Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Toxicol Mech Methods ; 28(8): 563-572, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29768075

ABSTRACT

Mice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent. The presence of this natural bioscavenger makes mice and other rodents poor models for studies identifying therapeutics to treat humans exposed to nerve agents. To obviate this problem, a serum carboxylesterase knockout (Es1 KO) mouse was created. In this study, Es1 KO and wild type (WT) mice were assessed for differences in gene expression, nerve agent (soman; GD) median lethal dose (MLD) values, and behavior prior to and following nerve agent exposure. No expression differences were detected between Es1 KO and WT mice in more than 34 000 mouse genes tested. There was a significant difference between Es1 KO and WT mice in MLD values, as the MLD for GD-exposed WT mice was significantly higher than the MLD for GD-exposed Es1 KO mice. Behavioral assessments of Es1 KO and WT mice included an open field test, a zero maze, a Barnes maze, and a sucrose preference test (SPT). While sex differences were observed in various measures of these tests, overall, Es1 KO mice behaved similarly to WT mice. The two genotypes also showed virtually identical neuropathological changes following GD exposure. Es1 KO mice appear to have an enhanced susceptibility to GD toxicity while retaining all other behavioral and physiological responses to this nerve agent, making the Es1 KO mouse a more human-like model for nerve agent research.


Subject(s)
Behavior, Animal/drug effects , Carboxylic Ester Hydrolases/blood , Maze Learning/drug effects , Nerve Agents/toxicity , Soman/toxicity , Animals , Carboxylic Ester Hydrolases/genetics , Female , Gene Expression Profiling , Lethal Dose 50 , Male , Mice, Inbred C57BL , Mice, Knockout , Transcriptome/drug effects
2.
Neurotoxicology ; 63: 43-56, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28866071

ABSTRACT

Soman (GD) exposure results in status epilepticus (SE) that leads to neurodegeneration, neuroinflammation, and behavioral consequences including learning and memory deficits. The neuroinflammatory response is characterized by the upregulation of the pro-inflammatory cytokine, interleukin-1 (IL-1), which mediates the expression of other neurotoxic cytokines induced after GD exposure. However, the specific role of IL-1 signaling has not been defined in terms of the consequences of GD-induced SE. Therefore, the purpose of this study was to regulate IL-1 signaling and study the behavioral deficits and neurodegeneration that occur after convulsion onset. Wild type (WT), IL-1 receptor (IL-1R1) knockout (KO), and IL-1 receptor antagonist (IL-1Ra) KO mice were exposed to a convulsive dose of GD, and behavior was evaluated up to 18days later. Activity was studied using the Open Field, anxiety was assessed in the Zero Maze, and spatial learning and memory were evaluated with the Barnes Maze. The animals were euthanized at 24hours and 18days to determine neuropathology in the piriform cortex, amygdala, thalamus, and CA1, CA2/3, and CA4 regions of the hippocampus. Unlike the IL-1Ra KO, the IL-1R1 KO showed less neuropathology compared to WT at 24hours, but moderate to severe injury was found in all strains at 18days. Compared to their saline controls, the exposed WT mice were significantly more active in the Open Field, and the IL-1R1 KO strain showed reduced anxiety in the Zero Maze Test. Compared to WT mice, IL-1R1 and IL-1Ra KO mice had spatial learning and memory impairments in the Barnes Maze. Therefore, the IL-1 signaling pathway affects neurodegeneration and behavior after GD-induced convulsions.


Subject(s)
Brain , Convulsants/toxicity , Interleukin 1 Receptor Antagonist Protein/deficiency , Receptors, Interleukin-1 Type I/deficiency , Soman/toxicity , Status Epilepticus , Animals , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain/pathology , Disease Models, Animal , Exploratory Behavior/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Interleukin 1 Receptor Antagonist Protein/genetics , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-1 Type I/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Spatial Learning/drug effects , Status Epilepticus/chemically induced , Status Epilepticus/genetics , Status Epilepticus/pathology , Status Epilepticus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL