Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Nat Rev Genet ; 25(3): 211-232, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37968332

ABSTRACT

Non-coding RNAs (ncRNAs) are a heterogeneous group of transcripts that, by definition, are not translated into proteins. Since their discovery, ncRNAs have emerged as important regulators of multiple biological functions across a range of cell types and tissues, and their dysregulation has been implicated in disease. Notably, much research has focused on the link between microRNAs (miRNAs) and human cancers, although other ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as relevant contributors to human disease. In this Review, we summarize our current understanding of the roles of miRNAs, lncRNAs and circRNAs in cancer and other major human diseases, notably cardiovascular, neurological and infectious diseases. Further, we discuss the potential use of ncRNAs as biomarkers of disease and as therapeutic targets.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Circular , RNA, Untranslated/genetics , Neoplasms/genetics , Neoplasms/therapy
2.
Mol Ther ; 32(10): 3650-3668, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39033323

ABSTRACT

Patients with cancer of unknown primary (CUP) carry the double burden of an aggressive disease and reduced access to therapies. Experimental models are pivotal for CUP biology investigation and drug testing. We derived two CUP cell lines (CUP#55 and #96) and corresponding patient-derived xenografts (PDXs), from ascites tumor cells. CUP cell lines and PDXs underwent histological, immune-phenotypical, molecular, and genomic characterization confirming the features of the original tumor. The tissue-of-origin prediction was obtained from the tumor microRNA expression profile and confirmed by single-cell transcriptomics. Genomic testing and fluorescence in situ hybridization analysis identified FGFR2 gene amplification in both models, in the form of homogeneously staining region (HSR) in CUP#55 and double minutes in CUP#96. FGFR2 was recognized as the main oncogenic driver and therapeutic target. FGFR2-targeting drug BGJ398 (infigratinib) in combination with the MEK inhibitor trametinib proved to be synergic and exceptionally active, both in vitro and in vivo. The effects of the combined treatment by single-cell gene expression analysis revealed a remarkable plasticity of tumor cells and the greater sensitivity of cells with epithelial phenotype. This study brings personalized therapy closer to CUP patients and provides the rationale for FGFR2 and MEK targeting in metastatic tumors with FGFR2 pathway activation.


Subject(s)
Neoplasms, Unknown Primary , Protein Kinase Inhibitors , Pyridones , Pyrimidinones , Receptor, Fibroblast Growth Factor, Type 2 , Animals , Female , Humans , Mice , Cell Line, Tumor , Drug Synergism , Gene Amplification , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Neoplasms, Unknown Primary/drug therapy , Neoplasms, Unknown Primary/genetics , Neoplasms, Unknown Primary/pathology , Phenylurea Compounds/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridones/pharmacology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrimidinones/pharmacology , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Xenograft Model Antitumor Assays
4.
Epilepsia ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352406

ABSTRACT

OBJECTIVE: Structural epilepsies can manifest months or years after the occurrence of an initial epileptogenic insult, making them amenable for secondary prevention. However, development of preventive treatments has been challenged by a lack of biomarkers for identifying the subset of individuals with the highest risk of epilepsy after the epileptogenic insult. METHODS: Four different rat models of epileptogenesis were investigated to identify differentially expressed circulating microRNA (miRNA) and isomiR profiles as biomarkers for epileptogenesis. Plasma samples were collected on day 2 and day 9 during the latency period from animals that did or did not develop epilepsy during long-term video-electroencephalographic monitoring. miRNAs and isomiRs were identified and measured in an unsupervised manner, using a genome-wide small RNA sequencing platform. Receiver operating characteristic analysis was performed to determine the performance of putative biomarkers. RESULTS: Two days after an epileptogenic insult, alterations in the levels of several plasma miRNAs and isomiRs predicted epileptogenesis in a model-specific manner. One miRNA, miR-3085, showed good sensitivity (but low specificity) as a prognostic biomarker for epileptogenesis in all four models (area under the curve = .729, sensitivity = 83%, specificity = 64%, p < .05). SIGNIFICANCE: Identified plasma miRNAs and isomiRs are mostly etiology-specific rather than common prognostic biomarkers of epileptogenesis. These data imply that in preclinical and clinical studies, it may be necessary to identify specific biomarkers for different epilepsy etiologies. Importantly, circulating miRNAs like miR-3085 with high negative predictive value for epileptogenesis in different etiologies could be useful candidates for initial screening purposes of epileptogenesis risk.

