ABSTRACT
Naive CD4+ T lymphocytes initially undergo antigen-specific activation to promote a broad-spectrum response before adopting bespoke cytokine expression profiles shaped by intercellular microenvironmental cues, resulting in pathogen-focused modular cytokine responses. Interleukin (IL)-4-induced Gata3 upregulation is important for the helper type 2 T cell (TH2 cell) polarization associated with anti-helminth immunity and misdirected allergic inflammation. Whether additional microenvironmental factors participate is unclear. Using whole mouse-genome CRISPR-Cas9 screens, we discovered a previously unappreciated role for αvß3 integrin in TH2 cell differentiation. Low-level αvß3 expression by naive CD4+ T cells contributed to pan-T cell activation by promoting T-T cell clustering and IL-2/CD25/STAT5 signaling. Subsequently, IL-4/Gata3-induced selective upregulation of αvß3 licensed intercellular αvß3-Thy1 interactions among TH2 cells, enhanced mammalian target of rapamycin (mTOR) signaling, supported differentiation and promoted IL-5/IL-13 production. In mice, αvß3 was required for efficient, allergen-driven, antigen-specific lung TH2 cell responses. Thus, αvß3-expressing TH2 cells form multicellular factories to propagate and amplify TH2 cell responses.
Subject(s)
Cytokines , Th2 Cells , Mice , Animals , Cytokines/metabolism , Cell Differentiation , Allergens , Lung , Mammals/metabolismABSTRACT
Type 2 innate lymphoid cells (ILC2) contribute to immune homeostasis, protective immunity and tissue repair. Here we demonstrate that functional ILC2 cells can arise in the embryonic thymus from shared T cell precursors, preceding the emergence of CD4+CD8+ (double-positive) T cells. Thymic ILC2 cells migrated to mucosal tissues, with colonization of the intestinal lamina propria. Expression of the transcription factor RORα repressed T cell development while promoting ILC2 development in the thymus. From RNA-seq, assay for transposase-accessible chromatin sequencing (ATAC-seq) and chromatin immunoprecipitation followed by sequencing (ChIP-seq) data, we propose a revised transcriptional circuit to explain the co-development of T cells and ILC2 cells from common progenitors in the thymus. When Notch signaling is present, BCL11B dampens Nfil3 and Id2 expression, permitting E protein-directed T cell commitment. However, concomitant expression of RORα overrides the repression of Nfil3 and Id2 repression, allowing ID2 to repress E proteins and promote ILC2 differentiation. Thus, we demonstrate that RORα expression represents a critical checkpoint at the bifurcation of the T cell and ILC2 lineages in the embryonic thymus.
Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Lineage , Immunity, Innate , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Thymocytes/metabolism , Thymus Gland/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Movement , Cells, Cultured , Coculture Techniques , Female , Gene Expression Regulation, Developmental , Inhibitor of Differentiation Protein 2/genetics , Inhibitor of Differentiation Protein 2/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Organ Culture Techniques , Phenotype , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Thymocytes/immunology , Thymus Gland/embryology , Thymus Gland/immunology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolismABSTRACT
Type 2 immune responses are critical in tissue homeostasis, anti-helminth immunity, and allergy. T helper 2 (Th2) cells produce interleukin-4 (IL-4), IL-5, and IL-13 from the type 2 gene cluster under regulation by transcription factors (TFs) including GATA3. To better understand transcriptional regulation of Th2 cell differentiation, we performed CRISPR-Cas9 screens targeting 1,131 TFs. We discovered that activity-dependent neuroprotector homeobox protein (ADNP) was indispensable for immune reactions to allergen. Mechanistically, ADNP performed a previously unappreciated role in gene activation, forming a critical bridge in the transition from pioneer TFs to chromatin remodeling by recruiting the helicase CHD4 and ATPase BRG1. Although GATA3 and AP-1 bound the type 2 cytokine locus in the absence of ADNP, they were unable to initiate histone acetylation or DNA accessibility, resulting in highly impaired type 2 cytokine expression. Our results demonstrate an important role for ADNP in promoting immune cell specialization.
Subject(s)
Histones , Transcription Factors , Histones/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Th2 Cells , Cytokines/metabolism , Cell Differentiation , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolismABSTRACT
Migration and homing of immune cells are critical for immune surveillance. Trafficking is mediated by combinations of adhesion and chemokine receptors that guide immune cells, in response to chemokine signals, to specific locations within tissues and the lymphatic system to support tissue-localized immune reactions and systemic immunity1,2. Here we show that disruption of leukaemia inhibitory factor (LIF) production from group 2 innate lymphoid cells (ILC2s) prevents immune cells leaving the lungs to migrate to the lymph nodes (LNs). In the absence of LIF, viral infection leads to plasmacytoid dendritic cells (pDCs) becoming retained in the lungs where they improve tissue-localized, antiviral immunity, whereas chronic pulmonary allergen challenge leads to marked immune cell accumulation and the formation of tertiary lymphoid structures in the lung. In both cases immune cells fail to migrate to the lymphatics, leading to highly compromised LN reactions. Mechanistically, ILC2-derived LIF induces the production of the chemokine CCL21 from lymphatic endothelial cells lining the pulmonary lymphatic vessels, thus licensing the homing of CCR7+ immune cells (including dendritic cells) to LNs. Consequently, ILC2-derived LIF dictates the egress of immune cells from the lungs to regulate tissue-localized versus systemic immunity and the balance between allergen and viral responsiveness in the lungs.
Subject(s)
Cell Movement , Immunity, Innate , Leukemia Inhibitory Factor , Lung , Lymphocytes , Animals , Female , Male , Mice , Allergens/immunology , Cell Movement/immunology , Chemokine CCL21/metabolism , Chemokine CCL21/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Immunity, Innate/immunology , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/immunology , Lung/immunology , Lung/virology , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphatic Vessels/cytology , Lymphatic Vessels/immunology , Lymphatic Vessels/metabolism , Lymphocytes/classification , Lymphocytes/cytology , Lymphocytes/immunology , Mice, Inbred C57BL , Receptors, CCR7/metabolism , Receptors, CCR7/immunologyABSTRACT
Inflammation is a hallmark of cancer1. In patients with cancer, peripheral blood myeloid expansion, indicated by a high neutrophil-to-lymphocyte ratio, associates with shorter survival and treatment resistance across malignancies and therapeutic modalities2-5. Whether myeloid inflammation drives progression of prostate cancer in humans remain unclear. Here we show that inhibition of myeloid chemotaxis can reduce tumour-elicited myeloid inflammation and reverse therapy resistance in a subset of patients with metastatic castration-resistant prostate cancer (CRPC). We show that a higher blood neutrophil-to-lymphocyte ratio reflects tumour myeloid infiltration and tumour expression of senescence-associated mRNA species, including those that encode myeloid-chemoattracting CXCR2 ligands. To determine whether myeloid cells fuel resistance to androgen receptor signalling inhibitors, and whether inhibiting CXCR2 to block myeloid chemotaxis reverses this, we conducted an investigator-initiated, proof-of-concept clinical trial of a CXCR2 inhibitor (AZD5069) plus enzalutamide in patients with metastatic CRPC that is resistant to androgen receptor signalling inhibitors. This combination was well tolerated without dose-limiting toxicity and it decreased circulating neutrophil levels, reduced intratumour CD11b+HLA-DRloCD15+CD14- myeloid cell infiltration and imparted durable clinical benefit with biochemical and radiological responses in a subset of patients with metastatic CRPC. This study provides clinical evidence that senescence-associated myeloid inflammation can fuel metastatic CRPC progression and resistance to androgen receptor blockade. Targeting myeloid chemotaxis merits broader evaluation in other cancers.
Subject(s)
Androgen Receptor Antagonists , Antineoplastic Agents , Chemotaxis , Drug Resistance, Neoplasm , Myeloid Cells , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Chemotaxis/drug effects , Disease Progression , Inflammation/drug therapy , Inflammation/pathology , Lewis X Antigen/metabolism , Myeloid Cells/drug effects , Myeloid Cells/pathology , Neoplasm Metastasis , Prostate/drug effects , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic useABSTRACT
Innate lymphoid cells (ILCs) play strategic roles in tissue homeostasis and immunity. ILCs arise from lymphoid progenitors undergoing lineage restriction and the development of specialized ILC subsets. We generated "5x polychromILC" transcription factor reporter mice to delineate ILC precursor states by revealing the multifaceted expression of key ILC-associated transcription factors (Id2, Bcl11b, Gata3, RORγt, and RORα) during ILC development in the bone marrow. This approach allowed previously unattained enrichment of rare progenitor subsets and revealed hitherto unappreciated ILC precursor heterogeneity. In vivo and in vitro assays identified precursors with potential to generate all ILC subsets and natural killer (NK) cells, and also permitted discrimination of elusive ILC3 bone marrow antecedents. Single-cell gene expression analysis identified a discrete ILC2-committed population and delineated transition states between early progenitors and a highly heterogeneous ILC1, ILC3, and NK precursor cell cluster. This diversity might facilitate greater lineage potential upon progenitor recruitment to peripheral tissues.
Subject(s)
Bone Marrow/immunology , Lymphocyte Subsets/physiology , Lymphocytes/physiology , Lymphoid Progenitor Cells/physiology , Transcription Factors/metabolism , Animals , Cell Differentiation , Cell Line , Cell Lineage , Gene Expression Regulation, Developmental , Genes, Reporter , Immunity, Innate , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Single-Cell Analysis , Transcription Factors/geneticsABSTRACT
Sickle human hemoglobin (Hb) confers a survival advantage to individuals living in endemic areas of malaria, the disease caused by Plasmodium infection. As demonstrated hereby, mice expressing sickle Hb do not succumb to experimental cerebral malaria (ECM). This protective effect is exerted irrespectively of parasite load, revealing that sickle Hb confers host tolerance to Plasmodium infection. Sickle Hb induces the expression of heme oxygenase-1 (HO-1) in hematopoietic cells, via a mechanism involving the transcription factor NF-E2-related factor 2 (Nrf2). Carbon monoxide (CO), a byproduct of heme catabolism by HO-1, prevents further accumulation of circulating free heme after Plasmodium infection, suppressing the pathogenesis of ECM. Moreover, sickle Hb inhibits activation and/or expansion of pathogenic CD8(+) T cells recognizing antigens expressed by Plasmodium, an immunoregulatory effect that does not involve Nrf2 and/or HO-1. Our findings provide insight into molecular mechanisms via which sickle Hb confers host tolerance to severe forms of malaria.
Subject(s)
Hemoglobin, Sickle/immunology , Malaria/immunology , Plasmodium berghei , Animals , CD8-Positive T-Lymphocytes/immunology , Carbon Monoxide/metabolism , Chemokines/metabolism , Crosses, Genetic , Disease Models, Animal , Heme Oxygenase-1/metabolism , Host-Pathogen Interactions , Humans , Malaria/physiopathology , Malaria, Cerebral/immunology , Malaria, Cerebral/physiopathology , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolismABSTRACT
Glioblastoma (GBM) is the most aggressive brain tumor and different efforts have been employed in the search for new drugs and therapeutic protocols for GBM. Epitranscriptomics has shed light on new druggable Epigenetic therapies specifically designed to modulate GBM biology and behavior such as Histone Deacetylase inhibitors (iHDAC). Although the effects of iHDAC on GBM have been largely explored, there is a lack of information on the underlaying mechanisms HDAC-dependent that modulate the repertoire of GBM secreted molecules focusing on the set of Extracellular Matrix (ECM) associated proteins, the Matrisome, that may impact the surrounding tumor microenvironment. To acquire a better comprehension of the impacts of HDAC activity on the GBM Matrisome, we studied the alterations on the Matrisome-associated ECM regulators, Core Matrisome ECM glycoproteins, ECM-affiliated proteins and Proteoglycans upon HDAC inhibition in vitro as well as their relationship with glioma pathophysiological/clinical features and angiogenesis. For this, U87MG GBM cells were treated for with iHDAC or vehicle (control) and the whole secretome was processed by Mass Spectrometry NANOLC-MS/MS. In silico analyses revealed that proteins associated to the Angiogenic Matrisome (AngioMatrix), including Decorin, ADAM10, ADAM12 and ADAM15 were differentially regulated in iHDAC versus control secretome. Interestingly, genes coding for the Matrisome proteins differentially regulated were found mutated in patients and were correlated to glioma pathophysiological/clinical features. In vitro functional assays, using HBMEC endothelial cells exposed to the secretome of control or iHDAC treated GBM cells, coupled to 2D and 3D GBM cell culture system, showed impaired migratory capacity of endothelial cells and disrupted tubulogenesis in a Fibronectin and VEGF independent fashion. Collectively, our study provides understanding of epigenetic mechanisms HDAC-dependent to key Matrisomal proteins that may contribute to identify new druggable Epigenetic therapies or gliomagenesis biomarkers with relevant implications to improve therapeutic protocols for this malignancy.
Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Endothelial Cells/metabolism , Tandem Mass Spectrometry , Extracellular Matrix/metabolism , Glioma/metabolism , Epigenesis, Genetic , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Brain Neoplasms/drug therapy , Tumor Microenvironment , Membrane Proteins/metabolism , ADAM Proteins/metabolismABSTRACT
The development of innate lymphoid cell (ILC) transcription factor reporter mice has shown a previously unexpected complexity in ILC hematopoiesis. Using novel polychromic mice to achieve higher phenotypic resolution, we have characterized bone marrow progenitors that are committed to the group 1 ILC lineage. These common ILC1/NK cell progenitors (ILC1/NKP), which we call "aceNKPs", are defined as lineage-Id2+IL-7Rα+CD25-α4ß7-NKG2A/C/E+Bcl11b-. In vitro, aceNKPs differentiate into group 1 ILCs, including NK-like cells that express Eomes without the requirement for IL-15, and produce IFN-γ and perforin upon IL-15 stimulation. Following reconstitution of Rag2-/-Il2rg-/- hosts, aceNKPs give rise to a spectrum of mature ILC1/NK cells (regardless of their tissue location) that cannot be clearly segregated into the traditional ILC1 and NK subsets, suggesting that group 1 ILCs constitute a dynamic continuum of ILCs that can develop from a common progenitor. In addition, aceNKP-derived ILC1/NK cells effectively ameliorate tumor burden in a model of lung metastasis, where they acquired a cytotoxic NK cell phenotype. Our results identify the primary ILC1/NK progenitor that lacks ILC2 or ILC3 potential and is strictly committed to ILC1/NK cell production irrespective of tissue homing.
Subject(s)
Immunity, Innate , Interleukin-15 , Animals , Mice , Interleukin-15/genetics , Killer Cells, Natural , Perforin , Transcription Factors , Repressor Proteins , Tumor Suppressor ProteinsABSTRACT
Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.
Subject(s)
Machado-Joseph Disease , Humans , Machado-Joseph Disease/metabolism , Ataxin-3/genetics , Ataxin-3/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Cerebellum/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolismABSTRACT
Pressure overload-induced hypertrophy compromises cardiac stretch-induced compliance (SIC) after acute volume overload (AVO). We hypothesized that SIC could be enhanced by physiological hypertrophy induced by pregnancy's chronic volume overload. This study evaluated SIC-cardiac adaptation in pregnant women with or without cardiovascular risk (CVR) factors. Thirty-seven women (1st trimester, 1stT) and a separate group of 31 (3rd trimester, 3rdT) women [healthy or with CVR factors (obesity and/or hypertension and/or with gestational diabetes)] underwent echocardiography determination of left ventricular end-diastolic volume (LVEDV) and E/e' before (T0), immediately after (T1), and 15 min after (T2; SIC) AVO induced by passive leg elevation. Blood samples for NT-proBNP quantification were collected before and after the AVO. Acute leg elevation significantly increased inferior vena cava diameter and stroke volume from T0 to T1 in both 1stT and 3rdT, confirming AVO. LVEDV and E/e' also increased immediately after AVO (T1) in both 1stT and 3rdT. SIC adaptation (T2, 15 min after AVO) significantly decreased E/e' in both trimesters, with additional expansion of LVEDV only in the 1stT. NT-pro-BNP increased slightly after AVO but only in the 1stT. CVR factors, but not parity or age, significantly impacted SIC cardiac adaptation. A distinct functional response to SIC was observed between 1stT and 3rdT, which was influenced by CVR factors. The LV of 3rdT pregnant women was hypertrophied, showing a structural limitation to dilate with AVO, whereas the lower LV filling pressure values suggest increased diastolic compliance.NEW & NOTEWORTHY The sudden increase of volume overload triggers an acute myocardial stretch characterized by an immediate rise in contractility by the Frank-Starling mechanism, followed by a progressive increase known as the slow force response. The present study is the first to characterize echocardiographically the stretch-induced compliance (SIC) mechanism in the context of physiological hypertrophy induced by pregnancy. A distinct functional adaptation to SIC was observed between first and third trimesters, which was influenced by cardiovascular risk factors.
Subject(s)
Adaptation, Physiological , Heart Disease Risk Factors , Humans , Female , Pregnancy , Adult , Ventricular Function, Left , Cardiomegaly/physiopathology , Cardiomegaly/diagnostic imaging , Cardiomegaly/etiology , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Pregnancy Complications, Cardiovascular/physiopathology , Pregnancy Complications, Cardiovascular/diagnostic imaging , Pregnancy Complications, Cardiovascular/blood , Stroke Volume , Pregnancy Trimester, Third , Diabetes, Gestational/physiopathology , Compliance , Pregnancy Trimester, First , Obesity/physiopathology , Obesity/complications , Risk FactorsABSTRACT
Glioblastoma (GBM) is the most aggressive brain tumor with a poor prognosis. While Histone Deacetylase inhibitors have shown promising results in inhibiting cancer cell invasion and promoting apoptosis, their effects on GBM secretion, specifically focusing on extracellular vesicles (EVs) secretion, remain largely unexplored. Using label-free NANOLC-MS/MS methodology, we identified significant changes in the abundance of membrane traffic regulatory proteins in the secretome of U87MG cells after the treatment with the HDAC inhibitor Trichostatin A (TSA). In silico analysis showed that TSA treatment disrupted the secretion pattern of EVs-associated proteins and cellular signaling pathways, both qualitatively and quantitatively. Notably, RAB14/RAB7a interaction was only observed in the secretome of cells treated with TSA. In vitro assays revealed that TSA treatment of glioma cells increased EVs secretion and intracellular protein levels of RAB7a and RAB14 without affecting gene expression, suggesting a role of these two EVs-associated proteins in grade IV glioma cells. Additionally, an integrative approach using clinical data highlighted a correlation between DNA mutations affecting vesicle traffic coding-genes and clinical and phenotypic outcomes in glioma patients. These findings provide insights into the interplay between epigenetics and GBM intracellular trafficking, potentially leading to improved strategies for targeting and modifying the complex signaling network established between GBM cells and the tumor cell microenvironment.
ABSTRACT
Bone and mineral metabolism abnormalities are frequent in kidney transplant recipients and have been associated with cardiovascular morbidity. The primary aim of this study was to analyse the association between routine clinically available biochemical evaluation, non-routine histomorphometric bone evaluation, and vascular disease in kidney transplanted patients. A cross-sectional analysis was performed on 69 patients, 1-year after kidney transplantation. Laboratory analysis, radiography of hands and pelvis, bone biopsy, bone densitometry, and coronary CT were performed. One-year post-transplantation, nearly one-third of the patients presented with hypercalcemia, 16% had hypophosphatemia, 39.3% had iPTH levels > 150 pg/mL, 20.3% had BALP levels > 40 U/L, and 26.1% had hypovitaminosis D. Evaluation of extraosseous calcifications revealed low Adragão and Agatston scores. We divided patients into three clusters, according to laboratory results routinely used in clinical practice: hypercalcemia and hyperparathyroidism (Cluster1); hypercalcemia and high BALP levels (Cluster2); hypophosphatemia and vitamin D deficiency (Cluster 3). Patients in clusters 1 and 2 had higher cortical porosity (p = 0.001) and osteoid measurements, although there was no difference in the presence of abnormal mineralization, or low volume. Patients in cluster 2 had a higher BFR/BS (half of the patients in cluster 2 had high bone turnover), and most patients in cluster 1 had low or normal bone turnover. Cluster 3 has no differences in volume, or turnover, but 60% of the patients presented with pre-osteomalacia. All three clusters were associated with high vascular calcifications scores. Vascular calcifications scores were not related to higher bone mineral density. Instead, an association was found between a higher Adragão score and the presence of osteoporosis at the femoral neck (p = 0.008). In conclusion, inferring bone TMV by daily clinical biochemical analysis can be misleading, and bone biopsy is important for assessing both bone turnover and mineralization after kidney transplantation, although hypophosphatemia combined with vitamin D deficiency is associated with abnormal mineralization. The presence of hypercalcemia with high levels of PTH or high levels of BALP, or hypophosphatemia and vitamin D deficiency should remind us to screen vascular calcification status of patients.Clinical Research: ClinicalTrials.gov ID NCT02751099.
