like many practitioners of supramolecular materials science, many of our initial molecular designs were designed with substantial inspiration from biologically occurring self-assembly coupled with input from chemical intuition and molecular modeling and simulation. In this feature article, we summarize our current understanding of the π-peptide self-assembly process as documented through our body of publications in this area. We address fundamental spectroscopic and computational tools used to extract information regarding the internal structures and energetics of the π-peptide assemblies, and we address the current state of the art in terms of recent applications of data science tools in conjunction with high-throughput computational screening and experimental assays to guide the efficient traversal of the π-peptide molecular design space. The abstract image details our integrated program of chemical synthesis, spectroscopic and functional characterization, multiscale simulation, and machine learning which has advanced the understanding and control of the assembly of synthetic π-conjugated peptides into supramolecular nanostructures with energy and biomedical applications.


Subject(s)
Nanostructures , Peptides , Peptides/chemistry , Oligopeptides/chemistry , Nanostructures/chemistry , Models, Molecular , Electrons
17.
Biomacromolecules ; 23(3): 992-1008, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35020390

ABSTRACT

Peptoids (N-substituted glycines) are a class of tailorable synthetic peptidomic polymers. Amphiphilic diblock peptoids have been engineered to assemble 2D crystalline lattices with applications in catalysis and molecular separations. Assembly is induced in an organic solvent/water mixture by evaporating the organic phase, but the assembly pathways remain uncharacterized. We conduct all-atom molecular dynamics simulations of Nbrpe6Nc6 as a prototypical amphiphilic diblock peptoid comprising an NH2-capped block of six hydrophobic N-((4-bromophenyl)ethyl)glycine residues conjugated to a polar NH3(CH2)5CO tail. We identify a thermodynamically controlled assembly mechanism by which monomers assemble into disordered aggregates that self-order into 1D chiral helical rods then 2D achiral crystalline sheets. We support our computational predictions with experimental observations of 1D rods using small-angle X-ray scattering, circular dichroism, and atomic force microscopy and 2D crystalline sheets using X-ray diffraction and atomic force microscopy. This work establishes a new understanding of hierarchical peptoid assembly and principles for the design of peptoid-based nanomaterials.


Subject(s)
Nanostructures , Peptoids , Microscopy, Atomic Force , N-substituted Glycines , Nanostructures/chemistry , Peptoids/chemistry , Polymers , X-Ray Diffraction
18.
Proc Natl Acad Sci U S A ; 116(22): 10658-10663, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31088971

ABSTRACT

Ribozymes synthesize proteins in a highly regulated local environment to minimize side reactions caused by various competing species. In contrast, it is challenging to prepare synthetic polypeptides from the polymerization of N-carboxyanhydrides (NCAs) in the presence of water and impurities, which induce monomer degradations and chain terminations, respectively. Inspired by natural protein synthesis, we herein report the preparation of well-defined polypeptides in the presence of competing species, by using a water/dichloromethane biphasic system with macroinitiators anchored at the interface. The impurities are extracted into the aqueous phase in situ, and the localized macroinitiators allow for NCA polymerization at a rate which outpaces water-induced side reactions. Our polymerization strategy streamlines the process from amino acids toward high molecular weight polypeptides with low dispersity by circumventing the tedious NCA purification and the demands for air-free conditions, enabling low-cost, large-scale production of polypeptides that has potential to change the paradigm of polypeptide-based biomaterials.


Subject(s)
Amino Acids/chemistry , Anhydrides/chemistry , Peptides , Polymerization , Kinetics , Methylene Chloride/chemistry , Models, Biological , Molecular Weight , Peptide Biosynthesis , Peptides/chemical synthesis , Peptides/chemistry , Water/chemistry
19.
J Am Chem Soc ; 143(42): 17395-17411, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34644072

ABSTRACT

A robust understanding of the sequence-dependent thermodynamics of DNA hybridization has enabled rapid advances in DNA nanotechnology. A fundamental understanding of the sequence-dependent kinetics and mechanisms of hybridization and dehybridization remains comparatively underdeveloped. In this work, we establish new understanding of the sequence-dependent hybridization/dehybridization kinetics and mechanism within a family of self-complementary pairs of 10-mer DNA oligomers by integrating coarse-grained molecular simulation, machine learning of the slow dynamical modes, data-driven inference of long-time kinetic models, and experimental temperature-jump infrared spectroscopy. For a repetitive ATATATATAT sequence, we resolve a rugged dynamical landscape comprising multiple metastable states, numerous competing hybridization/dehybridization pathways, and a spectrum of dynamical relaxations. Introduction of a G:C pair at the terminus (GATATATATC) or center (ATATGCATAT) of the sequence reduces the ruggedness of the dynamics landscape by eliminating a number of metastable states and reducing the number of competing dynamical pathways. Only by introducing a G:C pair midway between the terminus and the center to maximally disrupt the repetitive nature of the sequence (ATGATATCAT) do we recover a canonical "all-or-nothing" two-state model of hybridization/dehybridization with no intermediate metastable states. Our results establish new understanding of the dynamical richness of sequence-dependent kinetics and mechanisms of DNA hybridization/dehybridization by furnishing quantitative and predictive kinetic models of the dynamical transition network between metastable states, present a molecular basis with which to understand experimental temperature jump data, and furnish foundational design rules by which to rationally engineer the kinetics and pathways of DNA association and dissociation for DNA nanotechnology applications.


Subject(s)
Oligodeoxyribonucleotides/chemistry , Kinetics , Markov Chains , Molecular Dynamics Simulation , Nucleic Acid Hybridization , Spectrophotometry, Infrared , Thermodynamics
20.
Langmuir ; 37(28): 8594-8606, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34213333

ABSTRACT

Peptide-π-conjugated materials are important for biointerfacing charge-transporting applications due to their aqueous compatibility and formation of long-range π-electron networks. Perylene diimides (PDIs), well-established charge-transporting π systems, can self-assemble in aqueous solutions when conjugated with amino acids. In this work, we leveraged computational guidance from our previous work to access two different self-assembled architectures from PDI-amino acid conjugates. Furthermore, we expanded the design rule to other sequences to learn that the closest amino acids to the π core have a significant effect on the photophysical properties of the resulting assemblies. By simply altering glycine to alanine at the closest residue position, we observed significantly different electronic properties as revealed through UV-vis, photoluminescence, and circular dichroism spectroscopies. Accompanying molecular dynamics simulations revealed two distinct types of self-assembled architectures: cofacial structures when the smaller glycine residue is at the closest residue position to the π core versus rotationally shifted structures when glycine is substituted for the larger alanine. This study illustrates the use of tandem computations and experiments to unearth and understand new design rules for supramolecular materials and exposes a modest amino acid substitution as a means to predictably modulate the supramolecular organization and engineer the photophysical properties of π-conjugated peptidic materials.


Subject(s)
Perylene , Amino Acids , Electrons , Molecular Dynamics Simulation , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL