Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Antimicrob Agents Chemother ; 66(8): e0008322, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35861550

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication. To identify chemical tools to further study these functional interfaces, 139,146 compounds from different chemical libraries were screened through an S/ACE2 in silico virtual molecular model. The best compounds were selected for further characterization using both cellular and biochemical approaches, reiterating SARS-CoV-2 entry and the S/ACE2 interaction. We report here two selected hits, bis-indolyl pyridine AB-00011778 and triphenylamine AB-00047476. Both of these compounds can block the infectivity of lentiviral vectors pseudotyped with the SARS-CoV-2 S protein as well as wild-type and circulating variant SARS-CoV-2 strains in various human cell lines, including pulmonary cells naturally susceptible to infection. AlphaLISA and biolayer interferometry confirmed a direct inhibitory effect of these drugs on the S/ACE2 association. A specific study of the AB-00011778 inhibitory properties showed that this drug inhibits viral replication with a 50% effective concentration (EC50) between 0.1 and 0.5 µM depending on the cell lines. Molecular docking calculations of the interaction parameters of the molecules within the S/ACE2 complex from both wild-type and circulating variants of the virus showed that the molecules may target multiple sites within the S/ACE2 interface. Our work indicates that AB-00011778 constitutes a good tool for modulating this interface and a strong lead compound for further therapeutic purposes.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/pharmacology , Protein Binding , Pyridines/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
2.
Mol Divers ; 26(3): 1373-1381, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34169450

ABSTRACT

SARS-CoV-2 Mpro, also known as the main protease or 3C-like protease, is a key enzyme involved in the replication process of the virus that is causing the COVID-19 pandemic. It is also the most promising antiviral drug target targeting SARS-CoV-2 virus. In this work, the catalytic mechanism of Mpro was studied using the full model of the enzyme and a computational QM/MM methodology with a 69/72-atoms QM region treated at DLPNO-CCSD(T)/CBS//B3LYP/6-31G(d,p):AMBER level and including the catalytic important oxyanion-hole residues. The transition state of each step was fully characterized and described together with the related reactants and products. The rate-limiting step of the catalytic process is the hydrolysis of the thioester-enzyme adduct, and the calculated barrier closely agrees with the available kinetic data. The calculated Gibbs free energy profile, together with the full atomistic detail of the structures involved in catalysis, can now serve as valuable models for the rational drug design of transition state analogs as new inhibitors targeting the SARS-CoV-2 virus.


Subject(s)
COVID-19 Drug Treatment , Pandemics , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Catalysis , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2 , Viral Nonstructural Proteins
3.
Molecules ; 27(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080291

ABSTRACT

The partitioning of the molecular mechanics (MM) energy in calculations involving biomolecular systems is important to identify the source of major stabilizing interactions, e.g., in ligand-protein interactions, or to identify residues with considerable contributions in hybrid multiscale calculations, i.e., quantum mechanics/molecular mechanics (QM/MM). Here, we describe Energy Split, a software program to calculate MM energy partitioning considering the AMBER Hamiltonian and parameters. Energy Split includes a graphical interface plugin for VMD to facilitate the selection of atoms and molecules belonging to each part of the system. Energy Split is freely available at or can be easily installed through the VMD Store.


Subject(s)
Molecular Dynamics Simulation , Quantum Theory , Ligands , Physical Phenomena , Software
4.
Molecules ; 27(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35566093

ABSTRACT

Functionalization of nanoparticles surfaces have been widely used to improve diagnostic and therapeutic biological outcome. Several methods can be applied to modify nanoparticle surface; however, in this article we focus toward a simple and less time-consuming method. We applied an adsorption method on already formulated nanostructured lipid carriers (NLC) to functionalize these nanoparticles with three distinct peptides sequences. We selected a cell-penetrating peptide (CPP), a lysine modified model amphipathic peptide (Lys(N3)-MAP), CPP/drug complex, and the neuropeptide Y. The aim of this work is to evaluate the effect of several parameters such as peptide concentration, different types of NLC, different types of peptides, and incubation medium on the physicochemical proprieties of NLC and determine if adsorption occurs. The preliminary results from zeta potential analysis indicate some evidence that this method was successful in adsorbing three types of peptides onto NLC. Several non-covalent interactions appear to be involved in peptide adsorption with the possibility of three adsorption peptide hypothesis that may occur with NLC in solution. Moreover, and for the first time, in silico docking analysis demonstrated strong interaction between CPP MAP and NPY Y1 receptor with high score values when compared to standard antagonist and NPY.


Subject(s)
Cell-Penetrating Peptides , Nanoparticles , Drug Carriers , Liposomes , Neuropeptide Y
5.
J Chem Inf Model ; 59(11): 4519-4523, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31682440

ABSTRACT

Herein we present the VMD Store, an open-source VMD plugin that simplifies the way that users browse, discover, install, update, and uninstall extensions for the Visual Molecular Dynamics (VMD) software. The VMD Store obtains data about all the indexed VMD extensions hosted on GitHub and presents a one-click mechanism to install and configure VMD extensions. This plugin arises in an attempt to aggregate all VMD extensions into a single platform. The VMD Store is available, free of charge, for Windows, macOS, and Linux at https://biosim.pt/software/ and requires VMD 1.9.3 (or later).


Subject(s)
Molecular Dynamics Simulation , Software , Computational Chemistry , Internet
6.
Molecules ; 24(13)2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31277490

ABSTRACT

Nature has tailored a wide range of metalloenzymes that play a vast array of functions in all living organisms and from which their survival and evolution depends on. These enzymes catalyze some of the most important biological processes in nature, such as photosynthesis, respiration, water oxidation, molecular oxygen reduction, and nitrogen fixation. They are also among the most proficient catalysts in terms of their activity, selectivity, and ability to operate at mild conditions of temperature, pH, and pressure. In the absence of these enzymes, these reactions would proceed very slowly, if at all, suggesting that these enzymes made the way for the emergence of life as we know today. In this review, the structure and catalytic mechanism of a selection of diverse metalloenzymes that are involved in the production of highly reactive and unstable species, such as hydroxide anions, hydrides, radical species, and superoxide molecules are analyzed. The formation of such reaction intermediates is very difficult to occur under biological conditions and only a rationalized selection of a particular metal ion, coordinated to a very specific group of ligands, and immersed in specific proteins allows these reactions to proceed. Interestingly, different metal coordination spheres can be used to produce the same reactive and unstable species, although through a different chemistry. A selection of hand-picked examples of different metalloenzymes illustrating this diversity is provided and the participation of different metal ions in similar reactions (but involving different mechanism) is discussed.


Subject(s)
Enzymes/metabolism , Metalloproteins/chemistry , Catalysis , Hydroxides/chemistry , Superoxides/chemistry
7.
Front Chem ; 12: 1379914, 2024.
Article in English | MEDLINE | ID: mdl-39170866

ABSTRACT

The rise of antibiotic-resistant bacterial strains has become a critical health concern. According to the World Health Organization, the market introduction of new antibiotics is alarmingly sparse, underscoring the need for novel therapeutic targets. The LytR-CpsA-Psr (LCP) family of proteins, which facilitate the insertion of cell wall glycopolymers (CWGPs) like teichoic acids into peptidoglycan, has emerged as a promising target for antibiotic development. LCP proteins are crucial in bacterial adhesion and biofilm formation, making them attractive for disrupting these processes. This study investigated the structural and functional characteristics of the LCP domain of LytR from Streptococcus dysgalactiae subsp. dysgalactiae. The protein structure was solved by X-ray Crystallography at 2.80 Å resolution. Small-angle X-ray scattering (SAXS) data were collected to examine potential conformational differences between the free and ligand-bound forms of the LytR LCP domain. Additionally, docking and molecular dynamics (MD) simulations were used to predict the interactions and conversion of ATP to ADP and AMP. Experimental validation of these predictions was performed using malachite green activity assays. The determined structure of the LCP domain revealed a fold highly similar to those of homologous proteins while SAXS data indicated potential conformational differences between the ligand-free and ligand-bound forms, suggesting a more compact conformation during catalysis, upon ligand binding. Docking and MD simulations predicted that the LytR LCP domain could interact with ADP and ATP and catalyze their conversion to AMP. These predictions were experimentally validated by malachite green activity assays, confirming the protein's functional versatility. The study provides significant insights into the structural features and functional capabilities of the LCP domain of LytR from S. dysgalactiae subsp. dysgalactiae. These findings pave the way for designing targeted therapies against antibiotic-resistant bacteria and offer strategies to disrupt bacterial biofilm formation.

8.
J Clin Invest ; 134(5)2024 03 01.
Article in English | MEDLINE | ID: mdl-38227368

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.


Subject(s)
Machado-Joseph Disease , Neurodegenerative Diseases , Taurochenodeoxycholic Acid , Mice , Adult , Animals , Humans , Machado-Joseph Disease/drug therapy , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Receptors, Glucocorticoid/genetics , Mice, Transgenic
9.
Eur J Med Chem ; 238: 114449, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35580425

ABSTRACT

The biological activity of Cd compounds has been investigated scarce since Cd has been recognized as a human carcinogen. However, the toxicity of cadmium is comparable to the toxicity of noble metals such as Pt and Pd. The paradigm of metal toxicity has been challenged suggesting that metal toxicity is not a constant property, yet it depends on many factors like the presence of appropriate ligands. Studies on anticancer activity of cadmium complexes showed that the complexation of various ligands resulted in complexes that showed better activities than approved drugs. In the present study, cadmium complexes with biologically potent thiazolyl/selenazoyl-hydrazone ligands have been prepared, and tested for their activity against different types of tumor cell models. The complexation of ligands with Cd(II) resulted in a synergistic effect. The antiproliferative activity study revealed that all complexes are more active compared to 5-fluorouracil and cisplatin. The mechanism of tumor cell growth inhibition reveal that selenium-based compounds induce cell death in T-47D (gland carcinoma) cells through apoptosis via caspase-3/7 activation. Additionally, their pro-apoptotic effect was stronger compared to etoposide and cisplatin. Nuclease activity, detected by gel electrophoresis, may be the possible mechanism of anticancer action of investigated complexes.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cadmium/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Humans , Hydrazones/pharmacology , Hydrazones/therapeutic use , Ligands , Neoplasms/drug therapy , Sulfur/pharmacology , Sulfur/therapeutic use
10.
Int J Biol Macromol ; 186: 54-70, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34237360

ABSTRACT

Lactoferrin (Lf), a bioactive milk protein, exhibits strong anticancer and antifungal activities. The search for Lf targets and mechanisms of action is of utmost importance to enhance its effective applications. A common feature among Lf-treated cancer and fungal cells is the inhibition of a proton pump called V-ATPase. Lf-driven V-ATPase inhibition leads to cytosolic acidification, ultimately causing cell death of cancer and fungal cells. Given that a detailed elucidation of how Lf and V-ATPase interact is still missing, herein we aimed to fill this gap by employing a five-stage computational approach. Molecular dynamics simulations of both proteins were performed to obtain a robust sampling of their conformational landscape, followed by clustering, which allowed retrieving representative structures, to then perform protein-protein docking. Subsequently, molecular dynamics simulations of the docked complexes and free binding energy calculations were carried out to evaluate the dynamic binding process and build a final ranking based on the binding affinities. Detailed atomist analysis of the top ranked complexes clearly indicates that Lf binds to the V1 cytosolic domain of V-ATPase. Particularly, our data suggest that Lf binds to the interfaces between A/B subunits, where the ATP hydrolysis occurs, thus inhibiting this process. The free energy decomposition analysis further identified key binding residues that will certainly aid in the rational design of follow-up experimental studies, hence bridging computational and experimental biochemistry.


Subject(s)
Enzyme Inhibitors/pharmacology , Lactoferrin/pharmacology , Vacuolar Proton-Translocating ATPases/pharmacology , Adenosine Triphosphate/metabolism , Binding Sites , Catalytic Domain , Enzyme Inhibitors/chemistry , Hydrolysis , Lactoferrin/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Structure-Activity Relationship , Vacuolar Proton-Translocating ATPases/chemistry , Vacuolar Proton-Translocating ATPases/metabolism
11.
Viruses ; 13(3)2021 02 25.
Article in English | MEDLINE | ID: mdl-33669132

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent responsible for the recent coronavirus disease 2019 (COVID-19) pandemic. Productive SARS-CoV-2 infection relies on viral entry into cells expressing angiotensin-converting enzyme 2 (ACE2). Indeed, viral entry into cells is mostly mediated by the early interaction between the viral spike protein S and its ACE2 receptor. The S/ACE2 complex is, thus, the first contact point between the incoming virus and its cellular target; consequently, it has been considered an attractive therapeutic target. To further characterize this interaction and the cellular processes engaged in the entry step of the virus, we set up various in silico, in vitro and in cellulo approaches that allowed us to specifically monitor the S/ACE2 association. We report here a computational model of the SARS-CoV-2 S/ACE2 complex, as well as its biochemical and biophysical monitoring using pulldown, AlphaLISA and biolayer interferometry (BLI) binding assays. This led us to determine the kinetic parameters of the S/ACE2 association and dissociation steps. In parallel to these in vitro approaches, we developed in cellulo transduction assays using SARS-CoV-2 pseudotyped lentiviral vectors and HEK293T-ACE2 cell lines generated in-house. This allowed us to recapitulate the early replication stage of the infection mediated by the S/ACE2 interaction and to detect cell fusion induced by the interaction. Finally, a cell imaging system was set up to directly monitor the S/ACE2 interaction in a cellular context and a flow cytometry assay was developed to quantify this association at the cell surface. Together, these different approaches are available for both basic and clinical research, aiming to characterize the entry step of the original SARS-CoV-2 strain and its variants as well as to investigate the possible chemical modulation of this interaction. All these models will help in identifying new antiviral agents and new chemical tools for dissecting the virus entry step.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2/chemistry , COVID-19/metabolism , Computer Simulation , HEK293 Cells , Humans , In Vitro Techniques , Kinetics , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Domains , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry
12.
Trends Microbiol ; 29(10): 863-866, 2021 10.
Article in English | MEDLINE | ID: mdl-33612398

ABSTRACT

LegionellaDB is the first database on Legionella outbreaks; it is based on a metadata analysis of peer-reviewed manuscripts from PubMed and SCOPUS. LegionellaDB is dynamic and extensible, allowing users to search for specific outbreaks, suggest additional information to be included after curation, visualize statistical representations on specific outbreaks, and download selected data. The database is maintained online.


Subject(s)
Databases, Factual , Legionella/physiology , Legionellosis/microbiology , Disease Outbreaks , Humans , Legionella/classification , Legionella/genetics , Legionella/isolation & purification , Legionellosis/epidemiology
13.
Trends Biotechnol ; 38(9): 937-940, 2020 09.
Article in English | MEDLINE | ID: mdl-32386874

ABSTRACT

The Biofilms Structural Database (BSD) is a collection of structural, mutagenesis, kinetics, and inhibition data to understand the processes involved in biofilm formation. Presently, it includes curated information on 425 structures of proteins and enzymes involved in biofilm formation and development for 42 different bacteria. It is available at www.biofilms.biosim.pt.


Subject(s)
Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Databases, Factual , Mutagenesis/drug effects , Anti-Bacterial Agents/therapeutic use , Biofilms/growth & development , Kinetics , Mutagenesis/genetics , Quorum Sensing/drug effects , Quorum Sensing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL