Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cancer Immunol Immunother ; 71(4): 979-987, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34467417

ABSTRACT

Venetoclax treatment has demonstrated efficacy and a safety profile in chronic lymphocytic leukemia (CLL) patients, however the emergence of resistant cells is a current complication. We and others, previously reported that the activation of CLL cells by signals that mimic microenvironment stimuli favors the upregulation of anti-apoptotic proteins from B cell lymphoma-2 (BCL-2) family that are not targeted by venetoclax, reducing malignant cell sensitivity to the drug. We here studied venetoclax-resistant CLL cells generated in vitro by autologous activated T lymphocytes, and found that they showed an aggressive phenotype characterized by increased expression of activation and proliferation markers. Moreover, surviving cells expressed high levels of B cell lymphoma-extra-large (BCL-XL) and/or myeloid cell leukemia-1 (MCL-1), and a sustained resistance to a second treatment with the drug. Interestingly, the spleen tyrosine kinase (SYK) inhibitor entospletinib, and the phosphoinositide 3-kinase delta (PI3Kδ) inhibitor idelalisib, reduced T cell activation, impaired the generation of leukemic cells with this aggressive phenotype, and were able to restore CLL sensitivity to venetoclax. Our data highlight a novel combination to overcome resistance to venetoclax in CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Sulfonamides , Tumor Microenvironment
2.
Cancer Immunol Immunother ; 69(5): 813-824, 2020 May.
Article in English | MEDLINE | ID: mdl-32055920

ABSTRACT

Despite significant therapeutic improvements chronic lymphocytic leukemia (CLL) remains an incurable disease and there is a persistent pursuit of new treatment alternatives. Lurbinectedin, a selective inhibitor of active transcription of protein-coding genes, is currently in phase II/III clinical trials for solid tumors such as small-cell lung cancer (SCLC). In this study, we aimed to evaluate the activity of Lurbinectedin on circulating mononuclear cells from CLL patients and to determine whether Lurbinectedin could affect the cross-talk between B-CLL cells and the tumor microenvironment. We found that Lurbinectedin induced a dose- and time-dependent death in all cell types evaluated, with B cells, monocytes and monocytic myeloid derived suppressor cells (Mo-MDSC) being the most susceptible populations. At sub-apoptotic doses, Lurbinectedin decreased the expression of CCR7 in B-CLL cells and impaired their migration towards CCL19 and CCL21. Furthermore, low concentrations of Lurbinectedin stimulated the synthesis of pro-IL1ß in monocytes and nurse-like cells, without inducing the inflammasome activation. Altogether, these results indicate that Lurbinectedin might have antitumor activity in CLL due to its direct action on leukemic cells in combination with its effects on the tumor microenvironment. Our findings encourage further investigation of Lurbinectedin as a potential therapy for CLL.


Subject(s)
Carbolines/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Tumor Microenvironment/drug effects , Apoptosis/drug effects , Apoptosis/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Survival/drug effects , Cell Survival/immunology , Chemokine CCL19/immunology , Chemokine CCL19/metabolism , Chemokine CCL21/immunology , Chemokine CCL21/metabolism , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Primary Cell Culture , Receptors, CCR7/immunology , Receptors, CCR7/metabolism , Tumor Cells, Cultured , Tumor Microenvironment/immunology
3.
Int J Cancer ; 144(5): 1128-1134, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30178523

ABSTRACT

Reprogramming of neutrophils by malignant cells is well-described for many types of solid tumors, but data remain scarce for hematological diseases. Chronic lymphocytic leukemia (CLL) is characterized for a deep immune dysregulation mediated by leukemic cells that compromises patient's outcome. Murine models of CLL highlight the relevance of myeloid cells as tumor-driven reprogramming targets. In our study, we evaluated neutrophil reprogramming by CLL cells. We first show that the proportion of the CD16high CD62Ldim neutrophil subset in peripheral blood of CLL patients is increased compared to age-matched healthy donors (HD). In vitro, neutrophils from HD cultured in the presence of CLL cells or conditioned media (CM) from CLL cells exhibited a longer lifespan. Depletion of G-CSF and GM-CSF from CM partially reversed the protective effect. In addition, the proportion of viable neutrophils that displayed a CD16high CD62Ldim phenotype was increased in the presence of CM from CLL cells, being TGF-ß/IL-10 responsible for this effect. Altogether, our results describe a novel mechanism through which CLL cells can manipulate neutrophils.


Subject(s)
Cell Differentiation/physiology , Immune Tolerance/physiology , L-Selectin/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Neutrophils/pathology , Receptors, IgG/metabolism , Aged , Cell Line, Tumor , Female , GPI-Linked Proteins/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Male , Middle Aged , Neutrophils/metabolism , Transforming Growth Factor beta/metabolism
4.
Cancer Immunol Immunother ; 66(1): 77-89, 2017 01.
Article in English | MEDLINE | ID: mdl-27796477

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by immune defects that contribute to a high rate of infections and autoimmune cytopenias. Neutrophils are the first line of innate immunity and respond to pathogens through multiple mechanisms, including the release of neutrophil extracellular traps (NETs). These web-like structures composed of DNA, histones, and granular proteins are also produced under sterile conditions and play important roles in thrombosis and autoimmune disorders. Here we show that neutrophils from CLL patients are more prone to release NETs compared to those from age-matched healthy donors (HD). Increased generation of NETs was not due to higher levels of elastase, myeloperoxidase, or reactive oxygen species production. Instead, we found that plasma from CLL patients was able to prime neutrophils from HD to generate higher amounts of NETs upon activation. Plasmatic IL-8 was involved in the priming effect since its depletion reduced plasma capacity to enhance NETs release. Finally, we found that culture with NETs delayed spontaneous apoptosis and increased the expression of activation markers on leukemic B cells. Our study provides new insights into the immune dysregulation in CLL and suggests that the chronic inflammatory environment typical of CLL probably underlies this inappropriate neutrophil priming.


Subject(s)
Extracellular Traps/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Neutrophils/immunology , Aged , Aged, 80 and over , Case-Control Studies , Humans , Interleukin-8/immunology , Middle Aged
5.
Cancer Immunol Immunother ; 66(4): 461-473, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28011996

ABSTRACT

Small molecules targeting kinases involved in B cell receptor signaling are showing encouraging clinical activity in chronic lymphocytic leukemia (CLL) patients. Fostamatinib (R406) and entospletinib (GS-9973) are ATP-competitive inhibitors designed to target spleen tyrosine kinase (Syk) that have shown clinical activity with acceptable toxicity in trials with CLL patients. Preclinical studies with these inhibitors in CLL have focused on their effect in patient-derived leukemic B cells. In this work we show that clinically relevant doses of R406 and GS-9973 impaired the activation and proliferation of T cells from CLL patients. This effect could not be ascribed to Syk-inhibition given that we show that T cells from CLL patients do not express Syk protein. Interestingly, ζ-chain-associated protein kinase (ZAP)-70 phosphorylation was diminished by both inhibitors upon TCR stimulation on T cells. In addition, we found that both agents reduced macrophage-mediated phagocytosis of rituximab-coated CLL cells. Overall, these results suggest that in CLL patients treated with R406 or GS-9973 T cell functions, as well as macrophage-mediated anti-tumor activity of rituximab, might be impaired. The potential consequences for CLL-treated patients are discussed.


Subject(s)
Indazoles/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Macrophages/immunology , Oxazines/pharmacology , Pyrazines/pharmacology , Pyridines/pharmacology , Syk Kinase/antagonists & inhibitors , T-Lymphocytes/drug effects , ZAP-70 Protein-Tyrosine Kinase/metabolism , Aged , Aged, 80 and over , Cell Proliferation/drug effects , Cells, Cultured , Female , Humans , Lymphocyte Activation/drug effects , Male , Middle Aged , Phagocytosis/drug effects , Phosphorylation/drug effects , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Rituximab/pharmacology , T-Lymphocytes/immunology
6.
J Immunol ; 193(6): 3165-74, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25127862

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by the progressive accumulation of clonal B lymphocytes. Proliferation occurs in lymphoid tissues upon interaction of leukemic cells with a supportive microenvironment. Therefore, the mobilization of tissue-resident CLL cells into the circulation is a useful therapeutic strategy to minimize the reservoir of tumor cells within survival niches. Because the exit of normal lymphocytes from lymphoid tissues depends on the presence of sphingosine-1 phosphate (S1P) and the regulated expression of S1P receptor-1 (S1PR1), we investigated whether the expression and function of S1PR1 can be modulated by key microenvironment signals. We found that activation of CLL cells with CXCL12, fibroblast CD40L(+), BCR cross-linking, or autologous nurse-like cells reduces their S1PR1 expression and the migratory response toward S1P. Moreover, we found that S1PR1 expression was reduced in the proliferative/activated subset of leukemic cells compared with the quiescent subset from the same patient. Similarly, bone marrow-resident CLL cells expressing high levels of the activation marker CD38 showed a lower expression of S1PR1 compared with CD38(low) counterparts. Finally, given that treatment with BCR-associated kinase inhibitors induces a transient redistribution of leukemic cells from lymphoid tissues to circulation, we studied the effect of the Syk inhibitors piceatannol and R406 on S1PR1 expression and function. We found that they enhance S1PR1 expression in CLL cells and their migratory response toward S1P. Based on our results, we suggest that the regulated expression of S1PR1 might modulate the egress of the leukemic clone from lymphoid tissues.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lysophospholipids/immunology , Oxazines/pharmacology , Pyridines/pharmacology , Receptors, Lysosphingolipid/immunology , Sphingosine/analogs & derivatives , Stilbenes/pharmacology , ADP-ribosyl Cyclase 1/biosynthesis , Adult , Aged , Aged, 80 and over , Animals , B-Lymphocytes , CD40 Ligand/biosynthesis , Cell Movement , Chemokine CXCL12/biosynthesis , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Lysophospholipids/biosynthesis , Male , Membrane Glycoproteins/biosynthesis , Mice , Middle Aged , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-bcr/biosynthesis , Receptors, CXCR4 , Receptors, Lysosphingolipid/biosynthesis , Sphingosine/biosynthesis , Sphingosine/immunology , Sphingosine-1-Phosphate Receptors , Syk Kinase , Tumor Cells, Cultured , Tumor Microenvironment
9.
Haematologica ; 103(10): e458-e461, 2018 10.
Article in English | MEDLINE | ID: mdl-29748439
11.
Front Oncol ; 11: 598319, 2021.
Article in English | MEDLINE | ID: mdl-34381700

ABSTRACT

Current standard treatment of patients with hairy cell leukemia (HCL), a chronic B-cell neoplasia of low incidence that affects the elderly, is based on the administration of purine analogs such as cladribine. This chemotherapy approach shows satisfactory responses, but the disease relapses, often repeatedly. Venetoclax (ABT-199) is a Bcl-2 inhibitor currently approved for the treatment of chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) in adult patients ineligible for intensive chemotherapy. Given that HCL cells express Bcl-2, our aim was to evaluate venetoclax as a potential therapy for HCL. We found that clinically relevant concentrations of venetoclax (0.1 and 1 µM) induced primary HCL cell apoptosis in vitro as measured by flow cytometry using Annexin V staining. As microenvironment induces resistance to venetoclax in CLL, we also evaluated its effect in HCL by testing the following stimuli: activated T lymphocytes, stromal cells, TLR-9 agonist CpG, and TLR-2 agonist PAM3. We found decreased levels of venetoclax-induced cytotoxicity in HCL cells exposed for 48 h to any of these stimuli, suggesting that leukemic B cells from HCL patients are sensitive to venetoclax, but this sensitivity can be overcome by signals from the microenvironment. We propose that the combination of venetoclax with drugs that target the microenvironment might improve its efficacy in HCL.

13.
Leuk Lymphoma ; 61(10): 2409-2418, 2020 10.
Article in English | MEDLINE | ID: mdl-32306816

ABSTRACT

Ibrutinib is a BTK/ITK inhibitor with efficacy for the treatment of various lymphoid cancers, including CLL. Considering that innate and adaptative immune defects are a dominant feature of CLL patients, we evaluated whether in vitro ibrutinib affects the survival and function of neutrophils and γδ T cells, key players of the early immune response against microbes. Neutrophils and γδ T cells were obtained from peripheral blood of healthy donors and CLL patients. We found that ibrutinib reduces the production of reactive oxygen species (ROS) and bacteria killing capacity, and slightly impairs neutrophil extracellular traps (NETs) production without affecting bacteria-uptake and CD62L-downregulation induced by fMLP or aggregated IgG. In addition, ibrutinib reduces γδ T cell activation and CD107a degranulation induced by phosphoantigens or anti-CD3. These findings are in agreement with previous data suggesting that ibrutinib interferes with the protective immune response to pathogens, particularly Mycobacteria and Aspergillus.


Subject(s)
Neutrophils , T-Lymphocytes , Adenine/analogs & derivatives , Humans , Lymphocyte Activation , Piperidines , Reactive Oxygen Species
14.
Sci Rep ; 7(1): 15714, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29146966

ABSTRACT

The proliferation and survival of malignant B cells in chronic lymphocytic leukemia (CLL) depend on signals from the microenvironment in lymphoid tissues. Among a plethora of soluble factors, IL-8 has been considered one of the most relevant to support CLL B cell progression in an autocrine fashion, even though the expression of IL-8 receptors, CXCR1 and CXCR2, on leukemic B cells has not been reported. Here we show that circulating CLL B cells neither express CXCR1 or CXCR2 nor they respond to exogenous IL-8 when cultured in vitro alone or in the presence of monocytes/nurse-like cells. By intracellular staining and ELISA we show that highly purified CLL B cells do not produce IL-8 spontaneously or upon activation through the B cell receptor. By contrast, we found that a minor proportion (<0.5%) of contaminating monocytes in enriched suspensions of leukemic cells might be the actual source of IL-8 due to their strong capacity to release this cytokine. Altogether our results indicate that CLL B cells are not able to secrete or respond to IL-8 and highlight the importance of methodological details in in vitro experiments.


Subject(s)
Interleukin-8/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Aged , Aged, 80 and over , Apoptosis , Cell Line, Tumor , Cell Survival , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Monocytes/metabolism , Receptors, Interleukin-8/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL