Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell ; 185(17): 3201-3213.e19, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35985289

ABSTRACT

The T cell receptor (TCR) expressed by T lymphocytes initiates protective immune responses to pathogens and tumors. To explore the structural basis of how TCR signaling is initiated when the receptor binds to peptide-loaded major histocompatibility complex (pMHC) molecules, we used cryogenic electron microscopy to determine the structure of a tumor-reactive TCRαß/CD3δγε2ζ2 complex bound to a melanoma-specific human class I pMHC at 3.08 Å resolution. The antigen-bound complex comprises 11 subunits stabilized by multivalent interactions across three structural layers, with clustered membrane-proximal cystines stabilizing the CD3-εδ and CD3-εγ heterodimers. Extra density sandwiched between transmembrane helices reveals the involvement of sterol lipids in TCR assembly. The geometry of the pMHC/TCR complex suggests that efficient TCR scanning of pMHC requires accurate pre-positioning of T cell and antigen-presenting cell membranes. Comparisons of the ligand-bound and unliganded receptors, along with molecular dynamics simulations, indicate that TCRs can be triggered in the absence of spontaneous structural rearrangements.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , Humans , Major Histocompatibility Complex , Peptides/chemistry , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/metabolism
2.
Nat Immunol ; 25(5): 834-846, 2024 May.
Article in English | MEDLINE | ID: mdl-38561495

ABSTRACT

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.


Subject(s)
Antigens, CD , Apyrase , Integrin alpha Chains , Receptors, Antigen, T-Cell , Signal Transduction , Animals , Humans , Mice , Antigens, CD/metabolism , Antigens, CD/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Integrin alpha Chains/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/immunology
3.
Cell ; 184(24): 5869-5885.e25, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34758294

ABSTRACT

RTN4-binding proteins were widely studied as "NoGo" receptors, but their physiological interactors and roles remain elusive. Similarly, BAI adhesion-GPCRs were associated with numerous activities, but their ligands and functions remain unclear. Using unbiased approaches, we observed an unexpected convergence: RTN4 receptors are high-affinity ligands for BAI adhesion-GPCRs. A single thrombospondin type 1-repeat (TSR) domain of BAIs binds to the leucine-rich repeat domain of all three RTN4-receptor isoforms with nanomolar affinity. In the 1.65 Å crystal structure of the BAI1/RTN4-receptor complex, C-mannosylation of tryptophan and O-fucosylation of threonine in the BAI TSR-domains creates a RTN4-receptor/BAI interface shaped by unusual glycoconjugates that enables high-affinity interactions. In human neurons, RTN4 receptors regulate dendritic arborization, axonal elongation, and synapse formation by differential binding to glial versus neuronal BAIs, thereby controlling neural network activity. Thus, BAI binding to RTN4/NoGo receptors represents a receptor-ligand axis that, enabled by rare post-translational modifications, controls development of synaptic circuits.


Subject(s)
Angiogenesis Inhibitors/metabolism , Brain/metabolism , Neurogenesis , Neurons/metabolism , Nogo Proteins/metabolism , Nogo Receptors/metabolism , Receptors, G-Protein-Coupled/metabolism , Adipokines/metabolism , Amino Acid Sequence , Animals , Axons/metabolism , Cell Adhesion , Cell Adhesion Molecules, Neuronal/metabolism , Complement C1q/metabolism , Dendrites/metabolism , Glycosylation , HEK293 Cells , Human Embryonic Stem Cells/metabolism , Humans , Ligands , Mice, Inbred C57BL , Nerve Net/metabolism , Polysaccharides/metabolism , Protein Binding , Protein Domains , Sequence Deletion , Synapses/metabolism , Synaptic Transmission/physiology
4.
Cell ; 182(4): 1027-1043.e17, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32822567

ABSTRACT

Cell-surface protein-protein interactions (PPIs) mediate cell-cell communication, recognition, and responses. We executed an interactome screen of 564 human cell-surface and secreted proteins, most of which are immunoglobulin superfamily (IgSF) proteins, using a high-throughput, automated ELISA-based screening platform employing a pooled-protein strategy to test all 318,096 PPI combinations. Screen results, augmented by phylogenetic homology analysis, revealed ∼380 previously unreported PPIs. We validated a subset using surface plasmon resonance and cell binding assays. Observed PPIs reveal a large and complex network of interactions both within and across biological systems. We identified new PPIs for receptors with well-characterized ligands and binding partners for "orphan" receptors. New PPIs include proteins expressed on multiple cell types and involved in diverse processes including immune and nervous system development and function, differentiation/proliferation, metabolism, vascularization, and reproduction. These PPIs provide a resource for further biological investigation into their functional relevance and may offer new therapeutic drug targets.


Subject(s)
Ligands , Protein Interaction Maps/physiology , Receptors, Cell Surface/metabolism , DCC Receptor/chemistry , DCC Receptor/metabolism , Humans , Phylogeny , Receptor-Like Protein Tyrosine Phosphatases, Class 2/chemistry , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/classification , Receptors, Interleukin-1/chemistry , Receptors, Interleukin-1/metabolism , Signaling Lymphocytic Activation Molecule Family/chemistry , Signaling Lymphocytic Activation Molecule Family/metabolism , Surface Plasmon Resonance
5.
Nat Immunol ; 23(1): 50-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34853448

ABSTRACT

NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.


Subject(s)
HLA-B7 Antigen/immunology , Immunodominant Epitopes/immunology , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Aged , Amino Acid Sequence , Antibodies, Viral/immunology , Antibody Affinity/immunology , COVID-19/immunology , COVID-19/pathology , Cell Line, Transformed , Female , Gene Expression Profiling , Humans , Immunologic Memory/immunology , Male , Middle Aged , Receptors, Antigen, T-Cell/immunology , Severity of Illness Index , Vaccinia virus/genetics , Vaccinia virus/immunology , Vaccinia virus/metabolism
6.
Cell ; 174(3): 672-687.e27, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30053426

ABSTRACT

TCR-signaling strength generally correlates with peptide-MHC binding affinity; however, exceptions exist. We find high-affinity, yet non-stimulatory, interactions occur with high frequency in the human T cell repertoire. Here, we studied human TCRs that are refractory to activation by pMHC ligands despite robust binding. Analysis of 3D affinity, 2D dwell time, and crystal structures of stimulatory versus non-stimulatory TCR-pMHC interactions failed to account for their different signaling outcomes. Using yeast pMHC display, we identified peptide agonists of a formerly non-responsive TCR. Single-molecule force measurements demonstrated the emergence of catch bonds in the activating TCR-pMHC interactions, correlating with exclusion of CD45 from the TCR-APC contact site. Molecular dynamics simulations of TCR-pMHC disengagement distinguished agonist from non-agonist ligands based on the acquisition of catch bonds within the TCR-pMHC interface. The isolation of catch bonds as a parameter mediating the coupling of TCR binding and signaling has important implications for TCR and antigen engineering for immunotherapy.


Subject(s)
Histocompatibility Antigens Class I/physiology , Lymphocyte Activation/physiology , Adult , Female , Humans , Kinetics , Ligands , Major Histocompatibility Complex/physiology , Male , Middle Aged , Molecular Dynamics Simulation , Oligopeptides , Peptides , Protein Binding/physiology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/physiology , Signal Transduction , Single Molecule Imaging , T-Lymphocytes/physiology
7.
Cell ; 172(3): 549-563.e16, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29275860

ABSTRACT

The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of "orphan" T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile indentification of tumor antigens through unbiased screening.


Subject(s)
Adenocarcinoma/immunology , Antigens, Neoplasm/immunology , Colorectal Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Receptors, Antigen, T-Cell/immunology , Aged , Animals , Antigens, Neoplasm/chemistry , Cell Line, Tumor , Cells, Cultured , HEK293 Cells , HLA-A Antigens/chemistry , HLA-A Antigens/immunology , Humans , Male , Middle Aged , Peptide Library , Sf9 Cells , Spodoptera
9.
Nat Immunol ; 17(5): 574-582, 2016 May.
Article in English | MEDLINE | ID: mdl-26998761

ABSTRACT

It has been proposed that the local segregation of kinases and the tyrosine phosphatase CD45 underpins T cell antigen receptor (TCR) triggering, but how such segregation occurs and whether it can initiate signaling is unclear. Using structural and biophysical analysis, we show that the extracellular region of CD45 is rigid and extends beyond the distance spanned by TCR-ligand complexes, implying that sites of TCR-ligand engagement would sterically exclude CD45. We also show that the formation of 'close contacts', new structures characterized by spontaneous CD45 and kinase segregation at the submicron-scale, initiates signaling even when TCR ligands are absent. Our work reveals the structural basis for, and the potent signaling effects of, local CD45 and kinase segregation. TCR ligands have the potential to heighten signaling simply by holding receptors in close contacts.


Subject(s)
Leukocyte Common Antigens/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Crystallography, X-Ray , HEK293 Cells , Humans , Jurkat Cells , Leukocyte Common Antigens/chemistry , Leukocyte Common Antigens/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Microscopy, Electron , Microscopy, Fluorescence/methods , Models, Molecular , Protein Structure, Tertiary , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Time Factors , ZAP-70 Protein-Tyrosine Kinase/immunology , ZAP-70 Protein-Tyrosine Kinase/metabolism
10.
Nature ; 612(7941): 771-777, 2022 12.
Article in English | MEDLINE | ID: mdl-36477533

ABSTRACT

Human leucocyte antigen B*27 (HLA-B*27) is strongly associated with inflammatory diseases of the spine and pelvis (for example, ankylosing spondylitis (AS)) and the eye (that is, acute anterior uveitis (AAU))1. How HLA-B*27 facilitates disease remains unknown, but one possible mechanism could involve presentation of pathogenic peptides to CD8+ T cells. Here we isolated orphan T cell receptors (TCRs) expressing a disease-associated public ß-chain variable region-complementary-determining region 3ß (BV9-CDR3ß) motif2-4 from blood and synovial fluid T cells from individuals with AS and from the eye in individuals with AAU. These TCRs showed consistent α-chain variable region (AV21) chain pairing and were clonally expanded in the joint and eye. We used HLA-B*27:05 yeast display peptide libraries to identify shared self-peptides and microbial peptides that activated the AS- and AAU-derived TCRs. Structural analysis revealed that TCR cross-reactivity for peptide-MHC was rooted in a shared binding motif present in both self-antigens and microbial antigens that engages the BV9-CDR3ß TCRs. These findings support the hypothesis that microbial antigens and self-antigens could play a pathogenic role in HLA-B*27-associated disease.


Subject(s)
Autoimmunity , HLA-B Antigens , Peptides , Receptors, Antigen, T-Cell , Humans , Autoantigens/chemistry , Autoantigens/immunology , Autoantigens/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , HLA-B Antigens/immunology , HLA-B Antigens/metabolism , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Synovial Fluid/immunology , Spondylitis, Ankylosing/immunology , Uveitis, Anterior/immunology , Peptide Library , Cross Reactions , Amino Acid Motifs
11.
Nature ; 603(7900): 321-327, 2022 03.
Article in English | MEDLINE | ID: mdl-35073561

ABSTRACT

Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.


Subject(s)
Epstein-Barr Virus Infections , Multiple Sclerosis , Animals , B-Lymphocytes , Cell Adhesion Molecules, Neuron-Glia , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Humans , Mice , Nerve Tissue Proteins
12.
Nature ; 586(7831): 779-784, 2020 10.
Article in English | MEDLINE | ID: mdl-33087934

ABSTRACT

Antibodies that antagonize extracellular receptor-ligand interactions are used as therapeutic agents for many diseases to inhibit signalling by cell-surface receptors1. However, this approach does not directly prevent intracellular signalling, such as through tonic or sustained signalling after ligand engagement. Here we present an alternative approach for attenuating cell-surface receptor signalling, termed receptor inhibition by phosphatase recruitment (RIPR). This approach compels cis-ligation of cell-surface receptors containing ITAM, ITIM or ITSM tyrosine phosphorylation motifs to the promiscuous cell-surface phosphatase CD452,3, which results in the direct intracellular dephosphorylation of tyrosine residues on the receptor target. As an example, we found that tonic signalling by the programmed cell death-1 receptor (PD-1) results in residual suppression of T cell activation, but is not inhibited by ligand-antagonist antibodies. We engineered a PD-1 molecule, which we denote RIPR-PD1, that induces cross-linking of PD-1 to CD45 and inhibits both tonic and ligand-activated signalling. RIPR-PD1 demonstrated enhanced inhibition of checkpoint blockade compared with ligand blocking by anti-PD1 antibodies, and increased therapeutic efficacy over anti-PD1 in mouse tumour models. We also show that the RIPR strategy extends to other immune-receptor targets that contain activating or inhibitory ITIM, ITSM or ITAM motifs; for example, inhibition of the macrophage SIRPα 'don't eat me' signal with a SIRPα-CD45 RIPR molecule potentiates antibody-dependent cellular phagocytosis beyond that of SIRPα blockade alone. RIPR represents a general strategy for direct attenuation of signalling by kinase-activated cell-surface receptors.


Subject(s)
Leukocyte Common Antigens/metabolism , Phosphoric Monoester Hydrolases/metabolism , Receptors, Immunologic/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/metabolism , Carcinoma, Small Cell/pathology , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cross-Linking Reagents , Disease Models, Animal , Disease Progression , Female , HEK293 Cells , Humans , Leukocyte Common Antigens/antagonists & inhibitors , Leukocyte Common Antigens/chemistry , Ligands , Lymphocyte Activation/drug effects , Male , Mice , Nivolumab/pharmacology , Phosphorylation , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Signal Transduction/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
14.
Nature ; 572(7770): 481-487, 2019 08.
Article in English | MEDLINE | ID: mdl-31391585

ABSTRACT

Experimental autoimmune encephalomyelitis is a model for multiple sclerosis. Here we show that induction generates successive waves of clonally expanded CD4+, CD8+ and γδ+ T cells in the blood and central nervous system, similar to gluten-challenge studies of patients with coeliac disease. We also find major expansions of CD8+ T cells in patients with multiple sclerosis. In autoimmune encephalomyelitis, we find that most expanded CD4+ T cells are specific for the inducing myelin peptide MOG35-55. By contrast, surrogate peptides derived from a yeast peptide major histocompatibility complex library of some of the clonally expanded CD8+ T cells inhibit disease by suppressing the proliferation of MOG-specific CD4+ T cells. These results suggest that the induction of autoreactive CD4+ T cells triggers an opposing mobilization of regulatory CD8+ T cells.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Adult , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Celiac Disease , Clone Cells/cytology , Clone Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , H-2 Antigens/immunology , Humans , Immunization , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myelin-Associated Glycoprotein/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/cytology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Young Adult
15.
Proc Natl Acad Sci U S A ; 116(28): 14002-14010, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31221762

ABSTRACT

The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes.


Subject(s)
Antigen-Presenting Cells/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Receptors, Antigen, T-Cell/chemistry , Animals , Humans , Kinetics , Ligands , Lymphocyte Activation/genetics , Major Histocompatibility Complex/immunology , Microvilli/genetics , Microvilli/immunology , Models, Theoretical , Peptides/chemistry , Peptides/immunology , Phosphorylation/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , Single Molecule Imaging , T-Lymphocytes/chemistry , T-Lymphocytes/immunology
16.
EMBO J ; 36(20): 2998-3011, 2017 10 16.
Article in English | MEDLINE | ID: mdl-28923824

ABSTRACT

HIV-1 traffics through dendritic cells (DCs) en route to establishing a productive infection in T lymphocytes but fails to induce an innate immune response. Within DC endosomes, HIV-1 somehow evades detection by the pattern-recognition receptor (PRR) Toll-like receptor 8 (TLR8). Using a phosphoproteomic approach, we identified a robust and diverse signaling cascade triggered by HIV-1 upon entry into human DCs. A secondary siRNA screen of the identified signaling factors revealed several new mediators of HIV-1 trans-infection of CD4+ T cells in DCs, including the dynein motor protein Snapin. Inhibition of Snapin enhanced localization of HIV-1 with TLR8+ early endosomes, triggered a pro-inflammatory response, and inhibited trans-infection of CD4+ T cells. Snapin inhibited TLR8 signaling in the absence of HIV-1 and is a general regulator of endosomal maturation. Thus, we identify a new mechanism of innate immune sensing by TLR8 in DCs, which is exploited by HIV-1 to promote transmission.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/virology , HIV-1/pathogenicity , Host-Pathogen Interactions , Signal Transduction , Toll-Like Receptor 8/metabolism , Vesicular Transport Proteins/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Line , HIV-1/immunology , Humans
17.
Proc Natl Acad Sci U S A ; 115(31): E7369-E7378, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30021852

ABSTRACT

T cell receptors (TCRs) bind to peptide-major histocompatibility complex (pMHC) with low affinity (Kd ∼ µM), which is generally assumed to facilitate cross-reactive TCR "scanning" of ligands. To understand the relationship between TCR/pMHC affinity and cross-reactivity, we sought to engineer an additional weak interaction, termed "velcro," between the TCR and pMHC to probe the specificities of TCRs at relatively low and high affinities. This additional interaction was generated through an eight-amino acid peptide library covalently linked to the N terminus of the MHC-bound peptide. Velcro was selected through an affinity-based isolation and was subsequently shown to enhance the cognate TCR/pMHC affinity in a peptide-dependent manner by ∼10-fold. This was sufficient to convert a nonstimulatory ultra-low-affinity ligand into a stimulatory ligand. An X-ray crystallographic structure revealed how velcro interacts with the TCR. To probe TCR cross-reactivity, we screened TCRs against yeast-displayed pMHC libraries with and without velcro, and found that the peptide cross-reactivity profiles of low-affinity (Kd > 100 µM) and high-affinity (Kd ∼ µM) TCR/pMHC interactions are remarkably similar. The conservation of recognition of the TCR for pMHC across affinities reveals the nature of low-affinity ligands for which there are important biological functions and has implications for understanding the specificities of affinity-matured TCRs.


Subject(s)
Major Histocompatibility Complex , Oligopeptides/metabolism , Receptors, Antigen, T-Cell/metabolism , Cross Reactions , Humans , Peptide Library , Protein Engineering
19.
Proc Natl Acad Sci U S A ; 114(44): E9338-E9345, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29042512

ABSTRACT

T cell signaling initiates upon the binding of peptide-loaded MHC (pMHC) on an antigen-presenting cell to the T cell receptor (TCR) on a T cell. TCR phosphorylation in response to pMHC binding is accompanied by segregation of the transmembrane phosphatase CD45 away from TCR-pMHC complexes. The kinetic segregation hypothesis proposes that CD45 exclusion shifts the local kinase-phosphatase balance to favor TCR phosphorylation. Spatial partitioning may arise from the size difference between the large CD45 extracellular domain and the smaller TCR-pMHC complex, although parsing potential contributions of extracellular protein size, actin activity, and lipid domains is difficult in living cells. Here, we reconstitute segregation of CD45 from bound receptor-ligand pairs using purified proteins on model membranes. Using a model receptor-ligand pair (FRB-FKBP), we first test physical and computational predictions for protein organization at membrane interfaces. We then show that the TCR-pMHC interaction causes partial exclusion of CD45. Comparing two developmentally regulated isoforms of CD45, the larger RABC variant is excluded more rapidly and efficiently (∼50%) than the smaller R0 isoform (∼20%), suggesting that CD45 isotypes could regulate signaling thresholds in different T cell subtypes. Similar to the sensitivity of T cell signaling, TCR-pMHC interactions with Kds of ≤15 µM were needed to exclude CD45. We further show that the coreceptor PD-1 with its ligand PD-L1, immunotherapy targets that inhibit T cell signaling, also exclude CD45. These results demonstrate that the binding energies of physiological receptor-ligand pairs on the T cell are sufficient to create spatial organization at membrane-membrane interfaces.


Subject(s)
Leukocyte Common Antigens/immunology , Phosphoric Monoester Hydrolases/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Antigen-Presenting Cells/immunology , B7-H1 Antigen/immunology , Cell Line , Cell Membrane/immunology , Humans , Kinetics , Ligands , Lymphocyte Activation/immunology , Phosphorylation/immunology , Programmed Cell Death 1 Receptor/immunology , Protein Binding/immunology , Sf9 Cells , Signal Transduction/immunology
20.
Proc Natl Acad Sci U S A ; 113(20): 5682-7, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27114505

ABSTRACT

The αß T-cell coreceptor CD4 enhances immune responses more than 1 million-fold in some assays, and yet the affinity of CD4 for its ligand, peptide-major histocompatibility class II (pMHC II) on antigen-presenting cells, is so weak that it was previously unquantifiable. Here, we report that a soluble form of CD4 failed to bind detectably to pMHC II in surface plasmon resonance-based assays, establishing a new upper limit for the solution affinity at 2.5 mM. However, when presented multivalently on magnetic beads, soluble CD4 bound pMHC II-expressing B cells, confirming that it is active and allowing mapping of the native coreceptor binding site on pMHC II. Whereas binding was undetectable in solution, the affinity of the CD4/pMHC II interaction could be measured in 2D using CD4- and adhesion molecule-functionalized, supported lipid bilayers, yielding a 2D Kd of ∼5,000 molecules/µm(2) This value is two to three orders of magnitude higher than previously measured 2D Kd values for interacting leukocyte surface proteins. Calculations indicated, however, that CD4/pMHC II binding would increase rates of T-cell receptor (TCR) complex phosphorylation by threefold via the recruitment of Lck, with only a small, 2-20% increase in the effective affinity of the TCR for pMHC II. The affinity of CD4/pMHC II therefore seems to be set at a value that increases T-cell sensitivity by enhancing phosphorylation, without compromising ligand discrimination.


Subject(s)
CD4 Antigens/chemistry , HLA-A24 Antigen/chemistry , HLA-DRB1 Chains/chemistry , Binding Sites , CD4 Antigens/metabolism , HEK293 Cells , HLA-A24 Antigen/metabolism , HLA-DRB1 Chains/metabolism , Humans , Maltose-Binding Proteins/chemistry , Models, Molecular , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Processing, Post-Translational , Protein Stability , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL