Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Theor Appl Genet ; 134(7): 1867-1897, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33969431

ABSTRACT

KEY MESSAGE: This review summarizes the allelic series, effects, interactions between genes and with the environment, for the major flowering time genes that drive phenological adaptation of barley. The optimization of phenology is a major goal of plant breeding addressing the production of high-yielding varieties adapted to changing climatic conditions. Flowering time in cereals is regulated by genetic networks that respond predominately to day length and temperature. Allelic diversity at these genes is at the basis of barley wide adaptation. Detailed knowledge of their effects, and genetic and environmental interactions will facilitate plant breeders manipulating flowering time in cereal germplasm enhancement, by exploiting appropriate gene combinations. This review describes a catalogue of alleles found in QTL studies by barley geneticists, corresponding to the genetic diversity at major flowering time genes, the main drivers of barley phenological adaptation: VRN-H1 (HvBM5A), VRN-H2 (HvZCCTa-c), VRN-H3 (HvFT1), PPD-H1 (HvPRR37), PPD-H2 (HvFT3), and eam6/eps2 (HvCEN). For each gene, allelic series, size and direction of QTL effects, interactions between genes and with the environment are presented. Pleiotropic effects on agronomically important traits such as grain yield are also discussed. The review includes brief comments on additional genes with large effects on phenology that became relevant in modern barley breeding. The parallelisms between flowering time allelic variation between the two most cultivated Triticeae species (barley and wheat) are also outlined. This work is mostly based on previously published data, although we added some new data and hypothesis supported by a number of studies. This review shows the wide variety of allelic effects that provide enormous plasticity in barley flowering behavior, which opens new avenues to breeders for fine-tuning phenology of the barley crop.


Subject(s)
Flowers/physiology , Genes, Plant , Hordeum/genetics , Alleles , Gene Expression Regulation, Plant , Genetic Variation , Hordeum/physiology , Photoperiod , Plant Breeding , Seasons , Triticum/genetics , Triticum/physiology
2.
Sensors (Basel) ; 20(5)2020 Mar 08.
Article in English | MEDLINE | ID: mdl-32182722

ABSTRACT

Crop productivity can be expressed as the product of the amount of radiation intercepted, radiation use efficiency and harvest index. Genetic variation for components of radiation use efficiency has rarely been explored due to the lack of appropriate equipment to determine parameters at the scale needed in plant breeding. On the other hand, responses of the photosynthetic apparatus to environmental conditions have not been extensively investigated under field conditions, due to the challenges posed by the fluctuating environmental conditions. This study applies a rapid, low-cost, and reliable high-throughput phenotyping tool to explore genotypic variation for photosynthetic performance of a set of hybrid barleys and their parents under mild water-stress and unstressed field conditions. We found differences among the genotypic sets that are relevant for plant breeders and geneticists. Hybrids showed lower leaf temperature differential and higher non-photochemical quenching, resembling closer the male parents. The combination of traits detected in hybrids seems favorable, and could indicate improved photoprotection and better fitness under stress conditions. Additionally, we proved the potential of a low-cost, field-based phenotyping equipment to be used routinely in barley breeding programs for early screening for stress tolerance.


Subject(s)
Fluorometry , Hordeum/physiology , Photosynthesis/physiology , Seeds/physiology , Stress, Physiological/physiology , Chlorophyll/analysis , Chlorophyll/chemistry , Droughts , Equipment Design , Fluorometry/instrumentation , Fluorometry/methods , Hordeum/chemistry , Phenotype , Plant Breeding , Seeds/chemistry
3.
Front Plant Sci ; 13: 827701, 2022.
Article in English | MEDLINE | ID: mdl-35432439

ABSTRACT

Crop adaptation requires matching resource availability to plant development. Tight coordination of the plant cycle with prevailing environmental conditions is crucial to maximizing yield. It is expected that winters in temperate areas will become warmer, so the vernalization requirements of current cultivars can be desynchronized with the environment's vernalizing potential. Therefore, current phenological ideotypes may not be optimum for future climatic conditions. Major genes conferring vernalization sensitivity and phenological responses in barley (Hordeum vulgare L.) are known, but some allelic combinations remain insufficiently evaluated. Furthermore, there is a lack of knowledge about flowering time in a hybrid context. To honor the promise of increased yield potentials, hybrid barley phenology must be studied, and the knowledge deployed in new cultivars. A set of three male and two female barley lines, as well as their six F1 hybrids, were studied in growth chambers, subjected to three vernalization treatments: complete (8 weeks), moderate (4 weeks), and low (2 weeks). Development was recorded up to flowering, and expression of major genes was assayed at key stages. We observed a gradation in responses to vernalization, mostly additive, concentrated in the phase until the initiation of stem elongation, and proportional to the allele constitution and dosage present in VRN-H1. These responses were further modulated by the presence of PPD-H2. The duration of the late reproductive phase presented more dominance toward earliness and was affected by the rich variety of alleles at VRN-H3. Our results provide further opportunities for fine-tuning total and phasal growth duration in hybrid barley, beyond what is currently feasible in inbred cultivars.

SELECTION OF CITATIONS
SEARCH DETAIL