Subject(s)
Hypercalcemia , Hypophosphatemia , Kidney Transplantation , Vascular Calcification , Vitamin D Deficiency , Humans , Cross-Sectional Studies , Bone Remodeling , Vitamin D Deficiency/complications , Biopsy , Vascular Calcification/complications , Bone Density , Parathyroid HormoneABSTRACT
Functional output of the hippocampus, a brain region subserving memory function, depends on highly orchestrated cellular and molecular processes that regulate synaptic plasticity throughout life. The structural requirements of such plasticity and molecular events involved in this regulation are poorly understood. Specific molecules, including tissue inhibitor of metalloproteinases-2 (TIMP2) have been implicated in plasticity processes in the hippocampus, a role that decreases with brain aging as expression is lost. Here, we report that TIMP2 is highly expressed by neurons within the hippocampus and its loss drives changes in cellular programs related to adult neurogenesis and dendritic spine turnover with corresponding impairments in hippocampus-dependent memory. Consistent with the accumulation of extracellular matrix (ECM) in the hippocampus we observe with aging, we find that TIMP2 acts to reduce accumulation of ECM around synapses in the hippocampus. Moreover, its deletion results in hindrance of newborn neuron migration through a denser ECM network. A novel conditional TIMP2 knockout (KO) model reveals that neuronal TIMP2 regulates adult neurogenesis, accumulation of ECM, and ultimately hippocampus-dependent memory. Our results define a mechanism whereby hippocampus-dependent function is regulated by TIMP2 and its interactions with the ECM to regulate diverse processes associated with synaptic plasticity.
Subject(s)
Brain , Neuronal Plasticity , Infant, Newborn , Humans , Neuronal Plasticity/physiology , Brain/metabolism , Neurons/metabolism , Hippocampus/metabolism , Extracellular Matrix/metabolism , Synapses/metabolism , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolismABSTRACT
Chronic kidney disease mineral and bone disorder (CKD-MBD) contributes substantially to the burden of cardiovascular disease and fractures in patients with CKD. An increasing arsenal of diagnostic tools, including bone turnover markers and bone imaging, is available to support clinicians in the management of CKD-associated osteoporosis. Although not mandatory, a bone biopsy remains useful in the diagnostic workup of complex cases. In this special report, the European Renal Osteodystrophy (EUROD) initiative introduces the concept of a kidney-bone multidisciplinary team (MDT) for the diagnosis and clinical management of challenging cases of CKD-associated osteoporosis. In 2021, the EUROD initiative launched virtual clinical-pathological case-conferences to discuss challenging cases of patients with CKD-associated osteoporosis, in whom a bone biopsy was useful in the diagnostic workup. Out of these, we selected 4 representative cases and asked a kidney-bone MDT consisting of a nephrologist, an endocrinologist and a rheumatologist to provide comments on the diagnostic and therapeutic choices. These cases covered a broad spectrum of CKD-associated osteoporosis, including bone fracture in CKDG5D, post-transplant bone disease, disturbed bone mineralization, severely suppressed bone turnover, and severe hyperparathyroidism. Comments from the MDT were, in most cases, complementary to each other and additive to the presented approach in the cases. The MDT approach may thus set the stage for improved diagnostics and tailored therapies in the field of CKD-associated osteoporosis. We demonstrate the clinical utility of a kidney-bone MDT for the management of patients with CKD-MBD and recommend their establishment at local, national, and international levels.
ABSTRACT
Cognitive decline is common in patients with acute or chronic kidney disease. Several areas of brain function can be affected, including short and long-term memory, attention and inhibitory control, sleep, mood, eating control and motor function. Cognitive decline in kidney disease shares risk factors with cognitive dysfunction in people without kidney disease, such as diabetes, high blood pressure, sedentary lifestyle and unhealthy diet. However, additional kidney-specific risk factors may contribute, such as uremic toxins, electrolyte imbalances, chronic inflammation, acid-base disorders or endocrine dysregulation. Traditional and kidney-specific risk factors may interact to cause damage to the blood-brain barrier, induce vascular damage in the brain, and cause neurotoxicity or neuroinflammation. Here, we discuss recent insights into the pathomechanisms of cognitive decline from animal models and novel avenues for prevention and therapy. We focus on a several areas that influence cognition: blood-brain barrier disruption, the role of skeletal muscle, physical activity and the endocrine factor irisin, and the emerging therapeutic role of sodium-glucose transporter 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists. Taken together, these studies demonstrate the importance of animal models in providing a mechanistic understanding of this complex condition and their potential to explain the mechanisms of novel therapies.
ABSTRACT
BACKGROUND: Gastric dysplasia in the absence of an endoscopically defined lesion is rare, usually either a false positive diagnosis or a previously unidentified precancerous lesion during esophagogastroduodenoscopy (EGD). AIMS: Evaluate factors associated with the presence of an endoscopically visible lesion during follow-up in patients with histologic diagnosis of gastric dysplasia in random biopsies. METHODS: Retrospective cohort study including patients referred to our institution for gastric dysplasia in random biopsies during Index EGD. Endoscopic evaluation was performed with a high-definition endoscope using narrow band imaging (HD EGD-0). If no lesion was detected, endoscopic surveillance (HD EGD-FU) was conducted within 6 months for high grade dysplasia (HGD) or 12 months for low grade (LGD) or indefinite for dysplasia (IFD). RESULTS: From a total sample of 96 patients, 5 (5.2%) presented with an endoscopically visible lesion during HD EGD-0, while 10 lesions (10.4%) were identified during HD EGD-FU. Patients with Helicobacter pylori infection at Index EDG and with regular alcohol consumption (≥25 g/day) were 8 and 4 times more likely to have an endoscopically visible lesion on HD EGD-FU (p = 0.012 and p = 0.047). In binary logistic regression, both factors were independent predictors of the presence of gastric lesion on HD EGD-FU (OR 9.284, p = 0.009 and OR 5.025, p = 0.033). CONCLUSIONS: The presence of an endoscopically visible lesion after the histologic diagnosis of gastric dysplasia in random biopsies was more frequent during HD EGD-FU. H. pylori infection at Index EGD and regular alcohol consumption were significant predictors of the presence of gastric lesion on HD EGD-FU.
Subject(s)
Helicobacter Infections , Helicobacter pylori , Precancerous Conditions , Stomach Neoplasms , Humans , Helicobacter Infections/epidemiology , Retrospective Studies , Biopsy , Stomach Neoplasms/pathology , Alcohol Drinking/adverse effects , Precancerous Conditions/pathologyABSTRACT
INTRODUCTION: There is scarce data focused on recurrence neoplasia rate (RR) after piecemeal endoscopic mucosal resection (pEMR) of 10-19 mm non-pedunculated colorectal lesions (NPL). We aimed to analyze the RR after pEMR of 10-19 mm NPL, identify risk factors for its development and compare it with RR after pEMR of ≥ 20 mm NPL. METHODS: Retrospective cohort-study including all ≥10 mm NPL resected by pEMR in our center between 2018-2022 with an early repeat colonoscopy (ERC). RR was defined as recurrence neoplasia identified in the ERC EMR scar with virtual chromoendoscopy or histological confirmation. RESULTS: A total of 444 NPL were assessed, 124 (27.9%) with 10-19 mm. In the ERC, performed a median of 6 months after pEMR, RR was significantly lower for 10-19 mm NPL compared to ≥ 20 mm NPL (13/124 vs 68/320, p = 0.005). In subgroup analysis, RR after pEMR of 15-19 mm NPL was significantly higher compared to 10-14 mm NPL (13/98 vs 0, p = 0.041) but not significantly different compared to ≥ 20 mm NPL (13/98 vs 68/320, p = 0.073). In multivariable analysis, size of NPL (HR 1.501, 95% CI 1.012-2.227, p = 0.044) was the only independent risk factor identified for RR for 10-19 mm NPL. CONCLUSION: Although the early RR after pEMR of 10-19 mm NPL is significantly lower compared to ≥ 20 mm NPL, it is non-negligible (10.5%) and appears to be the highest among 15-19 mm NPL. The size of the lesion was the only independent risk factor for RR. Our findings should be accounted in the selection of the most appropriate post-polypectomy endoscopic surveillance.
Subject(s)
Colonic Polyps , Colorectal Neoplasms , Endoscopic Mucosal Resection , Humans , Retrospective Studies , Neoplasm Recurrence, Local/epidemiology , Colonoscopy , Colorectal Neoplasms/surgery , Colorectal Neoplasms/pathology , Colonic Polyps/surgery , Colonic Polyps/pathologyABSTRACT
Acipenser gueldenstaedtii is one of the most cultured sturgeon species worldwide and of considerable economic value for caviar production. There are though considerable challenges around chronic stress responses due to increased summer temperatures, impacting sturgeons' immune responses and their susceptibility to opportunistic infections. The identification of molecular and cellular pathways involved in stress responses may contribute to identifying novel biomarkers reflective of fish health status, crucial for successful sturgeon aquaculture. Protein citrullination is a calcium-catalysed post-translational modification caused by peptidylarginine deiminases (PADs), altering target protein function and affecting protein interactions in physiological and pathobiological processes. PADs can also modulate extracellular vesicle (EVs) profiles, which play critical roles in cellular communication, via transport of their cargoes (proteins, including post-translationally modified proteins, genetic material and micro-RNAs). This study identified differences in EV signatures, and citrullinated proteins in sera from winter and summer farmed sturegeons. EVs were significantly elevated in sera of the summer chronically stressed group. The citrullinated proteins and associated gene ontology (GO) pathways in sera and serum-EVs of chronically heat stressed A. gueldenstaedtii, showed some changes, with specific citrullinated serum protein targets including alpa-2-macroglobulin, alpha globin, calcium-dependent secretion activator, ceruloplasmin, chemokine XC receptor, complement C3 isoforms, complement C9, plectin, selenoprotein and vitellogenin. In serum-EVs, citrullinated protein cargoes identified only in the chronically stressed summer group included alpha-1-antiproteinase, apolipoprotein B-100, microtubule actin crosslinking factor and histone H3. Biological gene ontology (GO) pathways related to citrullinated serum proteins in the chronically stressed group were associated with innate and adaptive immune responses, stress responses and metabolic processes. In serum-EVs of the heat-stressed group the citrullinome associated with various metabolic GO pathways. In addition to modified citrullinated protein content, Serum-EVs from the stressed summer group showed significantly increased levels of the inflammatory associated miR-155 and the hypoxia-associated miR-210, but significantly reduced levels of the growth-associated miR-206. Our findings highlight roles for protein citrullination and EV signatures in response to chronic heat stress in A. gueldenstaedtii, indicating a trade-off in immunity versus growth and may be of value for sturgeon aquaculture.
ABSTRACT
Transcriptional dysregulation has been described in spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD), an autosomal dominant ataxia caused by a polyglutamine expansion in the ataxin-3 protein. As ataxin-3 is ubiquitously expressed, transcriptional alterations in blood may reflect early changes that start before clinical onset and might serve as peripheral biomarkers in clinical and research settings. Our goal was to describe enriched pathways and report dysregulated genes, which can track disease onset, severity or progression in carriers of the ATXN3 mutation (pre-ataxic subjects and patients). Global dysregulation patterns were identified by RNA sequencing of blood samples from 40 carriers of ATXN3 mutation and 20 controls and further compared with transcriptomic data from post-mortem cerebellum samples of MJD patients and controls. Ten genes-ABCA1, CEP72, PTGDS, SAFB2, SFSWAP, CCDC88C, SH2B1, LTBP4, MEG3 and TSPOAP1-whose expression in blood was altered in the pre-ataxic stage and simultaneously, correlated with ataxia severity in the overt disease stage, were analysed by quantitative real-time PCR in blood samples from an independent set of 170 SCA3/MJD subjects and 57 controls. Pathway enrichment analysis indicated the Gαi signalling and the oestrogen receptor signalling to be similarly affected in blood and cerebellum. SAFB2, SFSWAP and LTBP4 were consistently dysregulated in pre-ataxic subjects compared to controls, displaying a combined discriminatory ability of 79%. In patients, ataxia severity was associated with higher levels of MEG3 and TSPOAP1. We propose expression levels of SAFB2, SFSWAP and LTBP4 as well as MEG3 and TSPOAP1 as stratification markers of SCA3/MJD progression, deserving further validation in longitudinal studies and in independent cohorts.