5.
Breast Cancer Res ; 25(1): 119, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803350

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is a particularly aggressive and difficult-to-treat subtype of breast cancer that requires the development of novel therapeutic strategies. To pave the way for such developments it is essential to characterize new molecular players in TNBC. MicroRNAs (miRNAs) constitute interesting candidates in this regard as they are frequently deregulated in cancer and contribute to numerous aspects of carcinogenesis. METHODS AND RESULTS: Here, we discovered that miR-4649-5p, a miRNA yet uncharacterized in breast cancer, is associated with better overall survival of TNBC patients. Ectopic upregulation of the otherwise very low endogenous expression levels of miR-4646-5p significantly decreased the growth, proliferation, and migration of TNBC cells. By performing whole transcriptome analysis and physical interaction assays, we were able to identify the phosphatidylinositol phosphate kinase PIP5K1C as a direct target of miR-4649-5p. Downregulation or pharmacologic inhibition of PIP5K1C phenocopied the growth-reducing effects of miR-4649-5p. PIP5K1C is known to play an important role in migration and cell adhesion, and we could furthermore confirm its impact on downstream PI3K/AKT signaling. Combinations of miR-4649-5p upregulation and PIP5K1C or AKT inhibition, using the pharmacologic inhibitors UNC3230 and capivasertib, respectively, showed additive growth-reducing effects in TNBC cells. CONCLUSION: In summary, miR-4649-5p exerts broad tumor-suppressive effects in TNBC and shows potential for combined therapeutic approaches targeting the PIP5K1C/PI3K/AKT signaling axis.


Subject(s)
MicroRNAs , Triple Negative Breast Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
6.
Anal Chem ; 94(42): 14659-14665, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36219565

ABSTRACT

The rapid diagnosis of cancer, especially in its early stages, is crucial for on-time medical treatment and for increasing the patient survival rate. Lung cancer shows the highest mortality rate and the lowest 5-year survival rate due to the late diagnosis in advanced cancer stages. Providing rapid and reliable diagnostic tools is a top priority to address the problem of a delayed cancer diagnosis. We introduce a nanophotonic biosensor for the direct and real-time detection in human plasma of the microRNA-21-5p biomarker related to lung cancer. The biosensor employs a silicon photonic bimodal interferometric waveguide that provides a highly sensitive detection in a label-free format. We demonstrate a very competitive detectability for direct microRNA-21-5p biomarker assays in human plasma samples (estimated LOD: 25 pM). The diagnostic capability of our biosensor was validated by analyzing 40 clinical samples from healthy individuals and lung cancer patients, previously analyzed by reverse-transcription quantitative polymerase chain reaction (qRT-PCR). We could successfully identify and quantify the levels of microRNA in a one-step assay, without the need for DNA extraction or amplification steps. The study confirmed the significance of implementing this biosensor technique compared to the benchmarking molecular analysis and showed excellent agreement with previous results employing the traditional qRT-PCR. This work opens new possibilities for the true implementation of point-of-care biosensors that enable fast, simple, and efficient early diagnosis of cancer diseases.


Subject(s)
Biosensing Techniques , Lung Neoplasms , MicroRNAs , Humans , Silicon , Biosensing Techniques/methods , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/analysis , DNA
7.
Int J Mol Sci ; 23(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077295

ABSTRACT

This study concerns the analysis of the modulation of Chronic Myeloid Leukemia (CML) cell model K562 transcriptome following transfection with the tumor suppressor gene encoding for Protein Tyrosine Phosphatase Receptor Type G (PTPRG) and treatment with the tyrosine kinase inhibitor (TKI) Imatinib. Specifically, we aimed at identifying genes whose level of expression is altered by PTPRG modulation and Imatinib concentration. Statistical tests as differential expression analysis (DEA) supported by gene set enrichment analysis (GSEA) and modern methods of ontological term analysis are presented along with some results of current interest for forthcoming experimental research in the field of the transcriptomic landscape of CML. In particular, we present two methods that differ in the order of the analysis steps. After a gene selection based on fold-change value thresholding, we applied statistical tests to select differentially expressed genes. Therefore, we applied two different methods on the set of differentially expressed genes. With the first method (Method 1), we implemented GSEA, followed by the identification of transcription factors. With the second method (Method 2), we first selected the transcription factors from the set of differentially expressed genes and implemented GSEA on this set. Method 1 is a standard method commonly used in this type of analysis, while Method 2 is unconventional and is motivated by the intention to identify transcription factors more specifically involved in biological processes relevant to the CML condition. Both methods have been equipped in ontological knowledge mining and word cloud analysis, as elements of novelty in our analytical procedure. Data analysis identified RARG and CD36 as a potential PTPRG up-regulated genes, suggesting a possible induction of cell differentiation toward an erithromyeloid phenotype. The prediction was confirmed at the mRNA and protein level, further validating the approach and identifying a new molecular mechanism of tumor suppression governed by PTPRG in a CML context.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Drug Resistance, Neoplasm , Gene Expression , Genes, Tumor Suppressor , Humans , Imatinib Mesylate/therapeutic use , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Phosphoric Monoester Hydrolases/genetics , Protein Kinase Inhibitors/therapeutic use , Transcription Factors/genetics
8.
Gastroenterology ; 159(6): 2146-2162.e33, 2020 12.
Article in English | MEDLINE | ID: mdl-32805281

ABSTRACT

BACKGROUND & AIMS: Chromosomal instability (CIN) is a carcinogenesis event that promotes metastasis and resistance to therapy by unclear mechanisms. Expression of the colon cancer-associated transcript 2 gene (CCAT2), which encodes a long noncoding RNA (lncRNA), associates with CIN, but little is known about how CCAT2 lncRNA regulates this cancer enabling characteristic. METHODS: We performed cytogenetic analysis of colorectal cancer (CRC) cell lines (HCT116, KM12C/SM, and HT29) overexpressing CCAT2 and colon organoids from C57BL/6N mice with the CCAT2 transgene and without (controls). CRC cells were also analyzed by immunofluorescence microscopy, γ-H2AX, and senescence assays. CCAT2 transgene and control mice were given azoxymethane and dextran sulfate sodium to induce colon tumors. We performed gene expression array and mass spectrometry to detect downstream targets of CCAT2 lncRNA. We characterized interactions between CCAT2 with downstream proteins using MS2 pull-down, RNA immunoprecipitation, and selective 2'-hydroxyl acylation analyzed by primer extension analyses. Downstream proteins were overexpressed in CRC cells and analyzed for CIN. Gene expression levels were measured in CRC and non-tumor tissues from 5 cohorts, comprising more than 900 patients. RESULTS: High expression of CCAT2 induced CIN in CRC cell lines and increased resistance to 5-fluorouracil and oxaliplatin. Mice that expressed the CCAT2 transgene developed chromosome abnormalities, and colon organoids derived from crypt cells of these mice had a higher percentage of chromosome abnormalities compared with organoids from control mice. The transgenic mice given azoxymethane and dextran sulfate sodium developed more and larger colon polyps than control mice given these agents. Microarray analysis and mass spectrometry indicated that expression of CCAT2 increased expression of genes involved in ribosome biogenesis and protein synthesis. CCAT2 lncRNA interacted directly with and stabilized BOP1 ribosomal biogenesis factor (BOP1). CCAT2 also increased expression of MYC, which activated expression of BOP1. Overexpression of BOP1 in CRC cell lines resulted in chromosomal missegregation errors, and increased colony formation, and invasiveness, whereas BOP1 knockdown reduced viability. BOP1 promoted CIN by increasing the active form of aurora kinase B, which regulates chromosomal segregation. BOP1 was overexpressed in polyp tissues from CCAT2 transgenic mice compared with healthy tissue. CCAT2 lncRNA and BOP1 mRNA or protein were all increased in microsatellite stable tumors (characterized by CIN), but not in tumors with microsatellite instability compared with nontumor tissues. Increased levels of CCAT2 lncRNA and BOP1 mRNA correlated with each other and with shorter survival times of patients. CONCLUSIONS: We found that overexpression of CCAT2 in colon cells promotes CIN and carcinogenesis by stabilizing and inducing expression of BOP1 an activator of aurora kinase B. Strategies to target this pathway might be developed for treatment of patients with microsatellite stable colorectal tumors.


Subject(s)
Chromosomal Instability , Colorectal Neoplasms/genetics , Neoplasms, Experimental/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aurora Kinase B/metabolism , Azoxymethane/toxicity , Carcinogenesis/genetics , Cell Line, Tumor , Colon/cytology , Colon/pathology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/pathology , Cytogenetic Analysis , Dextrans/toxicity , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/pathology , Male , Mice , Mice, Transgenic , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/pathology , Organoids , Primary Cell Culture , Proto-Oncogene Proteins c-myc/metabolism , RNA, Long Noncoding/genetics , RNA-Binding Proteins/metabolism , Signal Transduction/genetics
9.
Genome Res ; 28(4): 432-447, 2018 04.
Article in English | MEDLINE | ID: mdl-29567676

ABSTRACT

The cancer-risk-associated rs6983267 single nucleotide polymorphism (SNP) and the accompanying long noncoding RNA CCAT2 in the highly amplified 8q24.21 region have been implicated in cancer predisposition, although causality has not been established. Here, using allele-specific CCAT2 transgenic mice, we demonstrate that CCAT2 overexpression leads to spontaneous myeloid malignancies. We further identified that CCAT2 is overexpressed in bone marrow and peripheral blood of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) patients. CCAT2 induces global deregulation of gene expression by down-regulating EZH2 in vitro and in vivo in an allele-specific manner. We also identified a novel non-APOBEC, non-ADAR, RNA editing at the SNP locus in MDS/MPN patients and CCAT2-transgenic mice. The RNA transcribed from the SNP locus in malignant hematopoietic cells have different allelic composition from the corresponding genomic DNA, a phenomenon rarely observed in normal cells. Our findings provide fundamental insights into the functional role of rs6983267 SNP and CCAT2 in myeloid malignancies.


Subject(s)
Cell Proliferation/genetics , Myelodysplastic-Myeloproliferative Diseases/genetics , RNA, Long Noncoding/genetics , Adult , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Myelodysplastic-Myeloproliferative Diseases/pathology , Polymorphism, Single Nucleotide/genetics , RNA Editing/genetics
10.
Int J Mol Sci ; 21(18)2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32911675

ABSTRACT

BACKGROUND: The Sda antigen and its biosynthetic enzyme B4GALNT2 are highly expressed in healthy colon but undergo a variable down-regulation in colon cancer. The biosynthesis of the malignancy-associated sialyl Lewis x (sLex) antigen in normal and cancerous colon is mediated by fucosyltransferase 6 (FUT6) and is mutually exclusive from that of Sda. It is thought that the reduced malignancy associated with high B4GALNT2 was due to sLex inhibition. METHODS: We transfected the cell lines SW480 and SW620, derived respectively from a primary tumor and a metastasis of the same patient, with the cDNAs of FUT6 or B4GALNT2, generating cell variants expressing either the sLex or the Sda antigens. Transfectants were analyzed for growth in poor adherence, wound healing, stemness and gene expression profile. RESULTS: B4GALNT2/Sda expression down-regulated all malignancy-associated phenotypes in SW620 but only those associated with stemness in SW480. FUT6/sLex enhanced some malignancy-associated phenotypes in SW620, but had little effect in SW480. The impact on the transcriptome was stronger for FUT6 than for B4GALNT2 and only partially overlapping between SW480 and SW620. CONCLUSIONS: B4GALNT2/Sda inhibits the stemness-associated malignant phenotype, independently of sLex inhibition. The impact of glycosyltransferases on the phenotype and the transcriptome is highly cell-line specific.


Subject(s)
Colonic Neoplasms/metabolism , N-Acetylgalactosaminyltransferases/metabolism , Sialyl Lewis X Antigen/metabolism , Cell Line , Cell Line, Tumor , Colonic Neoplasms/genetics , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Glycosyltransferases/metabolism , Humans , Lewis X Antigen/metabolism , N-Acetylgalactosaminyltransferases/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/physiology , Oligosaccharides/genetics , Oligosaccharides/immunology , Oligosaccharides/metabolism , Sialyl Lewis X Antigen/physiology , Transfection , Tumor Cells, Cultured
11.
Int J Mol Sci ; 21(15)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759706

ABSTRACT

Basal cell carcinoma (BCC) is the most common type of carcinoma worldwide. BCC development is the result of a complex interaction between environmental, phenotypic and genetic factors. However, despite the progress in the field, BCC biology and mechanisms of resistance against systemic treatments have been poorly investigated. The aim of the present review is to provide a revision of BCC histological and molecular features, including microRNA (miRNA) dysregulation, with a specific focus on the molecular basis of BCC systemic therapies. Papers from the last ten years regarding BCC genetic and phenotypic alterations, as well as the mechanism of resistance against hedgehog pathway inhibitors vismodegib and sonidegib were included. The involvement of miRNAs in BCC resistance to systemic therapies is emerging as a new field of knowledge.


Subject(s)
Carcinoma, Basal Cell/drug therapy , Drug Resistance, Neoplasm/genetics , Hedgehog Proteins/genetics , MicroRNAs/genetics , Anilides/therapeutic use , Biphenyl Compounds/therapeutic use , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Hedgehog Proteins/antagonists & inhibitors , Humans , Pyridines/therapeutic use
12.
Glycobiology ; 29(10): 684-695, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31317190

ABSTRACT

Cancer-associated glycan structures can be both tumor markers and engines of disease progression. The structure Siaα2,6Galß1,4GlcNAc (Sia6LacNAc), synthesized by sialyltransferase ST6GAL1, is a cancer-associated glycan. Although ST6GAL1/Sia6LacNAc are often overexpressed in colorectal cancer (CRC), their biological and clinical significance remains unclear. To get insights into the clinical relevance of ST6GAL1 expression in CRC, we interrogated The Cancer Genome Atlas with mRNA expression data of hundreds of clinically characterized CRC and normal samples. We found an association of low ST6GAL1 expression with microsatellite instability (MSI), BRAF mutations and mucinous phenotype but not with stage, response to therapy and survival. To investigate the impact of ST6GAL1 expression in experimental systems, we analyzed the transcriptome and the phenotype of the CRC cell lines SW948 and SW48 after retroviral transduction with ST6GAL1 cDNA. The two cell lines display the two main pathways of CRC transformation: chromosomal instability and MSI, respectively. Constitutive ST6GAL1 expression induced much deeper transcriptomic changes in SW948 than in SW48 and affected different genes in the two cell lines. ST6GAL1 expression affected differentially the tyrosine phosphorylation induced by hepatocyte growth factor, the ability to grow in soft agar, to heal a scratch wound and to invade Matrigel in the two cell lines. These results indicate that the altered expression of a cancer-associated glycosyltransferase impacts the gene expression profile, as well as the phenotype, although in a cancer subtype-specific manner.


Subject(s)
Antigens, CD/genetics , Colonic Neoplasms/genetics , Polysaccharides/genetics , Sialyltransferases/genetics , Transcriptome/genetics , Cell Line, Tumor , Colonic Neoplasms/pathology , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , Glycosylation , Humans , Phosphorylation , Polysaccharides/biosynthesis , RNA, Messenger/genetics
13.
Clin Exp Rheumatol ; 35(1): 113-121, 2017.
Article in English | MEDLINE | ID: mdl-27749230

ABSTRACT

OBJECTIVES: To evaluate the micro-RNA (miRNA) expression profile in patients with early psoriatic arthritis (PsA) in order to assess the role of miRNAs as potential PsA biomarkers. METHODS: The expression of 723 mature miRNAs in peripheral blood mononuclear cells of early PsA patients in comparison with early-rheumatoid arthritis (ERA) patients and healthy controls (HC) was evaluated using a miRNA microarray. All patients had active disease and were naïve from treatment. The results were validated for a specific miRNA (miR-21-5p) in the entire series of patients plus an additional group of early PsA, ERA and HC using droplet digital PCR. RESULTS: In PsA, microarray analysis revealed a distinct pattern of 19 (vs. HC) and 48 (vs. ERA) deregulated miRNAs (p<0.05). The significant up-regulation of miR-21-5p both in early PsA and in ERA in comparison with HC was validated and confirmed. In PsA, miR-21-5p was found significantly down regulated after 12 weeks of therapy, which significantly correlated with the reduction of DAPSA score. CONCLUSIONS: In early PsA, a 19- (vs. HC) and 48- (vs. ERA) miRNA signature was identified. A differential expression of miRNAs in patients with active disease makes them attractive biomarkers of psoriatic disease. MiR-21-5p was found up-regulated both in early PsA and ERA, a finding which highlights its role in the inflammatory process in general and its potential role as a therapeutic target in different inflammatory disorders. A potential role of miR-21-5p as a response to treatment biomarker in early PsA has been identified.


Subject(s)
Arthritis, Psoriatic/metabolism , Leukocytes, Mononuclear/metabolism , MicroRNAs/metabolism , Adult , Arthritis, Psoriatic/genetics , Female , Gene Expression Profiling , Humans , Male , MicroRNAs/genetics , Middle Aged
14.
Int J Mol Sci ; 18(7)2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28714940

ABSTRACT

The onset and selection of resistant clones during cancer treatment with chemotherapy or targeted therapy is a major issue in the clinical management of metastatic colorectal cancer patients. It is possible that a more personalized treatment selection, using reliable response-to-therapy predictive biomarkers, could lead to an improvement in the success rate of the proposed therapies. Although the process of biomarker selection and validation could be a long one, requiring solid statistics, large cohorts and multicentric validations, non-coding RNAs (ncRNAs) and in particular microRNAs, proved to be extremely promising in this field. Here we summarize some of the main studies correlating specific ncRNAs with sensitivity/resistance to chemotherapy, anti-VEGF therapy, anti-EGFR therapy and immunotherapy in colorectal cancer (CRC).


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , MicroRNAs/genetics , Colorectal Neoplasms/genetics , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunotherapy , Neoplasm Metastasis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
15.
J Cell Physiol ; 231(12): 2700-10, 2016 12.
Article in English | MEDLINE | ID: mdl-26987674

ABSTRACT

It is unknown whether components present in heart failure (HF) patients' serum provide an angiogenic stimulus. We sought to determine whether serum from HF patients affects angiogenesis and its major modulator, the Notch pathway, in human umbilical vein endothelial cells (HUVECs). In cells treated with serum from healthy subjects or from patients at different HF stage we determined: (1) Sprouting angiogenesis, by measuring cells network (closed tubes) in collagen gel. (2) Protein levels of Notch receptors 1, 2, 4, and ligands Jagged1, Delta-like4. We found a higher number of closed tubes in HUVECs treated with advanced HF patients serum in comparison with cells treated with serum from mild HF patients or controls. Furthermore, as indicated by the reduction of the active form of Notch4 (N4IC) and of Jagged1, advanced HF patients serum inhibited Notch signalling in HUVECs in comparison with mild HF patients' serum and controls. The circulating levels of NT-proBNP (N-terminal of the pro-hormone brain natriuretic peptide), a marker for the detection and evalutation of HF, were positively correlated with the number of closed tubes (r = 0.485) and negatively with Notch4IC and Jagged1 levels in sera-treated cells (r = -0.526 and r = -0.604, respectively). In conclusion, we found that sera from advanced HF patients promote sprouting angiogenesis and dysregulate Notch signaling in HUVECs. Our study provides in vitro evidence of an angiogenic stimulus arising during HF progression and suggests a role for the Notch pathway in it. J. Cell. Physiol. 231: 2700-2710, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Heart Failure/blood , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic , Receptors, Notch/metabolism , Serum/metabolism , Signal Transduction , Aged , Collagen/pharmacology , Cytokines/blood , Female , Gels/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Neovascularization, Physiologic/drug effects , Signal Transduction/drug effects
16.
Genome Res ; 23(9): 1446-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23796952

ABSTRACT

The functional roles of SNPs within the 8q24 gene desert in the cancer phenotype are not yet well understood. Here, we report that CCAT2, a novel long noncoding RNA transcript (lncRNA) encompassing the rs6983267 SNP, is highly overexpressed in microsatellite-stable colorectal cancer and promotes tumor growth, metastasis, and chromosomal instability. We demonstrate that MYC, miR-17-5p, and miR-20a are up-regulated by CCAT2 through TCF7L2-mediated transcriptional regulation. We further identify the physical interaction between CCAT2 and TCF7L2 resulting in an enhancement of WNT signaling activity. We show that CCAT2 is itself a WNT downstream target, which suggests the existence of a feedback loop. Finally, we demonstrate that the SNP status affects CCAT2 expression and the risk allele G produces more CCAT2 transcript. Our results support a new mechanism of MYC and WNT regulation by the novel lncRNA CCAT2 in colorectal cancer pathogenesis, and provide an alternative explanation of the SNP-conferred cancer risk.


Subject(s)
Chromosomal Instability , Chromosomes, Human, Pair 8/genetics , Colonic Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Case-Control Studies , Cell Line, Tumor , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Metastasis/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factor 7-Like 1 Protein/genetics , Transcription Factor 7-Like 1 Protein/metabolism , Transcription, Genetic , Wnt Signaling Pathway
17.
Stem Cells ; 33(3): 939-50, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25428821

ABSTRACT

Human aging is associated with a decrease in tissue functions combined with a decline in stem cells frequency and activity followed by a loss of regenerative capacity. The molecular mechanisms behind this senescence remain largely obscure, precluding targeted approaches to counteract aging. Focusing on mesenchymal stromal/stem cells (MSC) as known adult progenitors, we identified a specific switch in miRNA expression during aging, revealing a miR-196a upregulation which was inversely correlated with MSC proliferation through HOXB7 targeting. A forced HOXB7 expression was associated with an improved cell growth, a reduction of senescence, and an improved osteogenesis linked to a dramatic increase of autocrine basic fibroblast growth factor secretion. These findings, along with the progressive decrease of HOXB7 levels observed during skeletal aging in mice, indicate HOXB7 as a master factor driving progenitors behavior lifetime, providing a better understanding of bone senescence and leading to an optimization of MSC performance.


Subject(s)
Homeodomain Proteins/metabolism , Mesenchymal Stem Cells/cytology , MicroRNAs/metabolism , Adult , Aged , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Female , Homeodomain Proteins/genetics , Humans , Male , Mesenchymal Stem Cells/metabolism , Mice , MicroRNAs/genetics , Middle Aged , Osteogenesis
18.
Adv Exp Med Biol ; 937: 171-81, 2016.
Article in English | MEDLINE | ID: mdl-27573900

ABSTRACT

Recent studies suggested that colorectal cancer influences the types and quantity of nucleic acids - especially microRNAs - detected in the bloodstream. Concentration of circulating (cell-free) microRNAs, and possibly of other non-coding RNAs, could therefore serve as valuable colorectal cancer biomarker and could deliver insight into the disease process. This chapter addresses the recent discoveries on circulating microRNA and long non-coding RNA as diagnostic or prognostic biomarkers in colorectal cancer.


Subject(s)
Biomarkers, Tumor/blood , Colorectal Neoplasms/diagnosis , RNA, Neoplasm/blood , RNA, Untranslated/blood , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Early Detection of Cancer , Humans , MicroRNAs/blood , Prognosis , RNA, Long Noncoding/blood
19.
J Cell Physiol ; 230(4): 806-12, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25205602

ABSTRACT

To evaluate the gene expression changes involved in neoplastic progression of cervical intraepithelial neoplasia. Using microarray analysis, large-scale gene expression profile was carried out on HPV16-CIN2, HPV16-CIN3, and normal cervical keratinocytes derived from two HPV16-CIN2, two HPV-CIN3 lesions, and two corresponding normal cervical tissues, respectively. Differentially expressed genes were analyzed in normal cervical keratinocytes compared with HPV16-CIN2 keratinocytes and in HPV16-CIN2 keratinocytes compared with HPV16-CIN3 keratinocytes; 37 candidate genes with continuously increasing or decreasing expression during CIN progression were identified. One of these genes, phosphoglycerate dehydrogenase, was chosen for further characterization. Quantitative reverse transcription-polymerase chain reaction and immunohistochemical analysis confirmed that expression of phosphoglycerate dehydrogenase consistently increases during progression of CIN toward cancer. Gene expression changes occurring during CIN progression were investigated using microarray analysis, for the first time, in CIN2 and CIN3 keratinocytes naturally infected with HPV16. Phosphoglycerate dehydrogenase is likely to be associated with tumorigenesis and may be a potential prognostic marker for CIN progression.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Keratinocytes/metabolism , Tissue Array Analysis , Uterine Cervical Neoplasms/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/pathology , Cell Transformation, Neoplastic/genetics , Disease Progression , Female , Human papillomavirus 16/isolation & purification , Humans , Papillomavirus Infections/genetics , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Dysplasia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL